

Deutsches Institut für Bautechnik

ANSTALT DES ÖFFENTLICHEN RECHTS

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Mitglied der Europäischen Organisation für Technische Zulassungen EOTA und der Europäischen Union für das Agrément im Bauwesen UEAtc

Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de

Datum: Geschäftszeichen:

1. Oktober 2009 II 23-1.9.1-779/09

Zulassungsnummer:

Z-9.1-779

Geltungsdauer bis:

31. Oktober 2014

Antragsteller:

Sepa Oy

Vessannontie 7, 72600 KEITELE, FINNLAND

Zulassungsgegenstand:

Sepa Nagelplatten als Holzverbindungsmittel

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst zehn Seiten und zwei Anlagen.

Seite 2 von 10 | 1. Oktober 2009

Z-9.1-779

I. ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach § 17 Abs. 5 Musterbauordnung gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheiniqungen.
- 4 Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

7-9.1-779

Seite 3 von 10 | 1. Oktober 2009

II. BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Die SEPA Nagelplatten sind Holzverbindungsmittel aus 1,30 mm dickem verzinkten Bandstahl der Sorte HX420LAD + Z mit der Form und den Maßen nach Anlage 1.

Die allgemeine bauaufsichtliche Zulassung erstreckt sich nicht auf Nagelplatten aus nichtrostendem Stahl.

1.2 **Anwendungsbereich**

Die Nagelplatten dürfen als Holzverbindungsmittel für tragende Holzkonstruktionen aus Vollholz, Brettschichtholz oder Furnierschichtholz "Kerto-S" nach der allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-100¹ angewendet werden, die nach der Norm DIN 1052² zu bemessen und auszuführen sind, soweit in dieser allgemeinen bauaufsichtlichen Zulassung nichts anderes bestimmt ist.

Holzbauteile aus Vollholz müssen mindestens aus Nadelholz der Sortierklasse S 10 nach DIN 4074-1:2003-06, Sortierung von Holz nach der Tragfähigkeit - Teil 1: Nadelschnittholz, sein. Das Brettschichtholz muss den Anforderungen der Norm DIN 1052 entsprechen.

Die Nagelplatten dürfen nur für Verbindungen von Holzbauteilen bei Tragwerken verwendet werden, die vorwiegend ruhend belastet sind (siehe DIN 1055-3:2006-03).

Für den Anwendungsbereich in Abhängigkeit vom Korrosionsschutz gelten die Technischen Baubestimmungen DIN 1052:2008-12, Abschnitt 6.3 mit Tabelle 2.

2 Bestimmungen für die SEPA Nagelplatten

2.1 Eigenschaften und Zusammensetzung

2.1.1 Die Nagelplatten sind aus Stahl der Sorte HX420LAD +Z nach DIN EN 102923 herzustellen, der vor dem Stanzen folgende mechanische Eigenschaften haben muss:

Streckgrenze ReH \geq 420 N/mm², \geq 470 N/mm², Zugfestigkeit R_m ≥ 17 %. Bruchdehnung A₈₀

2.1.2 Form und Maße der Nagelplatten müssen den Anlagen 1 und 2 entsprechen. Die Dicke der Nagelplatten muss betragen:

- Nenndicke 1,30 mm Kleinstwert 1,22 mm Größtwert 1,35 mm

Die Bleche müssen so gestanzt sein, dass die Nägel etwa rechtwinklig zur Plattenebene stehen.

Die Nagelplatten müssen den Korrosionsschutz nach DIN 1052 haben. Eine Kunststoff-2.1.3 beschichtung ist unzulässig.

Die Nägel dürfen am Nagelgrund keine Anrisse haben. Die Nägel müssen ausreichend 2.1.4 biegsam sein.

Z-9.1-100 "KERTO-Furnierschichtholz" 2

DIN EN 10292:2007-06

DIN 1052:2008-12 Entwurf, Berechnung und Bemessung von Holzbauwerke regeln und Bemessungsregeln für den Hochbau

Kontinuierlich schmelztauchveredeltes Band und Blech aus Stablen mit hoher Streck-

Deutsches Institut

Aligemeine Bemessungs-

grenze zum Kaltumformen – Technische Lieferbedingungen

3

Z-9.1-779

Seite 4 von 10 | 1. Oktober 2009

2.2 Verpackung und Kennzeichnung

Die Verpackung der Nagelplatten oder der Lieferschein der Nagelplatten müssen vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Darüber hinaus müssen die Verpackungen oder der Lieferschein folgende Angaben enthalten:

- Bezeichnung des Zulassungsgegenstandes
- Art des Korrosionsschutzes (z. B. Z 275 nach DIN EN 10292)

Die Nagelplatten müssen mit dem Kennzeichen "SEPA" versehen sein.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der Nagelplatten mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung der Nagelplatten nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Nagelplatten eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen:

- Abmessungen der Nagelplatten gemäß den Anlagen 1 und 2
- Nagelbiegsamkeit
- Korrosionsschutz der Nagelplatten
- Bleche nach DIN EN 10292 sind mindestens mit Werkszeugnis "2.2" nach DIN EN 10204:2005-01, Metallische Erzeugnisse – Arten von Prüfbescheinigungen zu beziehen, anhand des Lieferscheins bzw. der Prüfbescheinigung ist die Einhaltung der Anforderungen nach Abschnitt 2.1.1 und 2.1.2 zu überprüfen.

Einzelheiten der Überwachung sind im Überwachungsvertrag zu regeln.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials
- Art der Kontrolle und Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts
- Ergebnis der Kontrolle und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

wortlichen

Deutsches Institut
für Bautechnik

Z-9.1-779

Seite 5 von 10 | 1. Oktober 2009

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Nagelplatten durchzuführen und können auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung von Nagelplattenverbindungen

3.1 Allgemeines

- 3.1.1 Für den Entwurf und die Bemessung von Nagelplattenverbindungen mit den SEPA Nagelplatten gilt die Norm DIN 1052¹, soweit in dieser allgemeinen bauaufsichtlichen Zulassung nichts anderes bestimmt ist.
- 3.1.2 Die im Folgenden angegebenen charakteristischen Tragfähigkeitswerte sowie Rechenwerte für den Verschiebungsmodul gelten für jeweils eine Nagelplatte.
- 3.1.3 Der Verschiebungsmodul K_{ser} für eine SEPA Nagelplatte beträgt für den Gebrauchstauglichkeitsnachweis

bei Holzbauteilen aus Nadelholz:

 $K_{ser} = 7.7 \text{ N/mm je mm}^2 \text{ wirksame Platten-bzw. Anschlussfläche und}$

bei Holzbauteilen aus Furnierschichtholz "Kerto-S":

 $K_{ser} = 8,6 \text{ N/mm je mm}^2 \text{ wirksame Platten- bzw. Anschlussfläche.}$

Der Rechenwert des Verschiebungsmoduls K_u für den Tragfähigkeitsnachweis ist zu 2/3 des Rechenwertes des Verschiebungsmoduls für den Gebrauchstauglichkeitsnachweis anzunehmen.

Deutsches Institut

- 3.1.4 Für die Einbindetiefe's der Nagelplatten in den Stäben gilt DIN 1052:2008-12, Abschnitt 13.2.1 (6).
- 3.1.5 Abweichend von DIN 1052:2008-12, Abschnitt 8.8.1 (10) darf bei Auflagerknoten von Nagelplattenbindern auch im Bereich innerhalb der Verbindungselemente die Übertragung von Kontaktkräften zwischen den Stäben rechnerisch angesetzt werden.

Z-9.1-779

Seite 6 von 10 | 1. Oktober 2009

3.2 Bemessung nach DIN 1052

3.2.1. Beanspruchung in Nagelplattenebene

3.2.1.1 Allgemeines

Die wirksame Anschlussfläche $A_{\rm ef}$ einer Nagelplatte ist die gesamte Kontaktfläche zwischen Nagelplatte und Holz, reduziert um einen 5 mm breiten Streifen zu den faserparallelen Holzrändern und um Streifen zu den Stabenden in Faserrichtung der Holzbauteile (Hirnholz) von einer Breite, die der sechsfachen Nenndicke der Nagelplatte entspricht.

3.2.1.2 Charakteristische Nageltragfähigkeit

Für die charakteristischen Werte der Nageltragfähigkeit nach DIN 1052:2008-12, Abschnitt 13.2.2 gelten Tabelle 1 und 2 dieser allgemeinen bauaufsichtlichen Zulassung.

Tabelle 1: Charakteristische Nageltragfähigkeiten $f_{a,0,0,k}$ und $f_{a,90,90,k}$ in N/mm² für Vollholz und Brettschichtholz und die Konstanten k_1 , k_2 und α_0

Charakteristische Nageltragfähi	N/mm²	3,43				
Charakteristische Nageltragfähi	1,93	1,93				
k ₁ = 0,0067 N/(°· mm²)	/(°. mm²)	$\alpha_0 = 44,1^{\circ}$				
1) bei Spannweiten über 20,0 m Reduktion um 10 %						

Tabelle 2: Charakteristische Nageltragfähigkeiten $f_{a,0,0,k}$ und $f_{a,90,90,k}$ in N/mm² für Furnierschichtholz "KERTO-S" nach der allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-100 und die Konstanten k_1 , k_2 und α_0

Charakteristische Nageltragfähi	N/mm²		3,87				
Charakteristische Nageltragfähi	gkeit f _{a,90,90,k} 1)	N/mm²	N/mm ² 2,14				
$k_1 = -0,0016 \text{ N/(°} \cdot \text{mm}^2)$	/(°· mm²)	α ₀ :	= 73,5°				
1) bei Spannweiten über 20,0 m Reduktion um 10 %							

Die charakteristischen Nageltragfähigkeiten der Tabelle 2 für Furnierschichtholz "KERTO-S" beziehen sich auf eine charakteristische Rohdichte ρ_k von ≥ 480 kg/m³.

Der charakteristische Wert der Nageltragfähigkeit pro Platte beträgt für $0^{\circ} < \beta \le 45^{\circ}$:

$$f_{a,\alpha,0,k} = \max \begin{cases} f_{a,\alpha,0,k} - (f_{a,\alpha,0,k} - f_{a,90,90,k}) \cdot \frac{\beta}{45^{\circ}} \\ f_{a,0,0,k} - (f_{a,0,0,k} - f_{a,90,90,k}) \cdot \sin[\max(\alpha,\beta)] \end{cases}$$
 (1)

und für 45° < $\beta \le 90$ °:

$$f_{a,\alpha,\beta,k} = f_{a,0,0,k} - (f_{a,0,0,k} - f_{a,90,90,k}) \cdot \sin \left[\max (\alpha,\beta) \right]$$
 (2)

Der charakteristische Wert der Nageltragfähigkeit pro Platte in Faserrichtung des Holzes beträgt:

$$f_{a,\alpha,0,k} = \begin{cases} f_{a,0,0,k} + k_1 \cdot \alpha & \text{für } 0^{\circ} < \alpha \le \alpha_0 \\ f_{a,0,0,k} + k_1 \alpha_0 + k_2 (\alpha - \alpha_0) & \text{für } \alpha_0 < \alpha \le 90^{\circ} \end{cases}$$
 (3)

In den Gleichungen (1) bis (3) bedeuten:

 α = Winkel zwischen x-Richtung und der Kraftrichtung

x-Richtung = Hauptrichtung der Nagelplatte (Plattenlängsrichtung)

y-Richtung = Plattenquerrichtung

β = Winkel zwischen Faserrichtung des Holzes und der Kraftrichtung

ftrichtung Deutsches Institut für Bautechnik

Z-9.1-779

Seite 7 von 10 | 1. Oktober 2009

Alternativ dürfen die charakteristischen Werte der Nageltragfähigkeit $f_{a,\alpha,\beta,k}$ der Tabellen 3 und 4 verwendet werden.

Tabelle 3: Charakteristische Werte der Nageltragfähigkeit $f_{a,\alpha,\beta,k}$ in N/mm² für Vollholz und Brettschichtholz

α	f _{a,α,β,k} ¹)²) in N/mm²							
β	0°	15°	30°	45°	60°	75°	90°	
0°	3,43	3,53	3,63	3,44	3,25	2,80	2,35	
15°	3,23	3,30	3,38	3,21	3,05	2,66	2,28	
30°	3,03	3,08	3,13	2,99	2,84	2,53	2,21	
45°	2,84	2,86	2,89	2,76	2,64	2,39	2,14	
60°	2,64	2,64	2,64	2,54	2,44	2,26	2,07	
75°	2,44	2,42	2,39	2,31	2,24	2,12	2,00	
90°	2,25	2,19	2,14	2,09	2,04	1,98	1,93	

¹⁾ Zwischenwerte dürfen linear interpoliert werden

Die charakteristischen Werte der Nageltragfähigkeit für Vollholz und Brettschichtholz wurden auf der Basis einer charakteristischen Rohdichte ρ_k von 350 kg/m³ bestimmt. Bei Verwendung von Holz höherer charakteristischer Rohdichte dürfen die in Tabelle 1 und Tabelle 3 enthaltenen charakteristischen Werte der Nageltragfähigkeit $f_{a,\alpha,\beta,k}$ mit dem Faktor $k_\rho = (\rho_k \ / \ 350)^{0.5}$ multipliziert werden.

Tabelle 4: Charakteristische Werte der Nageltragfähigkeit $f_{a,\alpha,\beta,k}$ in N/mm² für Furnierschichtholz "KERTO-S" nach der allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-100

α	f _{a,α,β,k} ^{1) 2)} in N/mm ²								
β	0°	15°	30°	45°	60°	75°	90°		
0°	3,87	3,85	3,83	4,08	4,34	3,69	3,04		
15°	3,67	3,64	3,60	3,80	4,01	3,45	2,89		
30°	3,47	3,42	3,38	3,52	3,67	3,20	2,74		
45°	3,26	3,21	3,15	3,24	3,33	2,96	2,59		
60°	3,06	3,00	2,93	2,96	2,99	2,71	2,44		
75°	2,86	2,78	2,71	2,68	2,65	2,47	2,29		
90°	2,66	2,57	2,48	2,40	2,31	2,23	2,14		

¹⁾ Zwischenwerte dürfen linear interpoliert werden

Die charakteristischen Nageltragfähigkeiten der Tabelle 4 für Furnierschichtholz "KERTO-S" beziehen sich auf eine charakteristische Rohdichte ρ_k von \geq 480 kg/m³.

3.2.1.3 Charakteristische Plattentragfähigkeit

Für die charakteristischen Werte der Plattentragfähigkeit nach DIN 1052:2008-12, Abschnitt 13.2.2 gilt Tabelle 5 dieser allgemeinen bauaufsichtlichen Zulassung.

 $^{^{}m 2)}$ bei Spannweiten über 20,0 m Reduktion um 10 %

²⁾ bei Spannweiten über 20,0 m Reduktion um 10 %

Seite 8 von 10 | 1. Oktober 2009

Z-9.1-779

Tabelle 5: Charakteristische Werte der Plattentragfähigkeit für SEPA Nagelplatten in N/mm

Charakteristische Plattenzugtragfähigkeit $f_{t,0,k}^{\ 1)}$ in der x-Richtung ($\alpha=0^{\circ}$) in N/mm	290
Charakteristische Plattenzugtragfähigkeit $f_{t,90,k}^{1)}$ in der y-Richtung ($\alpha=90^{\circ}$) in N/mm	222
Charakteristische Plattendrucktragfähigkeit $f_{c,0,k}^{1)}$ in der x-Richtung ($\alpha=0^{\circ}$) in N/mm	198
Charakteristische Plattendrucktragfähigkeit $f_{c,90,k}^{1)}$ in der y-Richtung ($\alpha=90^{\circ}$) in N/mm	144
Charakteristische Plattenschertragfähigkeit $f_{v,0,k}$ ^{1) 2)} in der x-Richtung ($\alpha=0^{\circ}$) in N/mm	129
Charakteristische Plattenschertragfähigkeit $f_{v,90,k}^{-1}$ in der y-Richtung ($\alpha=90^{\circ}$) in N/mm	90
Plattenkennwert γ ₀	12°
Plattenkennwert k _v	0,65
1) bei Spannweiten über 20,0 m Reduktion um 10 % 2) erforderliche Plattenbreite (Plattenguerrichtung) mindestens 76 mm	

erforderliche Plattenbreite (Plattenquerrichtung) mindestens 76 mm

Alternativ kann der Nachweis der Plattentragfähigkeit nach den Gleichungen (4) und (5) erfolgen. Die charakteristischen Werte der Plattentragfähigkeit für diesen Nachweis sind Tabelle 4 zu entnehmen.

$$s_{t(c),\alpha,d} = \frac{F_{t(c),\alpha,d}}{\ell_s} \pm \frac{2 \cdot F_{M,d}}{\ell_s}$$
(4)

Dabei ist

Bemessungswert der Zug- oder Druckkraft in einer Nagelplatte (d. h. die Hälfte $F_{t(c),\alpha,d}$ der Gesamtkraft im Stab) rechtwinklig zur Fuge,

Bemessungswert der Kraft infolge des Momentes M_d auf eine Nagelplatte (d. h. $F_{M,d}$ die Hälfte des Gesamtmomentes im Stab, $F_{M,d} = \frac{2 \cdot M_d}{\ell_0}$),

Länge des durch die Nagelplatten abgedeckten Teiles der Fuge, gemessen in ls Fugenrichtung; dabei dürfen zug- oder druckbeanspruchte freie Plattenbereiche höchstens mit der Länge 8 d, scherbeanspruchte freie Plattenbereiche höchstens mit der Länge 40 · d berücksichtigt werden mit d als Blechdicke der Nagelplatte.

Die folgende Bedingung muss erfüllt sein:

$$\left(\frac{s_{t(c),\alpha,d}}{f_{t(c),\alpha,d}}\right)^{2} + \left(\frac{s_{v,\alpha,d}}{f_{v,\alpha,d}}\right)^{2} \le 1$$
The lattice of the state of

Dabei ist

Bemessungswert der Scherbeanspruchung einer Nagelplatte parallel zur Fuge, $S_{v,\alpha,d}$ $s_{v,\alpha,d} = \frac{F_{v,\alpha,d}}{\ell_s},$

 $F_{v,\,\alpha,\,d}$ Bemessungswert der Scherkraft in einer Nagelplatte (d. h. die Hälfte der Gesamtkraft im Stab).

Z-9.1-779

Seite 9 von 10 | 1. Oktober 2009

 $f_{t(c),\alpha,d}$ Bemessungswert der Plattenzug- oder drucktragfähigkeit, $f_{t(c),\alpha,d} = f_{t(c),\alpha,k} / \gamma_M$

 $f_{v,\alpha,d}$ Bemessungswert der Plattenschertragfähigkeit, $f_{v,\alpha,d} = f_{v,\alpha,k} / \gamma_M$

 γ_{M} Teilsicherheitsbeiwert nach DIN 1052:2008-12, Abschnitt 5.4, $\gamma_{M} = 1,25$.

Tabelle 6: Charakteristische Werte der Plattentragfähigkeit $f_{t,\alpha,k}$, $f_{c,\alpha,k}$ und $f_{v,\alpha,k}$ für SEPA Nagelplatten bei einer Bemessung der Nagelplatten nach den Gleichungen (4) und (5) in N/mm

α	f _{t,α,k} ¹) in N/mm	f _{c,α,k} ¹⁾ in N/mm	f _{v,α,k} ^{1) 2)} in N/mm
0°	290	198	129
15°	237	166	125
30°	176	116	137
45°	158	105	175
60°	158	121	157
75°	202	138	118
90°	222	144	90
105°	202	138	107
120°	158	121	122
135°	158	105	122
150°	176	116	143
165°	237	166	132
180°	290	198	129

¹⁾ bei Spannweiten über 20,0 m Reduktion um 10 %

3.2.2 Beanspruchung rechtwinklig zur Nagelplattenebene

3.2.2.1 Die charakteristische Tragfähigkeit rechtwinklig zur Nagelplattenebene je Nagelplatte $f_{ax,k}$ darf für eine Beanspruchung mit kurzer Lasteinwirkungsdauer, z. B. durch Windkräfte oder mit sehr kurzer Lasteinwirkungsdauer durch Kräfte aus dem Lastfall Transport und Montage, mit $f_{ax,k} = 19,3$ N/mm in Rechnung gestellt werden.

3.2.3 Beanspruchung bei Transport- und Montagezuständen

3.2.3.1 Für die aus den Mindestkräften F_d und V_d nach DIN 1052:2008-12, Gleichungen (254) und (255) resultierenden Nagelbelastungen braucht eine Abminderung der charakteristischen Nageltragfähigkeiten um 10 % nach den Tabellen 1 und 2, Fußnote 1 und den Tabellen 3 und 4, Fußnote 2 nicht vorgenommen zu werden.

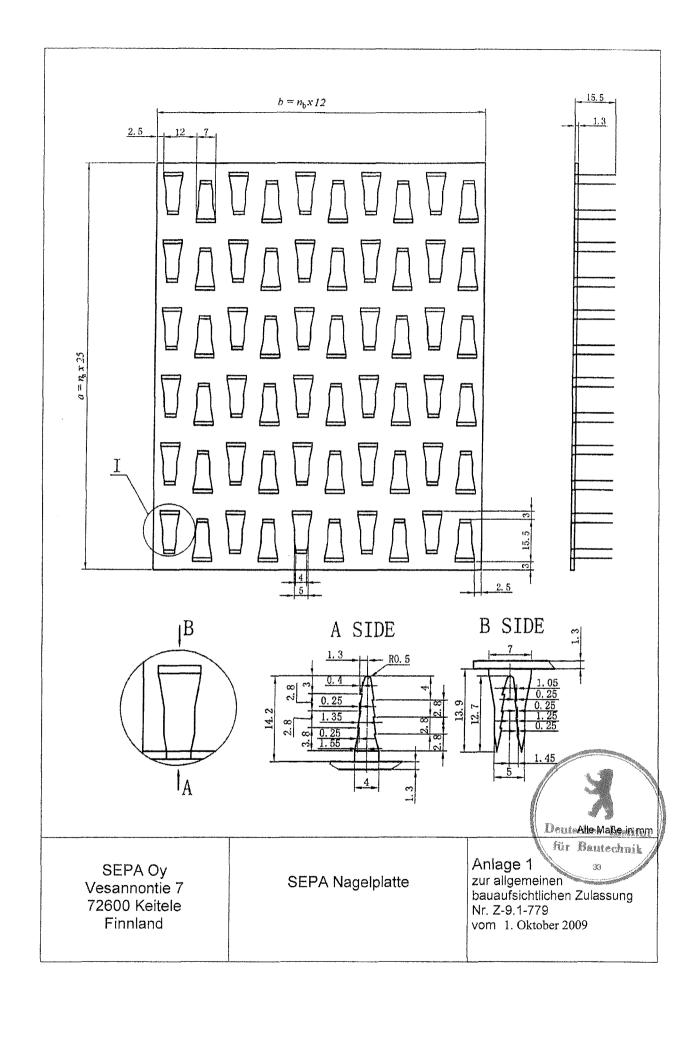
4 Bestimmungen für die Ausführung von Nagelplattenverbindungen

- 4.1 Für die Ausführung von Nagelplattenbindern unter Verwendung der SEPA Nagelplatten gilt DIN 1052, soweit im Folgenden nichts anderes bestimmt ist.
- 4.2 Die Länge von Bindern mit den Nagelplatten des Typs SEPA darf nicht mehr als 35,0 m betragen.
- 4.3 Die Holzdicke muss mindestens 42 mm betragen. Bei Binderlängen über 12 m muss die Holzdicke von ungehobeltem Holz mindestens 50 mm, bei gehobeltem Holz-mindestens 45 mm betragen.

Die zu verbindenden Hölzer müssen bei Dreieckbindern, parallelgurtigen Fachwerkbindern u. ä. mindestens 70 mm hoch sein.

Deutsches Institut für Bantechnik

²⁾ erforderliche Plattenbreite (Plattenquerrichtung) mindestens 76 mm


Seite 10 von 10 | 1. Oktober 2009

Z-9.1-779

- 4.4 Bei Verwendung von Nagelplatten zur Verbindung von Furnierschichtholz muss eine mittlere Holzfeuchte $u \le 15$ % eingehalten werden.
- 4.5 Die Montage und der Transport müssen sorgfältig geschehen. Die Teile sind gebündelt zu transportieren. Beim Bewegen von Einzelbauteilen mit Längen > 10 m sind in der Regel Gehänge oder Traversen zu verwenden.

Henning

Plattenquerrichtung

		1	Γ	T	1	1	ī	Γ
mm/m m	36	60	96	120	144	180	240	288
	v	_						
75	X	X						
100	X	Х	Х					
150	X	Х	X	X	X			
200		X	х	х	Х	x	X	
250	•	Х	Х	Х	Х	х	Х	
300		Х	Х	Х	Х	х	Х	Х
350				Х	X	X	Х	X
400				Х	Х	x	х	Х
500							Х	Х
600							X	Х
		:						

SEPA Oy Vesannontie 7 72600 Keitele Finnland

Plattenlängsrichtung

SEPA Nagelplatte
Plattengrößen

Anlage 2 zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-779 vom 1. Oktober 2009

Alle Maße in mm

Deutsches Institut

tür Bautechnik