

Deutsches Institut für Bautechnik

ANSTALT DES ÖFFENTLICHEN RECHTS

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Mitglied der Europäischen Organisation für Technische Zulassungen EOTA und der Europäischen Union für das Agrément im Bauwesen UEAtc

Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de

Datum: Geschäftszeichen: 24. Oktober 2008 I 18-1.71.2-6/08

Zulassungsnummer:

Z-71,2-34

Geltungsdauer bis:

31. Juli 2011

Antragsteller:

CEMEX Deutschland AG, Ingenieurdienstleistungen

Daniel-Goldbach Straße 25, 40880 Ratingen

Zulassungsgegenstand:

Kellerwände aus CEMEX-Stahlfaserbeton

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst 14 Seiten und acht Anlagen.

Seite 2 von 14 | 24. Oktober 2008

I. ALLGEMEINE BESTIMMUNGEN

- Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Seite 3 von 14 | 24. Oktober 2008

\$ December 1985 1986 1988

II. BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

Zulassungsgegenstand sind Kellerwände im Wohnungsbau, deren lichte Höhe 3,00 m nicht überschreitet. Sie bestehen aus Stahlfaserbeton mit oder ohne zusätzlicher Betonstahlbewehrung. Die Mindestdicke der Außenwände beträgt 15 cm. Die Wände können auch als Innenwände eingesetzt werden.

Die Wände dürfen durch vorwiegend ruhende vertikale und horizontale, gleichmäßig verteilte Lasten beansprucht werden.

Die Wände werden in den hier beschriebenen Nachweisschritten nicht für Zwangbeanspruchungen bemessen und sind daher in der Regel nicht für eine wasserundurchlässige Konstruktion geeignet.

Bei Einwirkung von horizontalen Lastkonzentrationen (z.B. Einzellasten) oder vertikalen Einzellasten im Bereich von Öffnungen oder wenn die Wände frei auskragend oder als wandartige Träger ausgebildet werden, sind sie stets nach DIN 1045-11 zu bemessen

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

2.1.1 Betonstahl

Es darf jeder Betonstahl mit den Eigenschaften entsprechend DIN $488-1^2$ oder allgemeiner bauaufsichtlicher Zulassung für Bauteile aus Beton entsprechend DIN $1045-1^1$ verwendet werden.

2.1.2 Fasern

Es dürfen nur lose, kaltgezogene Stahldrahtfasern, die allgemein bauaufsichtlich zugelassen sind oder Stahlfasern nach DIN EN $14889-1^3$ mit einer Konformitätsbescheinigung gemäß System "1" verwendet werden. Die detaillierte Spezifizierung der zulässigen Stahlfasern ist in Tabelle 1 angegeben.

2.1.3 Stahlfaserbeton

Stahlfaserbeton ist ein Normalbeton nach DIN EN $206-1^4$ in Verbindung mit DIN $1045-2^5$ und DIN $1045-2/A2^6$, dem zum Erreichen einer äquivalenten Zugfestigkeit Stahlfasern beigemischt werden. Der Beton muss mindestens der Festigkeitsklasse C20/25 entsprechen. Höhere Festigkeiten als C30/37 dürfen rechnerisch nicht angesetzt werden.

Die Konsistenzklasse ist auf ≤ F4 zu beschränken.

Es darf nur werksgemischter Transportbeton verwendet werden. Die Zugabe der Stahlfasern erfolgt ausschließlich unter Werksbedingungen.

Die Stahlfasern, die einer Betoncharge zugegeben werden, müssen gleich sein und den Angaben unter 2.1.2 entsprechen. Die Mischung von Fasertypen ist nicht zulässig.

Der eingesetzte Fasergehalt muss den Werten gemäß Tabelle 1 entsprechen.

<u>Tabelle 1:</u> Spezifikation der Stahlfasern sowie Mindest- und Höchstfasergehalte

The second secon	gerade	Stahlfasern mil	gewellte Stahlfasern			
	aufgestauchten	gekröpfte	flachgedrückte	gekröpfte und	ohne End-	mit
	Kopf	Enden	Enden	flachgedrückte	verankerung	flachgedrückten
				Enden		Enden
Durchmesser	≥1,0 mm	≥0,55 mm	≥0,65 mm	≥0,9 mm	≥0,8 mm	≥1,0 mm
Länge L	≥54 mm	≥30 mm	≥30 mm	≥50 mm	≥20 mm	≥60 mm
Zugfestigkeit Rm	≥ 1100 N/mm ²	≥ 850 N/mm ²	≥ 950 N/mm ²	≥ 950 N/mm ²	≥ 900 N/mm ²	≥ 900 N/mm ²
min. Fasergehalt	30 kg/m³	20 kg/m³	20 kg/m³	15 kg/m³	20 kg/m³	20 kg/m³
max. Fasergehalt	50 kg/m³	80 kg/m³	80 kg/m ³	70 kg/m ³	70 kg/m ³	70 kg/m³

Seite 4 von 14 | 24. Oktober 2008

Der Stahlfaserbeton muss in den Prüfungen nach Anlage 7 die je nach vorgesehener Anwendung erforderlichen äquivalenten Zugfestigkeiten erreichen, jedoch in jeder Probeserie mindestens eine mittlere äquivalente Zugfestigkeit von $f_{eq,ctm,II} = 0,4 \text{ N/mm}^2$.

2.1.4 Baustoffkennwerte

Druckfestigkeit und E-Modul des Stahlfaserbetons werden durch die Baustoffkennwerte deren Rechengrößen nach DIN 1045-11 und DIN EN 206-14 einschließlich DIN 1045-2⁵ hinreichend genau beschrieben.

Die äquivalente Zugfestigkeit ist gemäß Anlage 7 dieser allgemeinen bauaufsichtlichen Zulassung definiert und wird in der Eignungsprüfung für den in dieser Zulassung geregelten Stahlfaserbeton nachgewiesen.

2.1.5 Wände

Die Wände bestehen aus Stahlfaserbeton mit oder ohne bereichsweise zusätzlicher Betonstahlbewehrung und werden als Ortbetonwände ausgeführt. Dabei darf nur werksgemischter Transportbeton verwendet werden. Die Zugabe der Stahlfasern erfolgt ausschließlich unter Werksbedingungen. Desirable Institut

2.2 Herstellung und Kennzeichnung

2.2.1 Stahlfaserbeton

Stahlfaserbeton gilt als Beton im Sinne von DIN EN 206-14 in Verbindung mit DIN 1045-25 sowie DIN 1045-2/A26, dem Stahlfasern entsprechend Abschnitt 2.1.2 im vorgeschriebenen und statisch erforderlichen Verhältnis beigemengt sind. Für die Anforderungen an das Herstellwerk und den Umfang der Prüfungen gilt DIN EN 206-14 in Verbindung mit DIN 1045-2⁵ und DIN 1045-2/A2⁶ sowie zusätzlich die Regelungen dieser allgemeinen bauaufsichtlichen Zulassung.

Es darf nur werksgemischter Transportbeton mindestens der Festigkeitsklasse C20/25 nach DIN EN 206-14 in Verbindung mit DIN 1045-25 und DIN 1045-2/A26 verwendet werden, falls nicht im Abschnitt 3 höhere Festigkeitsklassen gefordert werden. Höhere Festigkeiten als C30/37 dürfen rechnerisch nicht angesetzt werden. Die Übergabe des Betons darf grundsätzlich nur auf der Baustelle erfolgen.

Die Fasern dürfen nur im Werk zugegeben werden. Die Stahlfasern sind in fertig abgewogenen Gebinden für die Betonherstellung bereitzuhalten oder sie sind über eine geeignete geeichte automatische Wägeeinrichtung zuzugeben; es ist zu überprüfen, dass die geforderten Eigenschaften durch Lieferschein (Ü-Zeichen oder CE-Kennzeichen) nachgewiesen sind.

Die Betonzusammensetzung ist stets aufgrund von Erstprüfungen entsprechend DIN EN 206- 1^4 in Verbindung mit DIN 1045- 2^5 und DIN 1045- $2/A2^6$ und DIN 1045- 3^7 sowie dieser allgemeinen bauaufsichtlichen Zulassung festzulegen. Hierbei sind für eine gleichmäßige Faserverteilung in der Mischung das Verfahren der Faservereinzelung (Art und Zeitpunkt der Faserzugabe), das Mischverfahren, die Mischzeit, die Zusammensetzung des Betons (Zementsorte und Zementgehalt, Sieblinie, Größtkorn, Fasergehalt, Fasertyp, Zusatzmittel und der w/z-Wert), die Verdichtungsart und -dauer aufeinander abzustimmen.

Die Eignung des zur Einbringung des Stahlfaserbetons vorgesehenen Pumpgerätes ist zu prüfen und das Ergebnis zusammen mit dem Ergebnis der Erstprüfung schriftlich festzuhalten. Aufgrund der Erstprüfung ist eine schriftliche Mischanweisung zu erstellen.

Die Erstprüfung ist bei jeder Abweichung von der ursprünglichen Zusammensetzung erneut durchzuführen und die erzielte äquivalente Zugfestigkeit von der Fremdüberwachung zu bestätigen. Dies gilt nicht, wenn die Abweichungen nicht über den in Abschnitt 9.5 von DIN EN 206-14 in Verbindung mit DIN 1045-25 und DIN 1045-2/A26 definierten Umfang hinausgehen und der w/z-Wert der Erstprüfung nicht überschritten wird. Die Einwaagegenauigkeit der Stahlfasern ist mit 3% einzuhalten. Ein Unterschreiten des Mindestfasergehaltes ist durch die Wahl eines geeigneten Vorhaltemaßes auszuschließen.

Bei Wechsel der Produktionsstätte ist stets eine neue Erstprüfung durchzuführen.

Seite 5 von 14 | 24. Oktober 2008

2.2.2. Wände

Die Wände sind in einem Zuge auf volle Höhe zu betonieren, auch bei vorgesehenen Fenster- bzw. Türöffnungen. Die Kontaktfläche der erstellten Bodenplatte bzw. Geschossdecke ist gemäß DIN 1045-1¹, 10.3.6 rau auszubilden, zu reinigen und vorzunässen. Die Übertragung der Horizontalkräfte in die erstellte Bodenplatte bzw. Geschossdecke ist nachzuweisen. Um Schwindrisse zu vermeiden, ist insbesondere eine schwindarme Betonrezeptur zu wählen.

Zur Anordnung von Fugen siehe Abschnitt 3.1.6.

2.2.3 Kennzeichnung

Der Lieferschein des Transportbetons einschließlich der Stahlfasern muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des Bauprodukts mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung des Bauprodukts nach Maßgabe der Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung, insbesondere Abschnitt 2.2.1 erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Bauprodukts eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

Die werkseigene Produktionskontrolle muss nach Art und Umfang mindestens entsprechend DIN $1045-3^7$ unter Beachtung von DIN EN $206-1^4$ in Verbindung mit DIN $1045-2^5$ und DIN $1045-2/A2^6$ durchgeführt werden und darüber hinaus die nach Anlage 8 aufgeführten Prüfungen einschließen.

Die werkseigene Produktionskontrolle schließt alle Überwachungsmaßnahmen im Transportbetonwerk gemäß Anlage 8 sowie die folgenden Prüfungen am Einbauort ein:

- (i) Konsistenzprüfung für jede Lieferung und Überprüfung mit den Anforderungen der statischen Berechnung
- (ii) Überprüfung von Fasergehalt und -verteilung durch Augenschein

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Dabei ist sicherzustellen, dass von jeder Lieferung mindestens drei Proben genommen werden.

Seite 6 von 14 | 24. Oktober 2008

7-71.2-34

Die Zuordnung von Wänden oder Wandabschnitten zu einzelnen Betonlieferungen ist im Rahmen der Aufzeichnung der werkseigenen Produktionskontrolle zu dokumentieren.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen.

Sie sind dem Deutschen Institut für Bautechnik auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Beton, der den Anforderungen nicht entspricht, ist so zu handhaben, dass Verwechslungen mit übereinstimmendem ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung des Bauprodukts durchzuführen.

Die geforderten Festigkeitswerte sind gemäß Anlage 8 zu prüfen. Diese Probenahme darf auch am Einbauort erfolgen.

Probenahme und Prüfungen obliegen der anerkannten Überwachungsstelle. Zusätzlich zu den Anforderungen nach DIN 1045-37 sind die Arbeiten nach Abschnitt 4 dieser allgemeinen bauaufsichtlichen Zulassung zu überwachen.

Bei Beton der Festigkeitsklasse C20/25 darf die Fremdüberwachung auf die Überprüfung aller Aufzeichnungen sowie auf zwei Baustellenbesuche im Jahr begrenzt werden, wenn die Prüfungen im Rahmen der werkseigenen Produktionskontrolle zu keinen Beanstandungen geführt haben.

Die Methode der Zuordnung von Wänden und Wandabschnitten zu einzelnen Betonlieferungen, die im Rahmen der Aufzeichnung der werkseigenen Produktionskontrolle dokumentiert wird, ist auf ihre Zuverlässigkeit und Eignung zu überprüfen.

Die Ergebnisse der Zertifizierung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle dem Deutschen Institut für Bautechnik vorzulegen.

Die Ergebnisse der Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Überwachungsstelle dem Deutschen Institut für Bautechnik auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Entwurf

3.1.1 Allgemeines

Es gilt DIN 1045-11, falls im Folgenden nichts anderes bestimmt wird.

Die Größe der äquivalenten Zugfestigkeit des verwendeten Stahlfaserbetons, die geplante Konsistenzklasse und die Zulassungsnummer sind in den Ausführungsplänen bzw. Bewehrungsplänen anzugeben.

Die Wände bestehen aus Stahlfaserbeton ohne oder mit Betonstahlbewehrung. Sie werden auf die vorab erstellte Bodenplatte bzw. Geschossdecke betoniert. Die Wände werden unten durch die Bodenplatte und oben durch die Decke horizontal gehalten. Die lichte Höhe darf 3,00 m nicht überschreiten.

Die Kellerwände können einachsig vertikal gespannt oder bei Vorhandensein entsprechender aussteifender Tragelemente (siehe 3.1.4) zweiachsig gespannt berechnet werden. Bei zweiachsigem Lastabtrag ist sicherzustellen, dass eine Zwangbeanspruchung in horizontaler Wandrichtung nicht zu vertikalen Rissen führt.

Die Verwendung als eingespannte Wände, Abfangträger, wandartige Träger, frei auskragende Wände oder freitragende Wandscheiben ist nicht zulässig.

Seite 7 von 14 | 24. Oktober 2008

Z-71.2-34

Kellerwände, die aussteifende Funktion haben und bei denen Zugspannungen auftreten, sollten vollständig aus Stahlbeton hergestellt werden. Bei vollständig überdrückten Wänden ist die ganze Wand für die auftretende Rand-Druckspannung (maßgebender Wert, d. h. minimale oder maximale Druckspannung) auszulegen. Dabei wird der Minimalwert in der Regel bei überlagerter Querbiegung maßgebend sein.

3.1.2 Mindestwanddicke

Die Mindestdicke der Wände beträgt 15 cm.

3.1.3 Aussparungen und Schlitze

Werden bei den Kellerwänden Aussparungen oder Schlitze vorgesehen, so ist die dort verbleibende geringste Wanddicke der Bemessung zugrunde zu legen.

Ist die verbleibende Wanddicke in Bereichen von Aussparungen oder Schlitzen kleiner als die Mindestdicke von 15 cm, so sind die Bereiche der Aussparungen und Schlitze wie Öffnungen in Wänden (siehe 3.1.5) zu behandeln.

Die sich aus Aussparungen oder Schlitzen gegebenenfalls ergebenden Exzentrizitäten sind bei der Schnittgrößenermittlung zu berücksichtigen.

3.1.4 Horizontale Stützung - aussteifende Querwände

Die Kellerwände werden unten durch die Bodenplatte und oben durch die Decke horizontal gehalten. Bei zweiachsigem Lastabtrag sind aussteifende Querwände aus Mauerwerk anzuordnen, deren Ausbildung entsprechend DIN 1053-18 zu erfolgen hat. Alternativ kann die Aussteifung durch andere Tragwerkselemente aus Beton, Stahl oder Stahlbeton sichergestellt werden, wobei diese für die auftretenden Beanspruchungen zu bemessen sind.

3.1.5 Öffnungen in Wänden

Grundsätzlich sind Stürze über Wandöffnungen bewehrt auszuführen.

Unter bestimmten Umständen kann auf eine zusätzliche Biegezugbewehrung verzichtet werden, wenn eine ausreichende Sturzhöhe sowie eine seitlich unverschiebliche Lagerung vorhanden ist, so dass sich ein Druckgewölbe ausbilden kann. Im Einflussbereich des Sturzes dürfen nur gleichmäßige Linienlasten wirken. Die maximale Belastung $N_{\rm d}$ sowie der Anteil aus der unmittelbar darüber liegenden Decke $N_{\rm d,direkt}$ ergibt sich in Abhängigkeit von der lichten Öffnungsbreite nach Anlage 5.

Um die Rissneigung in den Ecken von Öffnungen zu verringern, ist bei erhöhten Anforderungen an die Gebrauchstauglichkeit eine zusätzliche konstruktive Randeinfassung anzuordnen. Dies empfiehlt sich insbesondere bei Wandabschnitten mit I > 12 m.

In jedem Fall sind - falls sich aus einer Bemessung nicht höhere Bewehrungsgrade ergeben über jeder Öffnung zwei Bewehrungsstäbe $d_s = 12$ mm anzuordnen.

Sofern Öffnungen die Tragwirkung der Wand nennenswert beeinflussen, sind gesonderte Maßnahmen hinsichtlich der konstruktiven Durchbildung zu ergreifen (z. B. lokale Verstärkungen) oder die Wand ist nach DIN 1045-1¹ zu bemessen.

3.1.6 Fugen

Fugen sind nur zulässig, wenn sie planmäßig im Tragwerksentwurf vorgesehen und außerhalb des Bereiches von Öffnungen angeordnet sind.

Die Fugen sind vorzugsweise in Bereichen mit geringer Biegebeanspruchung anzuordnen. Es wird empfohlen, die Fugen rau oder profiliert auszubilden.

Bei Wänden mit Vertikalfugen innerhalb eines Feldes darf in diesem Bereich für die Bemessung nur ein einachsiger Lastabtrag angesetzt werden (vertikale Spannrichtung).

Wird die Wand als zweiachsig gespannt berechnet, so ist jede Art von Betonierfugen innerhalb der Felder auszuschließen. Hierauf ist in der Berechnung hinzuweisen (Fugenskizze).

Seite 8 von 14 | 24. Oktober 2008

Z-71.2-34

Wenn Zug- oder Querkräfte über Fugen übertragen werden sollen, so sind die Wände im Bereich der Fugen bis zu einem Abstand von der 2,5fachen Wanddicke nach DIN $1045-1^1$ zu bemessen und auszuführen. Auf die nach DIN $1045-1^1$ erforderliche Querbewehrung darf verzichtet werden, wenn für die Übertragung der Kräfte nicht mehr als $A_s = 8 \text{ cm}^2/\text{m}$ erforderlich sind und der Stabdurchmesser kleiner als 14 mm ist.

Der Nachweis der Querkrafttragfähigkeit der Fuge am Kopf- und Fußpunkt der Wand (Decken- bzw. Bodenplattenanschluss) ist nach Abschnitt 3.2.3.3 zu führen.

Werden Druckfugen angeordnet, so sind die auftretenden Querzugspannungen zu berücksichtigen. Für Lagerfugen darf nur Beton oder Mörtel verwendet werden.

Wände dürfen als Ganzes oder abschnittsweise zwischen den Fertigungsfugen auch nach DIN $1045-1^1$ bemessen und nach den Regeln des Stahlbetons ausgeführt werden. Die Stahlfasern werden dabei - sofern vorhanden - nicht berücksichtigt.

3.1.7 Zusätzliche Betonstahlbewehrung

Bei Verwendung von Betonstahlbewehrung sind die betreffenden Bereiche nach DIN $1045-1^1$ zu bemessen und zu bewehren ohne Anrechnung der Wirkung der Stahlfasern.

Abschnitt 13.7 von DIN 1045-11 ist zu beachten.

3.2 Bemessung

3.2.1 Allgemeines

Die Wände werden im Zustand II für den Grenzzustand der Tragfähigkeit bemessen. Im Gebrauchszustand müssen sie im ungerissenen Zustand verbleiben.

Bereiche der Kellerwände dürfen als Stahlbetonbauteile gemäß DIN 1045-1¹ ausgeführt und bemessen werden. Bei der Bemessung eines kombiniert bewehrten Querschnitts (Stahlfasern und Betonstahl) ist die Bemessung entweder nach DIN 1045-1¹ ohne Berücksichtigung der Stahlfaserwirkung oder auf Basis dieser Zulassung unter ausschließlicher Berücksichtigung der Wirkung der Stahlfasern zu führen.

Eine rechnerische Berücksichtigung von Betonfestigkeiten höher als C30/37 ist nicht zulässig.

Für die Wände sind die folgenden Nachweise zu führen:

a) Nachweise für die Grenzzustände der Tragfähigkeit einschließlich der Standsicherheit bei örtlich verminderter Faserwirkung gemäß Abschnitt 3.2.3.

Beim Stabilitätsnachweis darf die Wirkung der Stahlfasern nicht berücksichtigt werden.

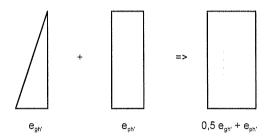
Der Nachweis einer ausreichenden Begrenzung der Rissbreite zur Sicherstellung der Faserwirksamkeit ist bei Anwendung des Bemessungsdiagramms in Anlage 4 erbracht.

b) Nachweise für die Grenzzustände der Gebrauchstauglichkeit gemäß Abschnitt 3.2.3. Bei Öffnungen in Wänden ist Abschnitt 3.1.5 zu beachten.

3.2.2 Schnittgrößen

Die Schnittgrößenermittlung erfolgt unter Ansatz des erhöhten aktiven Erddrucks $\mathsf{E}_\mathsf{ah}{}'$ zu

 $E_{ab}' = 0.5 (E_{ab} + E_{0b}).$


Der Erddruck wird rechteckförmig angesetzt, mit einem dreieckförmigen Anteil $e_{gh'}$ infolge Eigengewicht und einem konstanten Anteil $e_{ph'}$ infolge Auflast (Verkehrslasten).

Seite 9 von 14 | 24. Oktober 2008

 q_e Erddruck auf Wand $q_e = 0.5 e_{gh}' + e_{ph}'$

Der vertikale Erddruckanteil $E_{av} = E_{ah} \tan(\delta)$ darf nicht berücksichtigt werden.

Die Schnittgrößenermittlung erfolgt im Regelfall an der einachsig gespannten Wand. Bei zweiachsig gespannten Wänden können die Biegemomente mit Hilfe der Beiwerte aus Tabelle 2 ermittelt werden.

Tabelle 2: Momentenbeiwerte der teilweise angeschütteten Wand

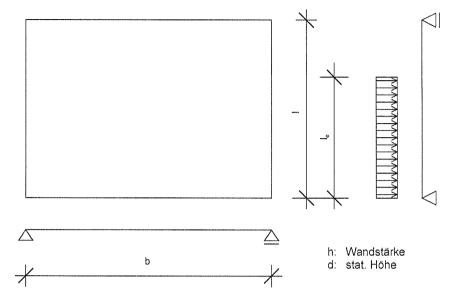
Ermittlung der Momentenbeiwerte					$\alpha = \frac{b}{l}$							
			1	1,1	1,2	1,4	1,6	1,8	2	2,5	3	∞
1.	1	φ _e	0,50	0,59	0,67	0,79	0,87	0,91	0,94	0,98	0,99	1,00
$\beta = \frac{l_e}{l}$		k _x	16,00	17,92	20,49	27,67	37,77	51,10	68,00	128,20	218,67	
		k _y	16,00	13,46	11,86	10,08	9,22	8,76	8,50	8,20	8,10	8,00
	0,9	φ _e	0,51	0,60	0,68	0,80	0,87	0,91	0,94	0,98	0,99	1,00
		k _x	16,20	18,18	20,83	28,20	38,57	52,24	69,56	131,25	223,94	
		k _y	16,13	13,60	12,00	10,24	9,38	8,92	8,66	8,37	8,26	8,16
	0,8	φ _e	0,52	0,62	0,70	0,81	0,88	0,92	0,95	0,98	0,99	1,00
		k _x	16,82	19,02	21,92	29,93	41,15	55,91	74,60	141,08	240,93	
		k _y	16,55	14,06	12,48	10,73	9,88	9,43	9,17	8,88	8,78	8,68
	0,7	Ψe	0,56	0,65	0,72	0,83	0,89	0,93	0,95	0,98	0,99	1,00
		k _x	18,04	20,63	24,01	33,26	46,12	62,99	84,31	160,05	273,70	
		k _y	17,36	14,92	13,37	11,66	10,84	10,39	10,14	9,86	9,76	9,66
	0,6	Фе	0,60	0,69	0,76	0,85	0,91	0,94	0,96	0,98	0,99	1,00
		k _x	20,18	23,48	27,71	39,13	54,88	75,46	101,42	193,47	331,45	
		k _y	18,79	16,43	14,93	13,28	12,47	12,05	11,80	11,53	11,43	11,34
	0,5	Фе	0,67	0,75	0,81	0,88	0,93	0,95	0,97	0,99	0,99	1,00
		k _x	24,00	28,57	34,31	49,62	70,54	97,76	132,00	253,20	434,67	
		k _y	21,33	19,08	17,65	16,07	15,31	14,90	14,67	14,40	14,31	14,22

Bezeichnungen für Beanspruchungen:

m_γ Biegemoment aus Beanspruchung vertikal (Zugkräfte in vertikaler Richtung)

m_x Biegemoment aus Beanspruchung horizontal (Zugkräfte in horizontaler Richtung)

 k_y , k_x Beiwerte zur Berechnung der Biegemomente nach Tabelle 2


φ_e Anteil der Tragwirkung in vertikaler Richtung

$$m_y = \frac{q \cdot l^2}{k_y} \qquad \text{mit} \qquad \qquad k_y = \frac{8}{\beta^2 (2 - \beta)^2 \cdot \phi_e}$$

$$m_{x} = \frac{q \cdot l^{2}}{k_{x}} \qquad \text{mit} \qquad \qquad k_{x} = \frac{8}{\left(1 - \phi_{e}\right) \alpha}$$

Seite 10 von 14 | 24. Oktober 2008

- Wandhöhe (Spannweite vertikal)
- b Wandbreite (Spannweite horizontal
- le Anschütthöhe der Wand

Bild 1: Statisches System zur Berechnung der Biegebeanspruchung

- 3.2.3 Nachweis für den Grenzzustand der Tragfähigkeit
- 3.2.3.1 Nachweis bei Biegung mit Längskraft

Die Kellerwände werden belastet durch Normalkraft aus der aufgehenden Konstruktion, durch gleichmäßig verteilte horizontale Kräfte aus dem Erddruck der Anschüttung sowie aus Ausmittigkeit der aufgelagerten Decken.

Die Bemessung erfolgt über die Ermittlung einer erforderlichen äquivalenten Zugfestigkeit $f_{eq,ctd,II}$ mit Hilfe des in Anlage 4 bereitgestellten Bemessungsdiagramms. Der erforderliche charakteristische Wert der äquivalenten Zugfestigkeit $f_{eq,ctk,II}$ lässt sich aus dem Bemessungswert $f_{eq,ctd,II}$ nach folgender Gleichung bestimmen

erf
$$f_{eq,ctk,II} = f_{eq,ctd,II} \cdot \frac{\gamma^f ct}{\alpha^f c \cdot \alpha_{svs}}$$

darin sind

 γ^f_{ct} Teilsicherheitsbeiwert für den Stahlfaserbeton im gerissenen Zustand γ^f_{ct} = 1,25

 α_{c}^{f} Beiwert zur Berücksichtigung des Dauerstandverhaltens $\alpha_{c}^{f} = 0.85$

 α_{sys} Beiwert zum Gestalteinfluss für Wände mit h > 15 cm nach Bild 2

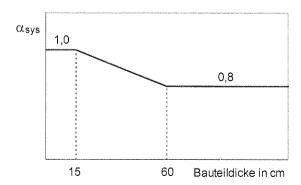


Bild 2: Beiwert zum Gestalteinfluss für Wände mit h > 15 cm

Seite 11 von 14 | 24. Oktober 2008

3.2.3.2 Nachweis örtlich verminderter Faserwirkung

Beim Nachweis einer örtlich verminderten Faserwirkung sind die Teilsicherheitsbeiwerte für die Einwirkungen einheitlich zu $\gamma_F = 1,35$ unter Berücksichtigung der Kombinationsbeiwerte ψ_0 nach DIN 1055-100⁹ für alle ungünstig wirkenden Einwirkungen anzusetzen. Alle Teilsicherheitsbeiwerte für die verwendeten Baustoffe betragen in diesem Fall $\gamma_M = 1,0$.

Für den Nachweis ist ein Beiwert κ in Abhängigkeit von der gezogenen Querschnittsfläche nach Anlage 6 zu ermitteln, mit dem der Bemessungswert der äquivalenten Zugfestigkeit des Stahlfaserbetons reduziert wird.

Die Schnittgrößen dürfen hierbei unter Ansatz des aktiven Erddrucks E_{ah} und der Berücksichtigung einer Teileinspannung der Kellerwand am Wandkopf und Wandfuß ermittelt werden. Die Aufnahme der Schnittgrößen aus der Teileinspannung durch die benachbarten Bauteile ist nachzuweisen.

Das Einspannmoment ist bei gegebener Normalkraft N_{Ed} wie folgt zu ermitteln:

- Fall 1: keine Bewehrung in der Kontaktfuge
 - Einspannmoment $M_{E,i}$ nach MN-Interaktionsdiagramm für $\omega = 0$ ermitteln
- Fall 2: Anschlussbewehrung in der Kontaktfuge
 - Einspannmoment M_{E,st} nach MN-Interaktion gemäß DIN 1045-1¹ ermitteln
 - maximal aufnehmbares Einspannmoment $M_{E,f}$ der angrenzenden Querschnitte nach MN-Interaktionsdiagramm für Stahlfaserbeton ermitteln
- Das anzurechnende Einspannmoment ist das betragsmäßige Minimum von $\mathsf{M}_{\mathsf{E},\mathsf{j}}$ u. $\mathsf{M}_{\mathsf{E},\mathsf{st}}.$

Es sind in der Regel folgende Lastkombinationen zu berücksichtigen:

(1)max m / min n:

Im Falle von Biegung mit geringer Normalkraft wirkt die Längskraft traglaststeigernd. Es ist darauf zu achten, dass die Normalkräfte gemäß DIN 1055-1009 mit den zutreffenden Kombinationsbeiwerten in die Bemessung eingehen.

(2)max m / max n

Im Falle von Biegung mit hoher Längskraft begrenzt die Druckfestigkeit des Betons die Tragfähigkeit. Die Normalkraft wird als maximal auftretende Bemessungskraft ermittelt.

Der Nachweis einer örtlich verminderten Faserwirkung wird nur maßgebend, wenn $\kappa < 0.8~E_{ah}/E_{ah}'.$ Für übliche Gegebenheiten unter Ansatz eines Erddruckbeiwertes $K_{agh}=0.33$ und eines Erdruhedruckbeiwertes von $K_{0gh}=0.5$ ergibt sich damit eine erforderliche gezogene Fläche von $A^f_{ct} \geq 0.38~m^2.$ Für eine 20 cm dicke, einachsig gespannte Wand folgt daraus beispielhaft eine erforderliche durchgehende Wandlänge von $l \geq 3.17~m$ damit der Nachweis einer örtlich verminderten Faserwirkung nicht maßgebend wird. Bei zweiachsig gespannten Wänden kann der Nachweis in der Regel vernachlässigt werden.

3.2.3.3 Nachweis bei Ouerkraft

Die Querkrafttragfähigkeit der Wand ist bei Verwendung von Betonstahl nach DIN 1045-1¹ nachzuweisen.

Bei ausschließlicher Verwendung von Stahlfasern ist der Bemessungswert der Querkrafttragfähigkeit in Tabelle 3 angegeben. Die Nachweise sind für die maßgebenden Schnitte am oberen und unteren Wandende jeweils im Abstand 0,88 h vom Auflager zu führen. Die Werte in Tabelle 3 sind bei einachsig gespannten Wänden nur gültig für ein Verhältnis von Wandbreite b zu Wanddicke h von b/h ≥ 5 .

Seite 12 von 14 | 24. Oktober 2008

Z-71.2-34

Tabelle 3: Bemessungswert der Querkrafttragfähigkeit V_{Rd} für $b \ge 5h$

V _{Rd} [kN/m]									
		f _{eq,ctk,II} [N/mm²]							
h [m]	0,4	0,6	0,8	1,0	1,2				
0,10	21,0	31,5	42,0	52,5	63,0				
0,15	30,5	45,7	60,9	76,1	91,4				
0,20	39,2	58,8	78,4	98,0	117,6				
0,25	47,3	70,9	94,5	118,1	141,8				
0,30	54,6	81,9	109,2	136,5	163,8				

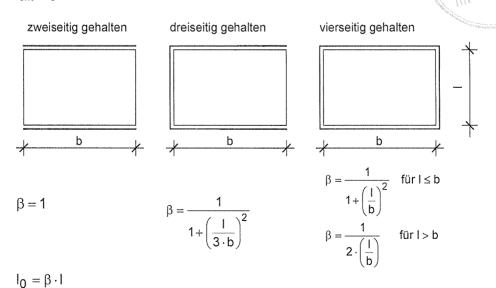
f_{eq,ctk,II} siehe Abschnitt 3.2.3.1

Der Nachweis der Querkrafttragfähigkeit der Fuge am Wandkopf bzw. Wandfuß (Weiterleitung der Horizontallasten aus Erddruck in die Bodenplatte bzw. die Deckenplatte) ist nach DIN 1045-1¹, Abschnitt 10.3.6 zu führen. Die für die Querkraftübertragung maßgebenden Flächen sind rau auszuführen (vgl. Tabelle 13, DIN 1045-1¹).

3.2.3.4 Begrenzung der Schlankheit / Nachweis unter Druckbeanspruchung

Der Nachweis der Längskraftbeanspruchung in Richtung der lichten Wandhöhe ist nach DIN 1045-1¹, Abschnitt 8.6 sowie DAfStb - Heft 525 (zu Abschnitt 8.6.7) für unbewehrte und bewehrte Wände zu führen.

Für die zusätzliche Lastausmitte Δe_{II} nach Theorie II. Ordnung ist anzunehmen:


$$\Delta e_{II} = -0.07 \text{ h} + 0.14 e_{tot} + 0.01 l_{o} \ge 0$$

(Bezeichnungen entsprechend DIN 1045-1¹, Abschnitt 8.6).

Der Nachweis kann entfallen, wenn eine der folgenden Bedingungen erfüllt ist

$$\lambda'_{crit} \le 7,23$$

$$\lambda'_{crit} \le 4,62 \sqrt{\frac{A_c \cdot f_{cd}}{N_{Ed}}}$$
mit $\lambda'_{crit} = I_0 / d$

Seite 13 von 14 | 24. Oktober 2008

Für übliche Ausführungen sind in Anlage 1 Grenznormalkräfte N_{crit} angegeben, bei deren Unterschreitung ein Nachweis nach Theorie II. Ordnung entfallen kann.

- 3.2.4 Nachweis für den Grenzzustand der Gebrauchstauglichkeit
- 3.2.4.1 Nachweis der Begrenzung der Spannungen
 Die Nachweise der Begrenzung der Spannungen erfolgen nach DIN 1045-1¹.
- 3.2.4.2 Nachweis der Begrenzung der Verformungen
 Der Nachweis der Begrenzung der Verformung braucht nicht geführt zu werden.
- 3.2.4.3 Nachweis der Rissbreitenbeschränkung
 Es ist der Nachweis zu führen, dass die Zugspannungen im Grenzzustand der Gebrauchstauglichkeit den Bemessungswert der Betonzugfestigkeit f_{ctk:0.05}/1,5 nicht überschreiten.

4 Bestimmungen für die Ausführung

Es gilt DIN 1045-3⁷ falls im Folgenden nichts anderes bestimmt wird.

Die Wände sind fugenlos in einem Zuge zu betonieren.

Das mit der Herstellung beauftragte Personal muss über ausreichende Erfahrung bei der Verarbeitung von Stahlfaserbeton verfügen.

Es dürfen nur solche Fachkräfte (Bauleiter, Poliere usw.) eingesetzt werden, die bereits an der Verarbeitung und Nachbehandlung von Stahlfaserbeton verantwortlich beteiligt gewesen sind.

Das ausführende Unternehmen hat dafür zu sorgen, dass die Führungskräfte und das maßgebende Fachpersonal über die Verarbeitung von Stahlfaserbeton so unterrichtet und geschult sind, dass sie alle Maßnahmen für eine ordnungsgemäße Durchführung des Bauvorhabens treffen können.

Die Schulung der Fachkräfte ist in Aufzeichnungen festzuhalten. Die Erfahrungen der Baustellen sind für weitere Arbeiten auszuwerten.

Die Übergabe des Betons schließt die folgenden Prüfungen am Verwendungsort ein:

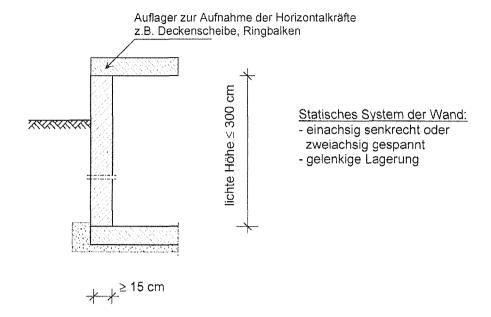
- (i) Konsistenzprüfung für jede Lieferung
- (ii) Überprüfung von Fasergehalt und -verteilung durch Augenschein

Die bauausführende Firma hat eine Erklärung der Übereinstimmung mit dieser allgemeinen bauaufsichtlichen Zulassung gemäß § 24 Abs. 1 bis 3 MBO abzugeben.

Die in der Rechnung verwendete planmäßige äquivalente Zugfestigkeit und die Konsistenz des Betons sind in den Bauakten zu vermerken. Der für die Überwachung auf der Baustelle Verantwortliche ist namentlich zu benennen.

Der Transport des Stahlfaserbetons vom Herstellwerk zur Verwendungsstelle darf nur in Fahrzeugen mit Rührwerk erfolgen. Unmittelbar vor dem Entladen ist der Beton nochmals so durchzumischen, dass er auf der Baustelle in gleichmäßiger Zusammensetzung übergeben wird.

Seite 14 von 14 | 24. Oktober 2008


Das Einbringen des Stahlfaserbetons darf nur mit solchem Fördergerät und das Verdichten des Betons nur mit solchen Verfahren erfolgen, die im Rahmen der Erstprüfung des Betons als geeignet befunden worden sind. Die Nachbehandlung ist mit besonderer Sorgfalt durchzuführen.

Häusler Beglaubigt

Construction of the constr

1	DIN 1045-1:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 1: Bemessung und Konstruktion
3	DIN 488-1:1984-09	Betonstahl - Teil 1: Sorten, Eigenschaften, Kennzeichen
4	DIN EN 14889-1:2006-11	Fasern für Beton – Teil 1: Stahlfasern – Begriffe, Festlegungen und Konformität; Deutsche Fassung EN 14889-1:2006
5	DIN EN 206-1:2001-07 DIN 1045-2:2001-07	Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 2: Beton, Festlegung, Eigenschaften, Herstellung und Konformität - Anwendungsregeln zu DIN EN 206-1
7	DIN 1045-2/A2:2007-06 DIN 1045-3:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 2: Beton, Festlegung, Eigenschaften, Herstellung und Konformität - Anwendungsregeln zu DIN EN 206-1; Änderung A2 Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 3: Bauausführung
9	DIN 1053-1:1996-11	Mauerwerk Teil 1: Berechnung und Ausführung
2	DIN 1055-100:2001-03	Einwirkungen auf Tragwerke Teil 100: Grundlagen der Tragwerksplanung, Sicherheitskonzept und Bemessung

Zulassungsgegenstand (Prinzipskizze)

Es sind lose, kaltgezogene Stahldrahtfasern, die allgemein bauaufsichtlich zugelassen sind oder Stahlfasern nach DIN EN 14889-1:2006-11 mit einer Konformitätsbescheinigung gemäß System "1" zu verwenden.

Die Stahlfasern müssen den Spezifikationen der Tabelle 1 dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Grenznormalkräfte für Entfallen eines Knicksicherheitsnachweises

$N_{crit}[kN]$ $I_0[m]$									
C20	/25								
_		2,00	2,20	2,40	2,60				
<u>u</u>] u	0,15	170	140	118	100				
Же	0,175	269	223	187	159				
Wanddicke h [m]	0,20	402	332	279	238				
War	0,24	695	574	483	411				
	0,30	1357	1122	943	803				

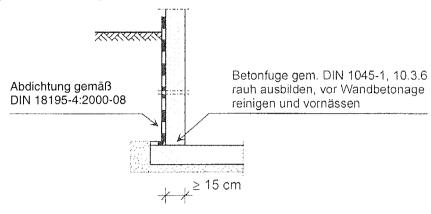
CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen

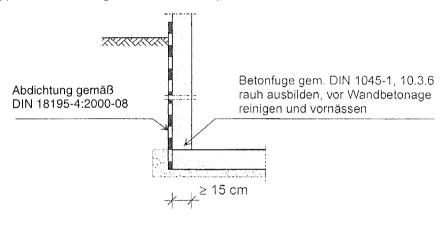
Kellerwände aus CEMEX-Stahlfaserbeton

Zulassungsgegenstand

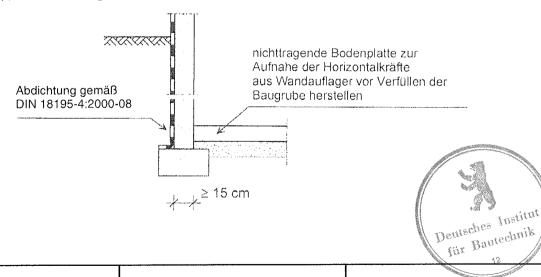
Anlage 1


zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34** vom 24. Oktober 2008


Z43067.08

Ausbildung des Wandfußes


Typ 1a: Gründung auf Fundamentplatte mit Überstand

Typ 1b: Gründung auf Fundamentplatte ohne Überstand

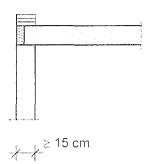
Typ 2: Gründung auf Streifenfundament

CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen

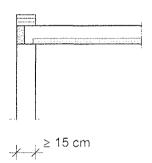
Kellerwände aus CEMEX-Stahlfaserbeton

Fußpunktdetails

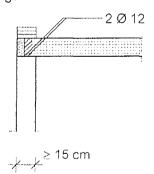

Anlage 2

zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34**


Ausbildung des Wandkopfes

Typ 1: Deckenauflager als Ortbetonplatte


vorhandene Querbewehrung der Deckenplatte stabilisiert Wandscheibe

Typ 2: Deckenauflager als Fertigteildecke mit statisch mitwirkender Ortbetonschicht

vorhandene Querbewehrung in der Ortbetonschicht der Deckenplatte stabilisiert Wandscheibe

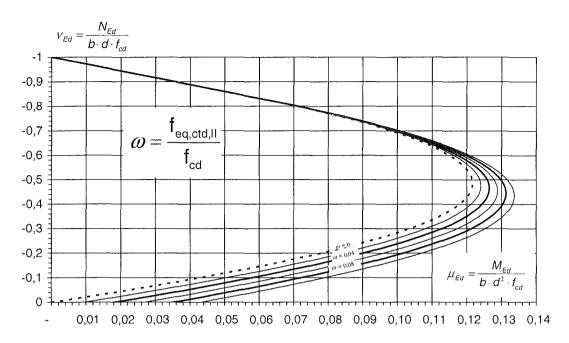
Typ 3: Fertigteildecken ohne ausreichende Scheibenwirkung

Stabilisierung der Wandscheibe durch konstruktive Ringbalkenbewehrung in Deckenhöhe oder in der Kellerwand bis max. 10 cm unterhalb des Deckenauflagers

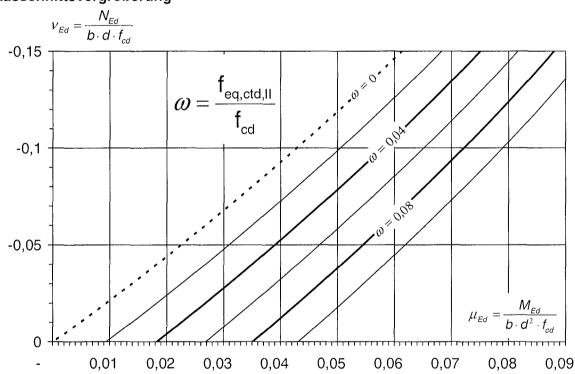
CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen

Kellerwände aus CEMEX-Stahlfaserbeton


Detail Wandkopf

Anlage 3


zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34**

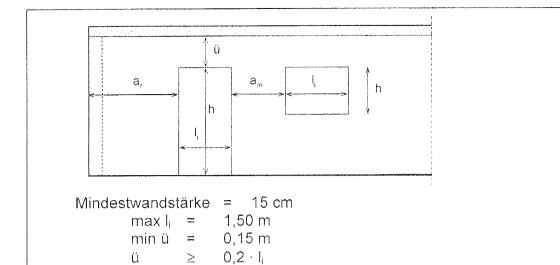
Bemessungsdiagramm

Ausschnittsvergrößerung

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen Kellerwände aus CEMEX-Stahlfaserbeton

Bemessungsdiagramm

Anlage 4


zur allgemeinen bauaufsichtlichen Zulassung

Till

Institut

Nr. **Z-71.2-34**

Bedingungen für rein stahlfaserbewehrte Öffnungen in Wänden.

Die verringerten Mindestrandabstände min a_m für Mittelpfeiler sind nur zulässig, wenn die Überdeckung ü jeweils konstant ist und die größte lichte Öffnungsweite nicht mehr als das 1,50-fache der kleinsten lichten Öffnungsweite ist.

für h < 1,20 m

für $2,10 \ge h \ge 1,20 \text{ m}$ und ü < 0,30 m

für $2,10 \ge h \ge 1,20 \text{ m}$ und ü $\ge 0,30 \text{ m}$

für h < 1,20 m und $\ddot{u} \ge 0,30$ m

und ü < 0,30 m

Zulässige Stützweiten für ausschließlich faserbewehrte Stürze

 $1.5 \cdot l_i$

 $1.0 \cdot l_i$

 $1,2 \cdot l_i$

 $0,7 \cdot l_{i}$ $0,4 \cdot l_{i}$

≥

 \geq

≥

min a_m ≥

≥

 a_r

Lichte Weite I _i [m]	Maximale Gesamtlast (Bemessungwert) N _d [kN/m] je 1cm Wandstärke	davon direkt (Bemessungwert) N _{d.direkt} [kN/m] je 1cm Wandstärke
bis 0,50	keine Beschränkung	7
bis 0,80	10	7
bis 1,00	7	5
bis 1,25	5	3,5
bis 1,50	3,5	2,5
über 1,50	nicht zulässig	nicht zulässig

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen

Kellerwände aus CEMEX-Stahlfaserbeton

Bedingungen für ausschließlich faserbewehrte Stürze

Anlage 5

zur allgemeinen bauaufsichtlichen Zulassung

Deutsches Institut V für Bautechnik

Nr. **Z-71.2-34**

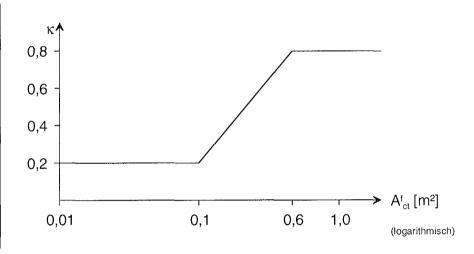
Abminderungsfaktor für den Nachweis der örtlich verminderten Faserwirkung

Für ein mögliches statisches System ist der Grenzzustand der Tragfähigkeit mit reduzierter Faserwirkung und Teilsicherheitsbeiwerten $\gamma_{\rm M}=1$ nachzuweisen: ${\sf E_d} \le \kappa \cdot {\sf R_d}$.

Für den Einsatz werkgemischten Faserbetons gelten in Abhängigkeit der Zugzonenfläche folgende Abminderungsfaktoren:

$$\kappa = 0.2$$

$$A_{ct}^{f} \le 0.1 \, \text{m}^2$$


$$\kappa = 0.2 + 0.6 \frac{\ln(A^{f}_{ct} / 0.1 \text{ m}^{2})}{\ln(6)}$$

$$0.1 \text{ m}^2 > \text{A}^{\text{f}}_{\text{ct}} > 0.6 \text{ m}^2$$

$$\kappa = 0.8$$

$$A_{ct}^{f} \ge 0.6 \, \text{m}^2$$

κ
0,2
0,2
0,336
0,432
0,507
0,568
0,620
0,664
0,704
0,739
0,771
0,8
0,8

Der Nachweis wird geführt mit einem Materialsicherheitsbeiwert $\gamma^{\rm f}_{\rm c}=1,0$ für die Faserwirkung. Es darf gegenüber der Regelbemessung mit dem aktiven Erddruck E_{ah} als Einwirkung gerechnet werden (keine Begrenzung der Verformungen).

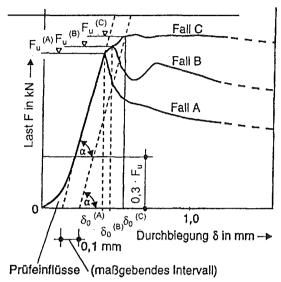
Gegenüber der Regelbemessung wird der Nachweis örtlich verminderter Faserwirkung nur dann maßgebend, wenn $\kappa < 0.8 \cdot \frac{\mathsf{E}_{\mathsf{ah}}}{\mathsf{E}_{\mathsf{ah}}}$ ist.

CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen

Kellerwände aus CEMEX-Stahlfaserbeton

Nachweis örtlich verminderter Faserwirkung


Anlage 6

zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34**

1. Ermittlung der Biegezugfestigkeit

In Anlehnung an DIN 1048 wird die Biegezugfestigkeit f^f_{ct} mit dem auf S. 5 dargestellten Versuchsaufbau wie folgt ermittelt (vergleiche Bild 1).

 $\alpha = \max \alpha \text{ der Last-Durchbiegungskurve}$

F_u = Maximalwert der Last im maßgebenden Intervall von 0,1 mm

Bild 1. Ermittlung der für die Biegezugfestigkeit f^fct,fl maßgebenden Last F_U

$$f_{\text{ct,fil}}^{f} = \frac{M_{\text{W}}}{W} = \frac{F_{\text{u}} \cdot \ell}{b \cdot h^{2}}$$
 (1)

mit F_u = Maximalwert der Last nach Bild 1

 ℓ = Auflagerabstand (600 mm)

h = Probenhöhe (150 mm)

Dabei wird für die Bestimmung von F_u der Größtwert der Last innerhalb des nach Bild 1 maßgebenden Intervalls zugrundegelegt. Es gelten folgende Beziehungen:

- für die mittlere Biegezugfestigkeit f^fctm.fl :

$$f_{\text{ctm,fl}}^{f} = f_{\text{ctms,fl}}^{f} - \frac{s_{\text{s,fl}} \cdot t_{10,(n-1)}}{\sqrt{n}}$$

mit
$$s_{s,f} = \sqrt{\frac{\sum (f_{ctms,fl}^{f} - f_{ct,fl}^{f})^{2}}{(n-1)}}$$

CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D - 40880 Ratingen Kellerwände aus CEMEX-Stahlfaserbeton

Materialkennwerte

Anlage 7, Blatt 1 von 5 zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34**

 $f_{\text{ctms,fl}}^{f} = \text{mittlere Biegezugfestigkeit der Serie}$ [N/mm²] $f_{\text{ct,fl}}^{f} = \text{Einzelwert der Biegezugfestigkeit}$ [N/mm²] $s_{s,fl} = \text{Standardabweichung der Serie nach Gleichung (3)}$ [N/mm²]

n = Anzahl der Proben

t₁₀ = Wert der Student-Verteilung an der 10%-Fraktile

- für den charakteristischen Wert der Biegezugfestigkeit f^fctk,fl :

$$f_{\text{ctk},fl}^{f} = f_{\text{ctm},fl}^{f} - 1,645 \cdot s_{\text{m},fl}$$
(4)

mit
$$s_{m,fl} = s_{s,fl} \cdot \left(1 + \frac{s_{s,fl} \cdot t_{10,(n-1)}}{f_{ctms,fl}^f \cdot \sqrt{n}} \right)$$
 (5)

 $f_{\text{ctm,fl}}^{f}$ = mittlere Biegezugfestigkeit [N/mm²] $f_{\text{ctms,fl}}^{f}$ = mittlere Biegezugfestigkeit der Serie [N/mm²] $s_{m,fl}$ = mittlere Standardabweichung der Grundgesamtheit [N/mm²] $s_{s,fl}$ = Standardabweichung der Serie nach Gleichung (3) [N/mm²]

2. Ermittlung der äquivalenten Biegezugfestigkeit

Aus der Last-Durchbiegungskurve in Bild 2 ist das maßgebende Arbeitsvermögen D_{fl} des Stahlfaserbetons zu ermitteln.

Es ergibt sich als Fläche unter der Last-Durchbiegungskurve bis zu den maßgebenden Durchbiegungswerten δ_{l} bzw. δ_{ll} und setzt sich zusammen aus den Flächenanteilen des unbewehrten Betons D_{fl}^c und dem des Fasereinflusses D_{fl}^f :

$$D_{fl} = D^{c}_{fl} + D^{f}_{fl} \tag{6}$$

Verformungsb ereich	Durchbiegung
ı	$\delta_{\text{I}} = \delta_{\text{0}} + 0,65 \text{ mm}$
11	$\delta_{\text{II}} \approx \delta_0 + 3,15 \text{ mm}$

CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D - 40880 Ratingen Kellerwände aus
CEMEX-Stahlfaserbeton

Materialkennwerte

Anlage 7, Blatt 2 von 5 zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34** vom 24. Oktober 2008 Die Abgrenzung beider Teile kann vereinfachend durch eine Gerade zwischen dem Kurvenpunkt F_u und dem Abszissenpunkt (δ_0 + 0,3 mm) vorgenommen werden. δ_0 ist der zu F_u gehörige Durchbiegungswert.

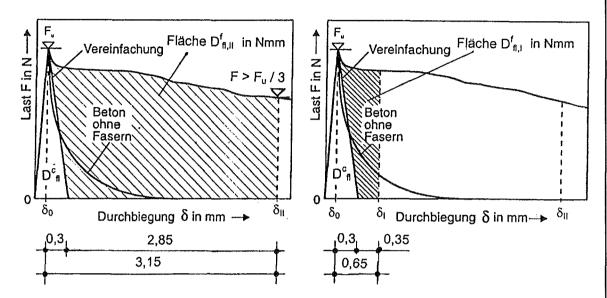


Bild 2. Ermittlung der äquivalenten Biegezugfestigkeiten f_{eq,I} bzw. f_{eq,II}

Die maßgebenden Durchbiegungsendwerte δ_l und δ_{ll} ergeben sich nach Bild 2 zu:

$$\delta_{l} = \delta_{0} + 0,65 \text{ mm} \tag{7}$$

$$\delta_{II} = \delta_0 + 3,15 \text{ mm} \tag{8}$$

Zur Durchbiegung δ_{I} gehörig werden ermittelt:

$$F_{eq,l} = \frac{D_{fl,l}^{f}}{0.5}$$
 [N/mm²]

$$f_{eq,l} = \frac{F_{eq,l} \cdot \ell}{b \cdot h^2} \tag{10}$$

$$f_{eq,I} = 1200 \frac{D_{f|,I}^f}{b \cdot h^2}$$
 [N/mm²] (11)

CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen Kellerwände aus CEMEX-Stahlfaserbeton

Materialkennwerte

Anlage 7, Blatt 3 von 5 zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34** vom 24. Oktober 2008 Zur Durchbiegung δ_{II} gehörig werden ermittelt:

$$F_{eq,ii} = \frac{D_{fi,ii}^{f}}{30}$$
 [N/mm²]

$$f_{eq,II} = \frac{F_{eq,II} \cdot \ell}{b \cdot h^2} \tag{13}$$

$$f_{eq,II} = 200 \frac{D_{fI,II}^f}{b \cdot h^2}$$
 [N/mm²]

mit $D_{f|,I}^f$ bzw. $D_{f|,I}^f$ = Beitrag der Stahlfasern zur Energieabsorptionsfähigkeit in Nmm (s. Bild 2)

b bzw. h = Breite bzw. Höhe des definierten Probekörpers in mm

Der Mindestwert der mittleren äquivalenten Biegezugfestigkeit in Abhängigkeit von der Probenanzahl darf nach folgenden Verfahren ermittelt werden:

$$f_{\text{eqm,i}} = f_{\text{eqms,i}} - \frac{s_{\text{s,i}} \cdot t_{10,(n-1)}}{\sqrt{n}}$$
 (15)

mit $s_{s,i} = \sqrt{\frac{\sum (f_{eqms,i} - f_{eq,i})^2}{(n-1)}}$ für eine Probenanzahl $n \ge 3$ (16)

mindestens jedoch $s_{s,i} \ge 0.5$ für eine Probenanzahl $3 \le n \le 5$: (17)

f_{eqm,i} = mittlere äquivalente Biegezugfestigkeit der Grundgesamtheit für den Verformungsbereich i

f_{eqms,i} = mittlere äquivalente Biegezugfestigkeit der Serie für den Verformungsbereich i

f_{eq,i} = Einzelwert der äquivalenten Biegezugfestigkeit der Prüfkörper der Serie für den Verformungsbereich i

s_{s,i} = Standardabweichung der Serie für den Verformungsbereich i nach Gleichung (16 bzw. 17)

n = Anzahl der Proben der Serie

t_{10,(n-1)} = Wert der Student-Verteilung an der 10%-Fraktile (t₁₀ ist abhängig von der Probenanzahl – einige Werte sind nachfolgend angegeben)

n	3	4	5	6	8	10	12	15	20	25	30	8
t _{10,(n-1)}	1,89	1,64	1,53	1,48	1,42	1,38	1,36		1,33		1,31	1,28

CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D – 40880 Ratingen Kellerwände aus CEMEX-Stahlfaserbeton

Materialkennwerte

Anlage 7, Blatt 4 von 5 zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34** vom 24. Oktober 2008 Aus den mittleren äquivalenten Biegezugfestigkeiten $f_{eqm,i}$ mit i=1 für den Nachweis der Gebrauchstauglichkeit und i=1 für den Nachweis der Tragfähigkeit ermitteln sich die charakteristischen Werte wie folgt:

- Charakteristischer Wert der äquivalenten Biegezugfestigkeit der Grundgesamtheit feck, i :

$$f_{eqk,i} = f_{eqm,i} - 1,645 \cdot s_{m,i}$$
 (18)

mit
$$s_{m,i} = s_{s,i} \cdot \left(1 + \frac{s_{s,i} \cdot t_{10,(n-1)}}{f_{eqms,i} \cdot \sqrt{n}}\right)$$
 (19)

 $s_{m,i}$ = mittlere Standardabweichung der Grundgesamtheit

s_{s,i} = Standardabweichung der Serie

Aus den äquivalenten Biegezugfestigkeiten ermitteln sich die entsprechenden zentrischen Zugfestigkeiten (Nachrisszugfestigkeiten) zu:

$$f_{eq,ctm,l} = 0.45 \cdot f_{eqm,l} \tag{20}$$

$$f_{eq,ctm,II} = 0.37 \cdot f_{eqm,II} \tag{21}$$

sowie

$$f_{eq,ctk,l} = 0,45 \cdot f_{eqk,l} \tag{22}$$

$$f_{eq,ctk,ll} = 0.37 \cdot f_{eqk,ll} \tag{23}$$

3. Messvorrichtung und Abmessungen des Probekörpers

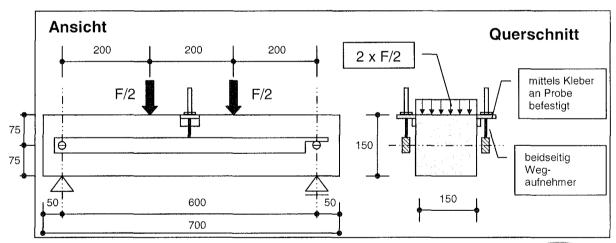


Bild 3 Messvorrichtung und Abmessungen des Probekörpers

CEMEX Deutschland AG

Daniel-Goldbach-Strasse 25 D - 40880 Ratingen

Kellerwände aus CEMEX-Stahlfaserbeton

Materialkennwerte

Anlage 7, Blatt 5 von 5 zur allgemeinen bauaufsichtlichen Zulassung

Nr. **Z-71.2-34**

1	2	3	4
Gegenstand der Prüfung	Prüfung	Anforderungen	Häufigkeit
Frischbeton	Konsistenz- Sichtprüfung	Einhalten der auf Grund der Erstprüfung festgelegten Konsistenz	Jede Mischung sowie jede Anlieferung
Festbeton	Druckfestigkeit nach DIN 1045-3, Abschnitt A2	Nachweis der Druckfestigkeit	nach Überwachungsklasse 2
Frischbeton	Nachweis der gleichbleibenden Zusammensetzung (Auswaschversuch).	Fasergehalt * ⁾ entsprechend der Anforderung der Bemessung, jedoch mindestens 20 kg/m³	jede Anlieferung
Festbeton	Nachrisszugfestigkeit und äquivalente Biegezugfestigkeit	vgl. Anlage 7 dieser allgemeinen bauaufsichtlichen Zulassung	1 Serie Biegezugbalken (3 Stück) je 6 Produktionstage bzw. je 500 m³ je Betonsorte
Betonsorten- verzeichnis, Mischanweisung, Lieferschein, Fahrzeugverzeichnis	Nach DIN 1045-3	entsprechend DIN 1045-3:	für Überwachungsklasse 2

*) Der Fasergehalt ist durch Probenahme und Auswaschen der Proben zu überprüfen. Das Volumen jeder einzelnen Probe darf 15 Liter nicht unterschreiten. Die Abweichung vom Sollwert des Stahlfasergehaltes darf bei den Einzelproben 15% und bei der Summe der Einzelproben 5% nicht überschreiten.

CEMEX Deutschland AGDaniel-Goldbach-Strasse 25
D – 40880 Ratingen

Kellerwände aus CEMEX-Stahlfaserbeton

Prüfplan

Anlage 8

zur allgemeinen bauaufsichtlichen Zulassung

Deutsches Institut

Nr. **Z-71.2-34**