

Deutsches Institut für Bautechnik

ANSTALT DES ÖFFENTLICHEN RECHTS

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Mitglied der Europäischen Organisation für Technische Zulassungen EOTA und der Europäischen Union für das Agrément im Bauwesen UEAtc

Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de

Datum: Geschäftszeichen:
2. Februar 2010 III 54-1.42.3-72/09

Zulassungsnummer:

Z-42.3-398

Geltungsdauer bis:

31. Juli 2011

Antragsteller:

RS Technik AG

Bachweg 3, 8133 Esslingen, SCHWEIZ

Zulassungsgegenstand:

Schlauchliningverfahren mit der Bezeichnung "RS-RoboLiner" für die Sanierung erdverlegter Abwasserleitungen mit Kreisprofilquerschnitten im Nennweitenbereich von DN 150 bis DN 400 und Eiprofilquerschnitten von 200/300 mm bis 350/525 mm.

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst 20 Seiten und 24 Anlagen 23 Diese allgemeine bauaufsichtliche Zulassung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-42.3-398 vom 6. Juli 2008.

Seite 2 von 20 | 2. Februar 2010

für Bautechnik

I. ALLGEMEINE BESTIMMUNGEN

- Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbar-1 keit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- 2 Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- 3 Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbeson-4 dere privater Schutzrechte, erteilt.
- 5 Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine 6 auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der 7 allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert wer den, insbesondere, wenn neue technische Erkenntnisse dies erfordern. Deutsches Institut

Seite 3 von 20 | 2. Februar 2010

II. BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

Diese allgemeine bauaufsichtliche Zulassung gilt für das Schlauchliningverfahren mit der Bezeichnung "RS RoboLiner®" (Anlage 1) und dem Epoxid-Harzsystem der Bezeichnung "Max Pox 15" (Harz) und "Max Pox 180" (Härter) zur Sanierung schadhafter Abwasserleitungen mit Kreisquerschnitten in den Nennweiten DN 150 bis DN 400 und mit Eiprofilquerschnitten, die Breiten- und Höhenmaße von 200/300 mm bis 350/525 mm im Verhältnis von ca. B:H = 2:3 aufweisen. Diese Zulassung gilt für die Sanierung von Abwasserleitungen, die dazu bestimmt sind Abwasser gemäß DIN 1986-31 abzuleiten.

Das Schlauchliningverfahren kann zur Sanierung von Abwasserleitungen aus Beton, Stahlbeton, Steinzeug, Faserzement, den Kunststoffen GFK, PVC, PE, PP und Gusseisen eingesetzt werden, sofern der Querschnitt der zu sanierenden Abwasserleitung den verfahrensbedingten Anforderungen und den statischen Erfordernissen genügt.

Schadhafte Abwasserleitungen werden durch Einbringen und nachfolgender Aushärtung eines epoxidharzgetränkten, polyurethanbeschichteten Polyester-Nadelfilzschlauches saniert.

Dazu wird vor Ort ein Polyester-Nadelfilzschlauch (PES-Schlauch), der auf der Innenseite mit Polyurethan (PU) beschichtet ist, mit Epoxidharz (EP-Harz) getränkt. Der polyurethanbeschichtete Polyester-Nadelfilzschlauch (PU-Liner) wird mittels Wasserschwerkraft in die zu sanierende Leitung eingestülpt (inversiert). Durch die Inversion des Schlauchliners gelangt die polyurethanbeschichtete Seite des Polyester-Nadelfilzschlauches auf die dem Abwasser zugewandte Seite. Mittels Wasserfüllung erfolgt ein formschlüssiges Anpressen an die Rohrinnenwand. Die Aushärtung des harzgetränkte Schlauchliners erfolgt mittels Warmwasserzirkulation.

Vor dem Inversieren des harzgetränkten Polyester-Nadelfilzschlauches ist in grundwassergesättigten Zonen immer ein Polyvinylchlorid- oder Polyethylen-Schutzschlauch (PVCoder PE-Preliner) einzuziehen.

Für den Wiederanschluss von Seitenzuläufen dürfen nur Sanierungsverfahren eingesetzt werden, für die allgemeine bauaufsichtliche Zulassungen gültig sind.

Schachtanschlüsse werden entweder unter Verwendung von quellenden Hilfsbändern, die vor dem Einzug des Schutzschlauches (PVC- oder PE-Preliner) im Bereich der Schachtanschlüsse positioniert sind, oder mittels abwasserbeständigem Mörtel wasserdicht hergestellt.

2.1 Eigenschaften und Zusammensetzung

2.1.1 Werkstoffe der Verfahrenskomponenten

2.1.1.1 Werkstoffe für die Inversionsschläuche

Die Werkstoffe des polyurethanbeschichteten Polyester-Nadelfilzschlauches (PU-Liner), des Polyvinylchlorid-Schutzschlauches (PVC-Preliner), des Polyethylen-Schutzschlauches (PE-Preliner) und die Werkstoffe des Epoxid-Harzsystems, einschließlich der verwendeten Füllstoffe, Härter und sonstigen Zusatzstoffe, entsprechen den beim Deutschen Institut für Bautechnik hinterlegten Rezepturangaben. Deutsches Institut

für Bautechnik

Z-42.3-398

Seite 4 von 20 | 2. Februar 2010

1. Der PU-Liner weist u. a. folgende Eigenschaften auf:

Flächengewicht: 330 g/m² - 1.200 g/m² ± 10 %
 Dicke: 1,25 mm - 6,00 mm ± 10 %
 Porenvolumen: 87 % - 90 % ± 10 %
 PU-Beschichtungsstärke: 300 µm - 500 µm ± 10 %

Die lagenabhängige Wanddicke und die Breite des Schlauchliners sind aus den Tabellen in den Anlagen **11** bis **12** zu entnehmen.

2. Das Epoxidharz weist vor der Verarbeitung folgende Eigenschaften auf:

• Dichte bei +20 °C: 1,13 g/cm³

Viskosität bei +25 °C:
 1.000 mPa x s - 1.300 mPa x s

3. Der Härter weist vor der Verarbeitung folgende Eigenschaften auf:

• Dichte bei +20 °C: 0,97 g/cm³

Viskosität bei +25 °C:
 80 mPa x s - 100 mPa x s

4. Das <u>Epoxid-Harzsystem</u> weist ohne den PU-Liner im ausgehärteten Zustand folgende Eigenschaften nach DIN 16946-2² (Typ 1021-0) auf:

• Dichte bei +23 °C: 1,15 g/cm³ • E-Modul (Druck): 3.100 N/mm² • Biegespannung σ_{fB} : 123 N/mm² • Druckfestigkeit: 110 N/mm² • Zugfestigkeit: 60 N/mm² • Reißdehnung: > 3 % • Aushärtung bei mind. +55 °C: ≈ 6,5 h

Es dürfen nur Epoxidharze (EP-Harze) des Typs 1021-0 nach Tabelle 1 von DIN 16946-2² eingesetzt werden, die den beim Deutschen Institut für Bautechnik hinterlegten Rezepturangaben und IR-Spektren entsprechen. Die IR-Spektren sind auch bei der fremdüberwachenden Stelle zu hinterlegen.

2.1.1.2 Werkstoff des quellenden Bandes

Für das quellende Band (Hilfsstoff) im Bereich der Schachtanbindung (siehe Anlage **9** und **10**) des Schlauchliners dürfen nur extrudierte Profile, bestehend aus einem Chloropren-(CR/SBR) Kautschuk und wasseraufnehmendem Harz, verwendet werden. Die quellenden Bänder müssen bei Einlagerung in Wasser nach 72 h eine Volumenvergrößerung von mindestens 100 % aufweisen.

2.1.2 Umweltverträglichkeit

Das Bauprodukt erfüllt die Anforderungen der DIBt-Grundsätze "Bewertung der Auswirkungen von Bauprodukten auf Boden und Grundwasser" (Fassung: Mai 2009). Diese Aussage gilt nur bei der Einhaltung der Besonderen Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung.

2.1.3 Wanddicke

Systembedingt werden harzgetränkte Schlauchliner für eine Sanierungsmaßnahme eingesetzt, welche nach der Inversion und Aushärtung eine Mindestwanddicke von 3 mm nach den Tabellen für Kreisprofile in den Anlage **11** und **17** aufweisen.

Mit dem Schlauchliningverfahren können im Wesentlichen auch schadhafte Abwasserleitungen mit Eiprofilquerschnitten saniert werden, die denen in den Anlagen **12** und **18** genannten Breiten- und Höhenmaßen mit den dazugehörenden Wanddicken entsprechen. Nach der Inversion und Aushärtung der Eiprofil-Schlauchliner ist eine Mindestwanddicke von 3 mm nach den Tabellen **12** und **18** aufzuweisen.

> Deutsches Institut für Bautechnik

Z-42.3-398

Seite 5 von 20 | 2. Februar 2010

Abwasserleitungen, deren Tragfähigkeit allein (ohne Unterstützung des umgebenden Bodens) gegeben ist, d. h. keine Risse (ausgenommen Haarrisse mit Rissbreiten unter 0,15 mm bzw. bei Stahlbetonrohren unter 0,3 mm) vorhanden sind, dürfen mit Schlauchlinern nach den Anlagen **11**, **12**, **17** und **18** nur saniert werden, wenn die Mindestwanddicke von 3 mm nicht unterschritten und eine Nennsteifigkeit SN \geq 500 N/m² eingehalten wird. Befinden sich ein oder mehrere durchgehende Längsrisse im Altrohr, sind Bodenuntersuchungen, z. B. durch Rammsondierungen erforderlich und es ist ein entsprechender rechnerischer Nachweis zu führen. Bei Infiltrationen ist der Schlauchliner hinsichtlich des Verformungs- und Beulverhaltens zu bemessen.

Wenn das Altrohr-Bodensystem allein nicht mehr tragfähig ist, dürfen solche Abwasserleitungen mit Schlauchlinern in den Anlagen **11**, **12**, **17** und **18** aufgeführten Wanddicken nur saniert werden, wenn durch eine statische Berechnung entsprechend dem Merkblatt ATV-M 127-2³ die durch den Schlauchliner aufzunehmenden statischen Belastungen nachgewiesen werden.

Für die Nennsteifigkeit SN und Kurzzeit-Ringsteifigkeit SR gelten folgende Beziehungen: Für SN gilt: Für SR gilt:

$$SN = \frac{E \cdot s^3}{12 \cdot d_m^3}$$

 $SR = \frac{E \cdot s^3}{12 \cdot r_m^3}$

(SN = Nennsteifigkeit in Anlehnung an DIN 16869-24)

(r_m= Schwerpunktradius)

Für den Lastfall Grundwasser ist der Schlauchliner hinsichtlich Beulen entsprechend dem ATV-DVWK-Merkblatt M 127-2³ zu bemessen (siehe hierzu auch Abschnitt 9).

Die Schlauchliner weisen bei einzuziehender Schutzfolie einen dreischichtigen Wandaufbau auf. Dieser besteht aus dem Polyvinylchlorid- oder Polyethylen-Schutzschlauch (PVC- oder PE-Preliner), dem Polyester-Nadelfilzschlauch (PES) und der Polyurethanbeschichtung (PU) (siehe Anlage 1). Der Polyester-Nadelfilzschlauch besteht je nach Wanddicke aus mindestens zwei Filzlagen (siehe Anlage 11 und 12).

2.1.4 Physikalische Kennwerte des ausgehärteten Polyesterfaser-Harzverbundes Institut

Nach Aushärtung der mit Harz und Härter getränkten Polyesterfaserschicht ohne den PVC- oder PE-Preliner und der PU-Innenbeschichtung) muss der Schleuchliner "RS RoboLiner®" folgende Kennwerte aufweisen:

Dichte in Anlehnung an DIN EN ISO 1183-1⁵: 1,168 g/cm³ \pm 0,02 g/cm³

Kurzzeit-E-Modul in Anlehnung an DIN EN 1228⁶: ≥ 2.280 N/mm²
 Biege-E-Modul in Anlehnung an DIN EN ISO 178⁷: ≥ 2.200 N/mm²

• Biegespannung σ_{fB} in Anlehnung an DIN EN ISO 1787: \approx 48 N/mm²

3	ATV-M 127-2	Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) - Merkblatt 127 - Teil 2: Statische Berechnung zur Sanierung von Abwässerkanälen und -leitungen mit Lining- und Montageverfahren; Ausgabe: 2000-01			
4	DIN 16869-2	Rohre aus glasfaserverstärktem Polyesterharz (UP-GF), geschleudert, gefüllt – Teil 2: Allgemeine Güteanforderungen; Prüfung; Ausgabe:1995-12			
5	DIN EN ISO 1183-1	Kunststoffe - Verfahren zur Bestimmung der Dichte von nicht verschäumten Kunststoffen - Teil 1: Eintauchverfahren, Verfahren mit Flüssigkeitspyknometer und Titrationsverfahren (ISO 1183-1:2004); Deutsche Fassung EN ISO 1183-1:2004; Ausgabe:2004-05			
6	DIN EN 1228	Kunststoff-Rohrleitungssysteme - Rohre aus glasfaserverstärkten duroplastischen Kunststoffen (GFK) - Ermittlung der spezifischen Anfangs-Ringsteifigkeit; Deutsche Fassung EN 1228:1996; Ausgabe:1996-08			
7	DIN EN ISO 178	Kunststoffe - Bestimmung der Biegeeigenschaften (ISO 178:2001 + Amd.1:2004); Deutsche Fassung EN ISO 178:2003 + A1:2005: Ausgabe:2006-04			

Z-42.3-398

Seite 6 von 20 | 2. Februar 2010

2.1.5 Eigenschaften des ausgehärteten Polyesterfaser-Harzverbundes aufgrund der thermischen Analyse (DSC-Analyse)

Der ausgehärtete Polyesterfaser-Harzverbund weist folgende Grenzwerte auf, die mittels der Dynamischen Differenz-Kalorimetrie (DDK) (Differential Scanning-Calorimetry (DSC)) festgestellt wurden:

Glasübergangstemperatur T_{G1} (Ist-Zustand des Reaktionsharzsystems;

erste Heizphase)

• "RS RoboLiner®": ≥ +48 °C

 $\underline{\text{Glas}} \underline{\text{Glas}} \underline{\text{Slas}} \underline{\text{T}}_{\text{G2}} \qquad \qquad \text{(Harzsystem im vollst} \underline{\text{ausgeh}} \underline{\text{arteten Zust}} \underline{\text{and}};$

zweite Heizphase)

• "RS RoboLiner®": ≥ +77 °C

2.2 Herstellung, Verpackung, Transport, Lagerung und Kennzeichnung

2.2.1 Fabrikmäßige Herstellung des Schlauchliners

Im Werk des Vorlieferanten sind die Polyester-Nadelfilzschläuche mit den in Abschnitt 2.1.3 genannten Mindestwanddicken mit einer äußeren flexiblen Polyurethan-Folie herzustellen. Der Antragsteller hat sich von der Einhaltung der vorgegebenen Längenmaße und Wanddicken durch den Vorlieferanten zu überzeugen.

Der Antragsteller hat sich zur Überprüfung der Eigenschaften der Harze, der Füllstoffe und der sonstigen Zusatzstoffe bei jeder Lieferung vom Vorlieferanten Werkszeugnisse 2.2 in Anlehnung an DIN EN 102048 vorlegen zu lassen.

Im Rahmen der Wareneingangskontrolle sind folgende Eigenschaften zu überprüfen:

Eigenschaften des Harzes:

- Dichte
- Viskosität

2.2.2 Verpackung, Transport, Lagerung

Die vom Vorlieferanten angelieferten einseitig beschichteten Polyester-Nadelfilzschläuche sind in Räumlichkeiten des Antragstellers vor deren Weiterverwendung so zu lagern, dass die Schläuche nicht beschädigt werden.

Die vom Vorlieferanten angelieferten Komponenten für die Harzimprägnierung auf der jeweiligen Baustelle, sind bis zur weiteren Verwendung in geeigneten, getrennten, luftdichten Behältern in Räumlichkeiten des Antragstellers zu lagern. Der Temperaturbereich von ca. +17 °C bis ca. +25 °C ist dabei einzuhalten. Die Gebinde sind vor direkter Sonneneinstrahlung zu schützen. Die Gebinde sind so zu gestalten, dass das Epoxidharz und der Härter in getrennten Einzelbehältern aufbewahrt werden.

Die für die Sanierungsmaßnahmen erforderlichen Mengen der Komponenten sind den Lagergebinden zu entnehmen und in geeigneten, getrennten und verschlossenen Behältern zum jeweiligen Verwendungsort zu transportieren. Am Verwendungsort sind die Behälter vor Witterungseinflüssen zu schützen. Die Polyester-Nadelfilzschlauche sind so zu transportieren, dass diese nicht beschädigt werden.

Bei Lagerung und Transport sind die einschlägigen Unfallverhütungsvorschriften und die Ausführungen im Verfahrenshandbuch des Antragstellers zu beachten.

Deutsches Institut für Bautechnik

Z-42.3-398

Seite 7 von 20 | 2. Februar 2010

2.2.3 Kennzeichnung

Die Polyester-Nadelfilzschläuche und die jeweiligen Transportgebinde der Harzkomponenten sind mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder, einschließlich der Zulassungsnummer Z-42.3-398 zu kennzeichnen. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 Übereinstimmungsnachweis erfüllt sind.

Zusätzlich sind auf den Transportbehältern der Polyester-Nadelfilzschläuche anzugeben:

- Nennweite
- Länge
- Chargennummer

Zusätzlich sind die Transportbehälter für Harze, Härter und sonstige Zusatzstoffe mindestens wie folgt zu kennzeichnen mit:

- Komponentenbezeichnung
- Temperaturbereich
- Gebindeinhalt (Volumen oder Gewichtsangabe)
- Ggf. Kennzeichnung gemäß der Verordnung über gefährliche Stoffe (Gefahrstoffverordnuna)

2.3 Übereinstimmungsnachweis

Allgemeines 2.3.1

Die Bestätigung der Übereinstimmung der Verfahrenskomponenten mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung der Verfahrenskomponenten nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

2,3,2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen.

Beschreibung und Überprüfung des Ausgangsmaterials

Der Betreiber des Herstellwerkes hat sich bei jeder Lieferung der Komponenten PVCoder PE-Prelinerfolien, PU-Folien, Polyesterfasern, Harz, Härter und sonstigen Zusatzstoffen davon zu überzeugen, dass die geforderten Eigenschaften nach Abschnitt 2.1.1 eingehalten werden.

Dazu hat sich der Betreiber des Herstellwerkes vom jeweiligen Vorlieferanten entsprechende Werkszeugnisse 2.2 in Anlehnung an DIN EN 102048 vorlegen zu lassen. Im Deutsches Institut Rahmen der Wareneingangskontrolle sind zusätzlich die in Abschnitt 2 1.1.1 genangten Eigenschaften stichprobenartig zu überprüfen. für Bautechnik

23

Z-42.3-398

Seite 8 von 20 | 2. Februar 2010

- Kontrollen und Prüfungen die während der Herstellung durchzuführen sind:
 Es sind die Anforderungen nach Abschnitt 2.2.1 zu überprüfen.
- Kontrolle der Gebinde:

Je Harzcharge sind die Anforderungen an die Kennzeichnung nach Abschnitt 2.2.3 zu überprüfen.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsprodukts und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch 2 Mal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Verfahrenskomponenten durchzuführen. Die werkseigene Produktionskontrolle ist im Rahmen der Fremdüberwachung durch stichprobenartige Prüfungen durchzuführen. Dabei sind die Anforderungen der Abschnitte 2.1.1 und 2.2.3 zu überprüfen.

Außerdem sind die Anforderungen zur Herstellung nach Abschnitt 2.2.1 stichprobenartig zu überprüfen. Dazu gehören auch die Überprüfung des Härtungsverhaltens, der Dichte, der Lagerstabilität und des Flächengewichts, sowie die IR-Spektroskopien.

Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle. Bei der Fremdüberwachung sind auch die Werkszeugnisse 2.2 in Anlehnung an DIN EN 10204⁸ zu überprüfen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Deutsches Institut für Bautechnik 23

7-42.3-398

Seite 9 von 20 | 2. Februar 2010

3 Bestimmungen für den Entwurf

Die Angaben der notwendigen Leitungsdaten sind zu überprüfen, z. B. Linienführung, Tiefenlage, Lage der Hausanschlüsse, Schachttiefen, Grundwasser, Rohrverbindungen, hydraulische Verhältnisse, Revisionsöffnungen, Reinigungsintervalle. Vorhandene Videoaufnahmen müssen anwendungsbezogen ausgewertet werden. Die Richtigkeit der Angaben ist vor Ort zu prüfen. Die Bewertung des Zustandes der bestehenden Abwasserleitung der Grundstücksentwässerung hinsichtlich der Anwendbarkeit des Sanierungsverfahrens ist vorzunehmen.

Die hydraulische Wirksamkeit der Abwasserleitungen darf durch das Einbringen eines Schlauchliners nicht beeinträchtigt werden. Ein entsprechender Nachweis ist ggf. zu führen.

4 Bestimmungen für die Ausführung

4.1 Allgemeines

Bei folgenden baulichen Gegebenheiten ist die Ausführung des "RS RoboLiner®"-Schlauchliningverfahrens möglich:

- a) Vom Start- zum Zielpunkt
- b) Vom Start- zum Zielpunkt durch einen Zwischenschacht
- c) Beginnend vom Startpunkt in einer Kanalhaltung mit einer definierten Länge, ohne dass eine weitere Schachtöffnung vorhanden sein muss
- d) Seitenanschlüsse, beginnend vom Startpunkt zum Anschlusspunkt im Hauptkanal

Der Startpunkt bzw. Zielpunkt kann ein Schacht, eine Revisions- bzw. Reinigungsöffnung oder ein geöffnetes Rohrstück darstellen. Vorraussetzung ist, dass die Grösse ausreichend ist, um das Inversionsgerüst aufzustellen.

Zwischen den jeweiligen Start- und Zielpunkten können auch mehrere Schächte durchquert werden, einschließlich der Durchquerung von Schächten mit Gerinneumlenkungen. Durchquerungen von Gerinneumlenkungen und bis zu zwei Bögen mit jeweils 90° können saniert werden.

Sofern Faltenbildung auftritt darf diese nicht größer sein als in Abschnitt 7.2 von DIN EN 13566-49 festgelegt ist.

Der wasserdichte Wiederanschluss von Seitenzuläufen ist entweder in offener Bauweise oder mit Sanierungsverfahren durchzuführen, für die allgemeine bauaufsichtliche Zulassungen gültig sind.

Der Antragsteller hat dem Ausführenden ein Handbuch mit Beschreibung der einzelnen, auf die Ausführungsart des Sanierungsverfahrens bezogenen, Handlungsschritte zur Verfügung zu stellen.

Der Antragsteller hat außerdem dafür zu sorgen, dass die Ausführenden hinreichend mit dem Verfahren vertraut gemacht werden. Die hinreichende Fachkenntnis des ausführenden Betriebes kann durch ein entsprechendes Gütezeichen des Güteschutz Kanalbau e. V.¹⁰ dokumentiert werden.

Deutsches Institut für Bautechnik 23

10

⁹ DIN EN 13566-4

Kunststoff-Rohrleitungssysteme für die Renovierung von erdverlegten drucklosen Entwässerungsnetzen (Freispiegelleitungen) – Teil 4: Vor Ort härtendes Schlauchlining; Deutsche Fassung EN 13566-4:2002; Ausgabe:2003-04

Z-42.3-398

Seite 10 von 20 | 2. Februar 2010

4.2 Geräte und Einrichtungen

4.2.1 Mindestens für die Ausführung des Sanierungsverfahrens erforderliche Komponenten, Geräte und Einrichtungen (Anlage 19):

- Geräte zur Kanalreinigung
- Geräte zur Wasserhaltung
- Geräte zur Kanalinspektion (siehe ATV-M 143-2¹¹)
- Sanierungseinrichtungen / Fahrzeugausstattungen (Anlage 2 bis 5):
 - polyurethanbeschichtete Polyester-Nadelfilzschläuche ("RS RoboLiner®") in den passenden Nennweiten (Anlage 1)
 - nennweitenbezogene Polyvinylchlorid-Schutzschläuche (PVC- oder PE-Preliner)
 - Behälter mit Harz "Max Pox 15" und Härter "Max Pox 180"
 - Anlage zum Dosieren und Mischen des Harzsystems mit Überwachungseinrichtungen für Fördermenge, Mischungsverhältnis und Temperatur
 - Wettergeschützte Imprägnierstelle (Tisch mit Förderband oder Rollentisch und Walzenlaufwerk) ggf. mit Absaugvorrichtung
 - · Vakuumanlage mit Unterdrucküberwachungseinrichtung
 - Kühlanlage / Klimagerät im Sanierungsfahrzeug
 - Inversionsgerüst, Kaltwasserschlauch, Hydrantenanschluss und Zubehör für die Inversion mittels Wasserschwerkraft (Anlage 6)
 - Heizsystem/-aggregat und Zubehör (Anlage 7)
 - Absperrblasen oder Absperrscheiben passend für die jeweilige Nennweite
 - Stützrohre bzw. Stützschläuche zur Probengewinnung auf der Baustelle (passend für die jeweilige Nennweite)
 - · Kamera, Steuereinheit mit Bildschirm
 - Stromgenerator
 - Kompressor
 - Wasserversorgung
 - Stromversorgung
 - Förderpumpen
 - Behälter für Reststoffe
 - Temperaturmessfühler
 - Temperaturüberwachungs- und -aufzeichnungsgerät
 - Kleingeräte wie z. B. Druckluftschneidewerkzeug
 - Druckluftbohrmaschine
 - Handwerkszeug, Fixierstangen, Seile, Seiltrommel, Schläuche
 - ggf. Sozial- und Sanitärräume

Werden elektrische Geräte, z. B. Videokameras (oder so genannte. Kanalfernauge) in die zu sanierende Leitung eingebracht, dann müssen diese entsprechend den VDE-Vorschriften beschaffen sein.

Deutsches Institut für Bautechnik 23

Z-42.3-398

Seite 11 von 20 | 2. Februar 2010

4.3 Durchführung der Sanierungsmaßnahme

4.3.1 Vorbereitende Maßnahmen

Vor der Sanierungsmassnahme ist sicherzustellen, dass sich die betreffende Leitung nicht in Betrieb befindet; ggf. sind entsprechende Absperrblasen zu setzen und Umleitungen des Abwassers vorzunehmen. Die zu sanierende Abwasserleitung ist soweit zu reinigen dass die Schäden einwandfrei auf dem Monitor erkannt werden können. Ggf. sind Hindernisse zu entfernen (z. B. Wurzeleinwüchse, hineinragende Hausanschlussleitungen usw.). Beim Entfernen solcher Hindernisse ist darauf zu achten, dass dies nur mit geeigneten Werkzeugen erfolgt, so dass die vorhandene Abwasserleitung nicht zusätzlich beschädigt wird.

Die für die Anwendung des Sanierungsverfahrens zutreffenden Unfallverhütungsvorschriften sind einzuhalten.

Geräte des Sanierungsverfahrens, die in den zu sanierenden Leitungsabschnitt eingebracht werden sollen, dürfen nur verwendet werden, wenn zuvor durch Prüfung sichergestellt ist, dass keine entzündlichen Gase im Leitungsabschnitt vorhanden sind.

Hierzu sind die entsprechenden Abschnitte der folgenden Regelwerke zu beachten:

- GUV-R 126¹² (bisher GUV 17.6)
- ATV-Merkblatt M 143-2¹¹
- ATV-Arbeitsblatt A 14013

Die Richtigkeit der in Abschnitt 3 genannten Angaben ist vor Ort zu prüfen. Dazu ist der zu sanierende Leitungsabschnitt mit üblichen Hochdruckspülgeräten soweit zu reinigen, dass die Schäden auf dem Monitor bei der optischen Inspektion nach dem Merkblatt ATV-M 143-2¹¹ einwandfrei erkannt werden können.

Beim Einsteigen von Personen in Schächte der zu sanierenden Abwasserleitungen und bei allen Arbeitsschritten des Sanierungsverfahrens sind außerdem die einschlägigen Unfallverhütungsvorschriften zu beachten.

Die für die Durchführung des Verfahrens erforderlichen Schritte sind unter Verwendung der Protokollblätter in den Anlagen **20**, **21** und **23** für jede Imprägnierung und Sanierung festzuhalten.

4.3.2 Eingangskontrolle der Verfahrenskomponenten auf der Baustelle

Die Transportbehälter der Verfahrenskomponenten sind dahingehend zu überprüfen, ob die in Abschnitt 2.2.3 genannten Kennzeichnungen vorhanden sind. Der auf das jeweilige Sanierungsobjekt bezogene Umfang des Polyester-Faserschlauches ist vor der Tränkung mit Harz nachzumessen. Die Einhaltung der vor der Harztränkung aufrecht zu haltenden Lagertemperatur von ± 17 °C bis ± 25 °C ist zu überprüfen.

4.3.3 Anordnung von Stützrohren und Stützschläuchen

Vor dem Einzug des Schutzschlauches (PVC- oder PE-Preliner) sind ggf. Stützrohre oder Stützschläuche zur Verlängerung der zu sanierenden Abwasserleitung bzw. im Bereich von Zwischenschächten zu positionieren, damit an diesen Stellen zum Abschluss der Sanierungsmaßnahme Proben entnommen werden können.

Deutsches Institut für Bautechnik 23

12

13

GUV-R 126

Sicherheitsregeln: Arbeiten in umschlossenen Räumen von abwassertechnischen Anlagen (bisher GUV 17.6); Ausgabe: 2007-06

ATV-A 140

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) - Arbeitsblatt 140: Regeln für den Kanalbetrieb, - Teil 1: Kanalnetz; Ausgabe:1990-03

Z-42.3-398

Seite 12 von 20 | 2. Februar 2010

4.3.4 Einzug des Schutzschlauches (Preliner)

Die Einbringung des PVC- oder PE-Preliners in die zu sanierende Abwasserleitung ist so vorzunehmen, dass Beschädigungen vermieden werden. Der Preliner ist mit Druckluft zu beaufschlagen und in die zu sanierende Abwasserleitung zu inversieren. Die für die wasserdichte Anbindung des Schlauchliners einzusetzenden quellenden Bänder, sind im Bereich der Schachtanschlüsse bei der Einbringung des Preliner zu positionieren (siehe Anlage **9** und **10**).

4.3.5 Imprägnierung des Polyester-Nadelfilzschlauches

4.3.5.1 Epoxid-Harzmischung für den Schlauchliner

Die für die Harztränkung des jeweiligen polyurethanbeschichteten Polyester-Nadelfilzschlauches ("RS RoboLiner®") erforderliche Harzmenge ist vor Beginn der Harzmischung in Abhängigkeit des Schlauchliner-Durchmessers, der Wanddicke und Länge zu bestimmen (siehe Anlage **15** (Kreisprofile) und Anlage **16** (Eiprofile)).

Das Gewichts-Mischungsverhältnis des Epoxidharzes und des Härters beträgt 100:28 kg.

Unter Einsatz einer automatischen Dosier- und Mischanlage ist die Härterkomponente gleichmäßig ohne Blasenbildung mit dem Epoxidharz zu vermischen. Eine Mischungstemperatur von ± 17 °C bis ± 22 °C ist einzuhalten.

Harz- und Härtermengen, sowie die Temperaturbedingungen sind im Protokoll nach Abschnitt 4.3.1 festzuhalten.

Von jeder angemischten Harzmenge ist eine Probe zu entnehmen und das Reaktionsverhalten zu überprüfen und zu protokollieren.

4.3.5.2 Harztränkung

Der Polyester-Nadelfilzschlauch ist im wettergeschützten bzw. klimatisierten Raum oder im Sanierungsfahrzeug auf dem Fördertisch auszurollen, ggf. auch an geeigneten Einrichtungen anzuhängen. Zur Unterstützung der Harztränkung ist die im polyurethanbeschichteten Polyester-Nadelfilzschlauch (PU-Liner) enthaltene Luft weitgehend zu entfernen. Ein entsprechender Unterdruck im Schlauchliner ist zu erzeugen.

Anschließend sind ca. 1 cm lange Vakuum-Schnitte in die oben liegende Beschichtung des Schlauchliners einzuschneiden. Diese Schnitte dürfen nicht im Nahtbereich erfolgen. Auf diese Schnitte sind nun die Ansaugstutzen der Vakuumanlage aufzusetzen.

Am offenen Ende des Schlauchliners ist ein zusätzlicher Schnitt von ca. 5 cm Länge so auszuführen, dass die PU-Beschichtung durchtrennt wird und die Filzlage bei einer Lage angeschnitten, bei zwei oder mehr Lagen durchtrennt wird. An diesem Schnitt ist der Füllschlauch für das Harzsystem anzusetzen und der Schlauchliner mit dem Harzgemisch zu füllen. Während des Einfüllvorganges ist ständig ein Vakuum von maximal 0,5 bar über die Saugnäpfe auf den Schlauchliner aufrecht zu halten. Zur gleichmäßigen Verteilung des Harzes im Polyester-Nadelfilzschlauch ist der Schlauchliner anschließend durch das Walzenlaufwerk zu fördern. Der Schlauchliner ist unter die Anpressrollen zu legen. Der Walzenabstand ist auf das doppelte der Trockenwanddicke des Schlauchliners zuzüglich mindestens 1 mm einzustellen. Die zur Verfügung zu stellende Betriebs- und Wartungsanleitung ist hierzu zu beachten.

Der Vorschub ist so zu wählen, dass eine möglichst gleichmäßige Verteilung des Harzes in der Matrix des Polyester-Nadelfilzschlauch erfolgt. Die Geschwindigkeit des Imprägniervorganges richtet sich nach dem Saug- bzw. Eindringverhalten des Harzgemisches. Nach der gleichmäßigen Verteilung der Harzmenge im Schlauchliner ist die Schnittöffnung des Schlauchliners luftdicht zu verschließen.

Die Härtungszeit und der Temperaturverlauf sind im Protokoll nach Abschritt 4.3.1 festzuhalten.

Deutsches Institut für Bautechnik

Z-42.3-398

Seite 13 von 20 | 2. Februar 2010

4.3.6 Inversieren des harzgetränkten Polyester-Nadelfilzschlauches (siehe Anlage 6 und 7)

Zuerst ist bei grundwassergesättigten Zonen ein PVC- oder PE-Preliner zu inversieren. Der Preliner soll verhindern, dass Harz aus dem Polyester-Nadelfilzschlauch durch die schadhaften Stellen in den umgebenden Boden gelangen kann. Außerdem soll dieser die Inversion des harzgetränkten Polyester-Nadelfilzschlauches vereinfachen und verhindern, dass Überschussharz bei der nachfolgenden Verdichtung aufgrund des aufgebrachten Innendruckes in die Bereiche schadhafter Stellen entweicht und somit die Sollwanddicke an diesen Stellen beeinträchtigt wird.

Zur Inversion des PVC- oder PE-Preliners ist dieser an beiden Enden luftdicht zu verschließen, wobei an einem Ende ein Druckluftanschluss vorzusehen ist. Der Preliner ist bis zur halben Länge, die eingezogen werden soll, umzukrempeln. Anschließend ist dieser vom Startschacht aus in die zu sanierende Abwasserleitung einzuführen und mittels Druckbeaufschlagung zu inversieren.

Um den Schlauchliner mittels Wasserschwerkraft in die Leitung zu inversieren, ist am Startschacht ein Inversionsgerüst aufzustellen. Dieses Inversionsgerüst ist in der Höhe entsprechend dem erforderlichen hydrostatischen Druck und der Schachttiefe zu bemessen. Das offene Ende des Schlauchliners ist am Inversionsgerüst zu fixieren und so zu befestigen, dass anschließend die Wassereinleitung über einen Hydranten erfolgen kann. Der hydrostatische Druck des Wassers bewirkt die Inversion des Schlauchliners in die zu sanierende Abwasserleitung. Das Ende des Schlauchliners ist luftdicht mit einem Klebeband zu verschließen und zusammenzufalten. An den entstandenen "Linerkopf" sind ein Sicherungsseil und ein Heizschlauch zu befestigen. Das am "Linerkopf" befestigte Sicherungsseil dient zur Kontrolle der Inversionsgeschwindigkeit. Es ist darauf zu achten, dass durch Steuerung der Wasserzugabemenge die Inversion kontinuierlich und nicht stoßweise erfolgt. Der Inversionsvorgang setzt sich bis zum Erreichen des Zielschachtes bzw. der Revisionsöffnung oder des Zielpunktes der zu sanierenden Abwasserleitung fort. Durch diesen Vorgang gelangt die harzgetränkte Innenseite des Schlauchliners in Kontakt mit der Innenseite des zuvor eingezogenen Schutzschlauches (PVC- oder PE-Preliner) oder direkt mit der Innenoberfläche der zu sanierenden Abwasserleitung. Die Polyurethanbeschichtung des Schlauchliners gelangt auf diese Weise auf die dem Abwasser zugewandte Seite. Der Schlauchliner ist mit Wasser vollständig zu füllen, so dass das formschlüssige Anliegen an die Innenoberfläche der zu sanierenden Abwasserleitung aufrecht gehalten wird.

Durch die Inversion des Schlauchliners wird gleichzeitig auch der am zuvor am "Linerkopf" befestigte Heizschlauch inversiert. Das Ende des Heizschlauches ist dann nach Beendigung der Inversion an das Heizsystem/-aggregat anzuschließen. Das in dem Heizaggregat erzeugte warme Wasser ist mittels einer Pumpe im Heizkreislauf zu fördern (siehe Anlage 7). Das Umlaufwasser ist im Vorlauf auf mindestens +85 °C aufzuheizen und auf das Laminat bei mindestens +55 °C (ca. 1,5 Stunden bis ca. 4,0 Stunden) auszuhärten (siehe Heizkurve Anlage 8). Die Vor- und Rücklauftemperatur im Heizkreislauf ist zu messen und zu protokollieren. Nach Abschluss der Härtung ist das Heizwasser durch Zugabe von kaltem Leitungswasser auf ca. +20 °C Laminattemperatur abzukühlen. Das Wasser ist nach Erreichen dieses Temperaturniveaus abzulassen.

Die Aushärtezeit für den Schlauchliner ist abhängig von dem verwendeten Epoxid-Harzsystem nach Abschnitt 2.1.1.1, der Heiztemperatur des Wassers (siehe Heizkurve Anlage $\bf 8$) und von den Umgebungstemperaturen. Die Aushärtzeit und der aufgebrachte Druck sind aufzuzeichnen. Deutsches Institut

für Bautechnik

Z-42.3-398

Seite 14 von 20 | 2. Februar 2010

4.3.7 Abschließende Arbeiten

Nach der Aushärtung ist mittels druckluftbetriebener Schneidwerkzeuge im Start- und Zielschacht das entstandene Innenrohr an der jeweiligen Schachtwand abzutrennen und zu entfernen. In den Zwischenschächten ist jeweils die obere Halbschale des entstanden Rohres bis zum Auftritt im Schachtboden zu entfernen.

Aus den dabei ebenfalls zu entfernenden Stützrohren bzw. Stützschläuchen sind die Rohrabschnitte (Kreisringe) für die nachfolgenden Prüfungen zu entnehmen (siehe hierzu Abschnitt 7).

Bei der Durchführung der Schneidarbeiten sind die betreffenden Unfallverhütungsvorschriften zu beachten.

4.3.8 Wiederanschluss von Seitenzuläufen

Die wasserdichte Wiederherstellung von Seitenzuläufen in offener oder geschlossener Bauweise dürfen nur mit Sanierungsverfahren durchgeführt werden, für die allgemeine bauaufsichtliche Zulassungen gültig sind.

4.3.9 Schachtanbindung (siehe Anlage 9)

Schachtanschlüsse werden entweder unter Verwendung von quellenden Hilfsbändern (siehe Anlage **10**), die vor dem Einzug des Schutzschlauches (PVC- oder PE-Preliner) im Bereich der Schachtanschlüsse positioniert sind, oder mittels abwasserbeständigem Mörtel oder Kunstharz wasserdicht herzustellen.

Sowohl im jeweiligen Start- und ggf. auch im Zielschacht, als auch in den Zwischenschächten sind die entstandenen Überstände (siehe auch Abschnitt 4.3.7 Abschließende Arbeiten) des ausgehärteten Innenrohres zur Stirnwand des Schachtes (so genannter Spiegel) und die Übergänge zum Fließgerinne im Start- und Zielschacht wasserdicht auszubilden. Dies kann z. B. durch folgende Ausführungen erfolgen:

- Angleichen der Übergänge mittels abwasserbeständigem Mörtel oder Epoxidharzmörtel (allgemeine bauaufsichtliche Zulassung Nr. Z-42.3-226)
- Angleichen der Übergänge mittels Kunstharz

Die sachgerechte Ausführung der wasserdichten Gestaltung der Übergänge hat der Auftraggeber der Sanierungsmaßnahme zu veranlassen.

5 Beschriftung im Schacht

Im Start- oder Endschacht der Sanierungsmaßnahme sollte folgende Beschriftung dauerhaft und leicht lesbar angebracht werden:

- Art der Sanierung
- Bezeichnung des Leitungsabschnitts
- Nennweite
- Wanddicke des Schlauchliners
- Jahr der Sanierung

6 Abschließende Inspektion und Dichtheitsprüfung

Nach Abschluss der Arbeiten ist der sanierte Leitungsabschnitt optisch zu inspizieren. Es ist festzustellen, ob etwaige Werkstoffreste entfernt sind und keine hydraulisch nachteiligen Falten vorhanden sind.

Nach Aushärtung des Schlauchliners, einschließlich der Wiederherstellung der Seitenzuläufe, ist die Dichtheit, ggf. unter Einbeziehung der Schachtanschlussbereiche zu prüfen. Dies kann auch abschnittsweise erfolgen.

Deutsches Institut für Bautechnik 23

Z-42.3-398

Seite 15 von 20 | 2. Februar 2010

Die Dichtheit der sanierten Leitungen ist mittels Wasser Verfahren "W" (siehe Anlage **18**) oder Luft Verfahren "L" nach DIN EN 1610¹⁴ zu prüfen. Bei der Prüfung mittels Luft sind die Festlegungen in Tabelle 3 von DIN EN 1610¹⁴, Prüfverfahren LD für feuchte Betonrohre und alle anderen Werkstoffe zu beachten. Die sanierten Seitenzuläufe können auch separat unter Verwendung geeigneter Absperrblasen oder Absperrscheiben auf Wasserdichtheit geprüft werden.

7 Prüfungen an entnommenen Proben

7.1 Allgemeines

Aus den ausgehärteten kreisrunden bzw. annähernd kreisrunden Schlauchlinern sind auf der Baustelle Kreisringe bzw. Segmente zu entnehmen (siehe Probebegleitschein Anlage **24**). Stellt sich heraus, dass die Probestücke für die genannten Prüfungen unter Abschnitt 7.2.1 untauglich sind, oder eine Probeentnahme von Kreisringen oder Segmenten nicht möglich ist, dann kann bei Hausanschlusslinern bis DN 200 alternativ eine DSC-Analyse nach Abschnitt 7.2.2 durchgeführt werden.

Für Schlauchliner mit Eiprofilquerschnitten ist die Probenahme im Bereich der größten Beulbelastung im Querschnittsbereich von 3.00 Uhr bis 5.00 Uhr vorzunehmen.

Für die Untersuchung der charakteristischen Materialeigenschaften mittels der Dynamischen Differenz-Kalorimetrie (DDK) (Differential Scanning-Calorimetry (DSC)) sind auf der Baustelle Probekörper aus der Haltung zu entnehmen. Die Entnahme ist mittels Kernbohrung durchzuführen. Der Durchmesser der Probe soll mind. 2,5 cm betragen.

7.2 Festigkeitseigenschaften

7.2.1 Ermittlung der Festigkeitseigenschaften nach 3-Punkt-Biege- und Langzeit-Scheiteldruckprüfung

An den entnommenen Proben sind der Biege-E-Modul und die Biegespannung σ_{fB} zu bestimmen.

Bei diesen Prüfungen sind der Kurzzeitwert, der 1-h-Wert und der 24-h-Wert des Biege-E-Moduls sowie der Kurzzeitwert der Biegespannung σ_{fB} festzuhalten. Bei der Prüfung ist auch festzustellen, ob die Kriechneigung in Anlehnung an DIN EN ISO 899-2¹⁵ nachfolgender Beziehung bzw. aus dem Diagramm **1** eingehalten wird:

$$K_n = \frac{E_{1h} - E_{24h}}{E_{1h}} \times 100$$

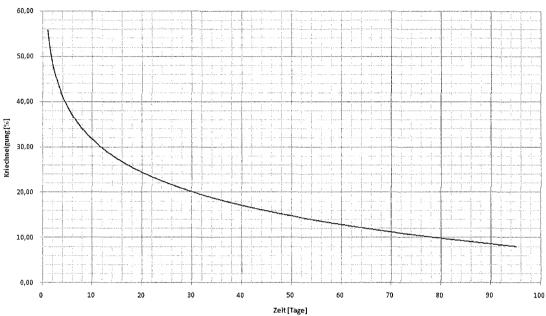
Die Kriechneigung ist von der Nachvernetzung des Harzes abhängig, und somit Berücksichtigung des Probealters aus dem Diagramm 1 zu entnehmen.

14 DIN EN 1610

Verlegung und Prüfung von Abwasserleitungen und -kanälen; Deutsche Fassung EN 1610:1997; Ausgabe:1997-10

15 DIN EN ISO 899-2

Kunststoffe - Bestimmung des Kriechverhaltens - Teil 2: Zeitstand-Biegeversuch bei Dreipunkt-Belastung (ISO 899-2:2003); Deutsche Fassung EN ISO 899-2:2003; Ausgabe:2003-10



Z-42.3-398

Seite 16 von 20 | 2. Februar 2010

<u>Diagramm 1</u>: "Beurteilung der Kriechneigung in Abhängigkeit des Probenalters"

Kriechneigung

Die in der Prüfung an der auf der Baustelle entnommenen Probe ermittelte Kriechneigung darf in Abhängigkeit des Probealters den Wert der Kriechneigung aus dem Diagramm **1** nicht überschreiten.

Außerdem ist am ausgehärteten Schlauchliner der Biege-E-Modul und die Biegespannung σ_{fB} nach DIN EN ISO 1787 (Drei-Punkt-Biegeprüfung) zu bestimmen. Wobei gewölbte Probestäbe aus dem entsprechenden Kreisprofil zu verwenden sind, die in radialer Richtung eine Mindestbreite von 50 mm aufweisen sollen. Bei der Prüfung und Berechnung des E-Moduls ist die zwischen den Auflagepunkten des Probestabes gemessene Stützweite zu berücksichtigen.

Die festgestellten Kurzzeitwerte der E-Module und Biegespannungen σ_{fB} müssen im Vergleich mit dem in Abschnitt 9 genannten Wert gleich oder größer sein.

Beim Wechsel des Harzlieferanten ist zusätzlich an entnommenen Kreisringen der Kurzzeitwert, der 1-h-Wert und der 24-h-Wert der Ringsteifigkeit festzuhalten. Die Ringsteifigkeitsprüfung ist entsprechend dem in DIN 53769-3¹⁶ bzw. DIN EN 1228⁶ dargestellten Verfahren zu prüfen. Die Kriechneigung ist ebenfalls zu bestimmen.

7.2.2 Ermittlung der Festigkeitseigenschaften mittels DSC-Analyse

für Hausanschlussliner bis DN 200

Sofern eine Probeentnahme von Kreisringen oder Segmenten nicht möglich ist, kann alternativ an den auf der Baustelle entnommenen Proben eine DSC-Analyse für Hausanschlussliner bis DN 200 durchgeführt werden.

Deutsches Institut

für Bautechnik

23

Z-42.3-398

Seite 17 von 20 | 2. Februar 2010

Dazu ist folgender Prüfablauf einzuhalten:

- 1. Durchschneiden des Bohrkerns mittels Diamantschnitt
- 2. Messung der Wanddicke des tragenden Laminats an drei Stellen
- 3. Qualitative Beurteilung des Laminats im Bereich des Sägeschnitts gemäß DIN 18820-317, Abschnitt 5.2
- 4. Entnahme des Probestücks zur DSC-Analyse aus dem Laminat
- 5. DSC-Analyse nach DIN 5376518, Verfahren A-20
- 6. Bewertung der Ergebnisse entsprechend Abschnitt 9

7.3 Wasserdichtheit der Proben

Die Wasserdichtheit des ausgehärteten Schlauchliners kann entweder an einem Schlauchlinerabschnitt (Kreisring) ohne Schutzfolien oder an Prüfstücken, die aus dem ausgehärteten Schlauchliner ohne Folienbeschichtung entnommenen wurden, durchgeführt werden. Für die Prüfung ist die Folie des Schlauchlinerabschnitts bzw. des Prüfstückes entweder zu entfernen oder zu perforieren. Das Laminat darf dabei nicht verletzt werden.

Die Prüfung an Prüfstücken kann entweder mit Überdruck oder Unterdruck von 0,5 bar erfolgen.

Bei der Unterdruckprüfung ist die Probe einseitig mit Wasser zu beaufschlagen. Bei einem Unterdruck von 0,5 bar darf während einer Prüfdauer von 30 Minuten kein Wasseraustritt auf der unbeaufschlagten Seite der Probe sichtbar sein.

Bei der Prüfung mittels Überdruck ist ein Wasserdruck von 0,5 bar während 30 Minuten aufzubringen. Auch bei dieser Methode darf auf der unbeaufschlagten Seite der Probe kein Wasseraustritt sichtbar sein.

7.4 Wandaufbau

Der Wandaufbau nach den Bedingungen in Abschnitt 2.1.3 ist an Schnittflächen z. B. unter Verwendung eines Lichtmikroskops mit ca. 10facher Vergrößerung zu überprüfen. Luftbläschen Außerdem ist der durchschnittliche Flächenanteil der DIN EN ISO 782219 zu prüfen.

7.5 Physikalische Kennwerte des ausgehärteten Schlauchliners

An den entnommenen Proben sind die in Abschnitt 2.1.4 genannten Kennwerte zu Überprüfen.

8 Übereinstimmungserklärung über die ausgeführte Sanierungsmaßnahme

Die Bestätigung der Übereinstimmung der ausgeführten Sanierungsmaßnahme mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss vom ausführenden Betrieb mit einer Übereinstimmungserklärung auf Grundlage der Festlegungen im den Tabellen 1 und 2 erfolgen. Der Übereinstimmungserklärung sind Unterlagen über die Eigenschaften der Verfahrenskomponenten nach Abschnitt 2.1.1 und die Ergebnisse der Dentsches Institut Prüfungen nach Tabelle 1 und Tabelle 2 beizufügen. für Bautechnik

23

17	DIN 18820-3	Laminate aus textilglasverstärkten ungesättigten Polyester- und Phenacrylatharzen für
		tragende Bauteile (GF-UP, GF-PHA); Schutzmaßnahmen für das tragende Laminat; Ausgabe:1991-03
18	DIN 53765	Prüfung von Kunststoffen und Elastomeren; Thermische Analyse; Dynamische
		Differenzkalorimetrie (DDK); Ausgabe:1994-03
19	DIN EN ISO 7822	Textilglasverstärkte Kunststoffe - Bestimmung der Menge vorhandener Lunker - Glühverlust, mechanische Zersetzung und statistische Auswertungsverfahren
		Grantenast, incentione zersetzang and statistische Adswertungsverfahren

(ISO 7822:1990); Deutsche Fassung EN ISO 7822: 1999, Ausgabe:2000-01

Seite 18 von 20 | 2. Februar 2010

Z-42.3-398

Der Leiter der Sanierungsmaßnahme oder ein fachkundiger Vertreter des Leiters muss während der Ausführung der Sanierung auf der Baustelle anwesend sein. Er hat für die ordnungsgemäße Ausführung der Arbeiten nach den Bestimmungen des Abschnitts 4 zu sorgen und dabei insbesondere die Prüfungen nach Tabelle **1** und Tabelle **2** vorzunehmen oder sie zu veranlassen. Anzahl und Umfang der ausgeführten Festlegungen sind Mindestanforderungen.

<u>Tabelle 1</u>: "Verfahrensbegleitende Prüfungen"

Gegenstand der Prüfung	Art der Anforderung	Häufigkeit
optische Inspektion der Leitung	nach Abschnitt 4.3.1 und ATV-M 143-2 ¹¹	vor jeder Sanierung
optische Inspektion der Leitung	nach Abschnitt 6 und ATV-M 143-2 ¹¹	nach jeder Sanierung
Geräteausstattung	nach Abschnitt 4.2	
Kennzeichnung der Behälter der Sanierungskomponenten	nach Abschnitt 2.2.3	
Luft- bzw. Wasserdichtheit	nach Abschnitt 6	
Harzmischung, Harzmenge und Härtungsverhalten je Schlauch	Mischprotokoll nach Abschnitt 4.3.5	jede Baustelle
Aushärtungstemperatur und Aushärtungszeit	nach Abschnitt 4.3.6	
Überprüfung der Glasübergangstemperatur T _{G1} und T _{G2} mittels DSC-Analyse ¹ für Hausanschlussliner bis DN 200	nach den Abschnitten 2.1.5 und 7.2.2 (alternativ)	

Sofern die Einhaltung der in Abschnitt 2.1.5 genannten Glasübergangstemperaturen T_{G1} und T_{G2} an den auf der Baustelle entnommenen Proben mittels DSC-Analyse nachgewiesen wurde, gilt dies auch als Nachweis für die Einhaltung der in Abschnitt 2.1.4 genannten physikalischen Kennwerte des ausgehärteten Polyesterfaser-Harzverbundes.

Die in Tabelle **2** genannten Prüfungen hat der Leiter der Sanierungsmaßnahme oder sein fachkundiger Vertreter zu veranlassen. Für die in Tabelle **2** genannten Prüfungen sind Proben aus den beschriebenen Probenschläuchen zu entnehmen.

Seite 19 von 20 | 2. Februar 2010

Z-42.3-398

Tabelle 2: "Prüfungen an Probestücken"

Gegenstand der Prüfung	Art der Anforderung	Häufigkeit	
Kurzzeitbiege-E-Modul, Kurzzeitbiegespannung σ _{fB} und Kriechneigung an Rohrausschnitten oder an Kreisringen	nach Abschnitt 7.1 und 7.2.1		
oder DSC-Analyse für Hausanschlussliner bis DN 200	nach den Abschnitten 2.1.5 und 7.2.2	jede Baustelle, mìn. jeder zweite	
Dichte und Härte der Probe ohne Preliner und ohne Beschichtungsfolie	nach Abschnitt 2.1.4	Schlauchliner	
Wasserdichtheit der Probe ohne Preliner und ohne Beschichtungsfolie	nach Abschnitt 7.3		
Wandaufbau	nach Abschnitt 7.4		
Harzidentität mittels IR-Spektroskopie	nach Abschnitt 2.1.1.	bei jedem Wechsel des Harzlieferanten mit Deklaration der Harze	
Kurzzeit-E-Modul (Kurzzeit-Ringsteifigkeit) und Kriechneigung an Rohrabschnitten oder -ausschnitten	nach den Abschnitten 2.1.4 und 7.2.1	bei jedem Wechsel des Harzlieferanten mit Deklaration der Harze	
Kriechneigung an Rohrabschnitten oder -ausschnitten	nach Abschnitt 7.2.1	bei Unterschreitung des in Abschnitt 9 genannten Kurzzeit- E-Moduls sowie min. 1 x Schlauchliner je Halbjahr	

Die Prüfungsergebnisse sind aufzuzeichnen und auszuwerten; sie sind auf Verlangen dem Deutschen Institut für Bautechnik vorzulegen. Anzahl und Umfang der in den Tabellen aufgeführten Festlegungen sind Mindestforderungen.

9 Bestimmungen für die Bemessung

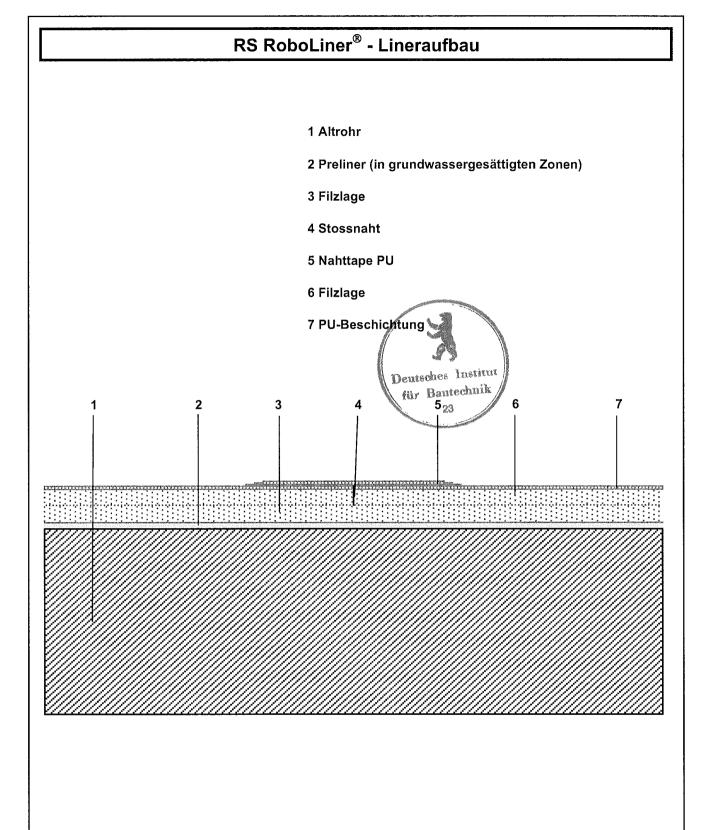
Sofern eine statische Berechnung für Sanierungsmaßnahmen erforderlich wird, ist die Standsicherheit entsprechend dem Merkblatt ATV-M 127- 2^3 der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) vor der Ausführung nachzuweisen. Bei der statischen Berechnung ist ein Sicherheitsbeiwert von $\gamma = 2,0$ zu berücksichtigen. Der Abminderungsfaktor A zur Ermittlung des Langzeitwerte gemäß 10.000 h-Prüfung in National Anlehnung an DIN EN 761²⁰ beträgt A = 1,53.

Z-42.3-398

Seite 20 von 20 | 2. Februar 2010

Doutsches Institut

Folgende Werte sind für die statische Berechnung des Schlauliners "RS RoboLiner®" zu berücksichtigen:


• Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 1787: 48 N/mm²
• Langzeit-Biegespannungen σ_{fB} : 31 N/mm²
• Kurzzeit-E-Modul in Anlehnung an DIN EN 12285: 2.280 N/mm²
• Langzeit-E-Modul: 1.500 N/mm²

10 Bestimmungen für den Unterhalt

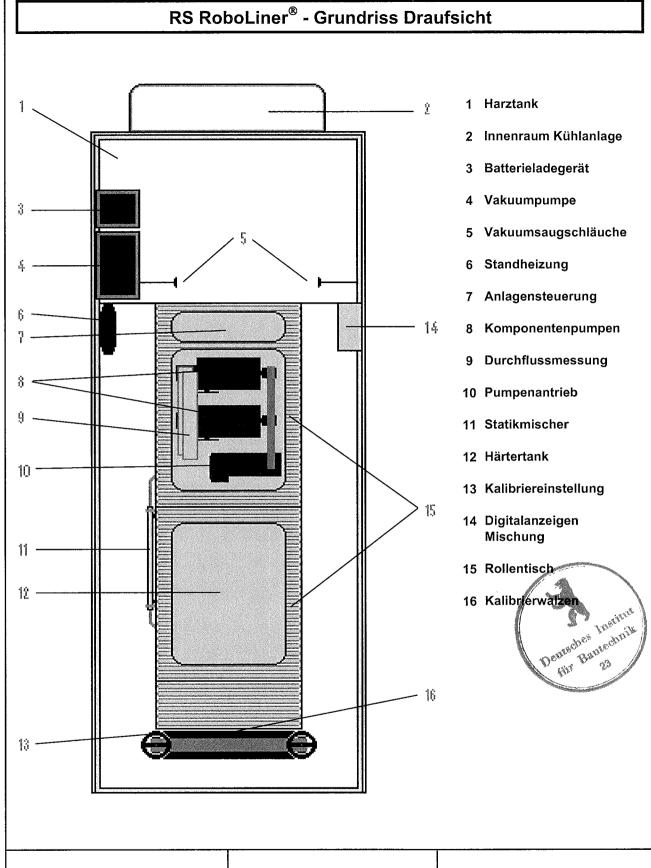
Vom Antragsteller sind während der Geltungsdauer dieser Zulassung jeweils sechs sanierte Abwasserleitungen und möglichst sechs wiederhergestellte Seitenzuläufe, optisch zu inspizieren. Die Ergebnisse mit dazugehörender Beschreibung der sanierten Schäden sind dem Deutschen Institut für Bautechnik unaufgefordert während der Geltungsdauer dieser Zulassung vorzulegen.

Drei dieser ausgeführten Sanierungen sind auf Kosten des Antragstellers unter Federführung eines Sachverständigen, zusätzlich zur Dichtheitsprüfung unmittelbar nach Beendigung der Sanierung, vor Ablauf der Geltungsdauer dieser Zulassung auf Dichtheit zu prüfen.

Kersten

Antragsteller:

RS Technik AG Bachweg 3 CH-8133 Esslingen

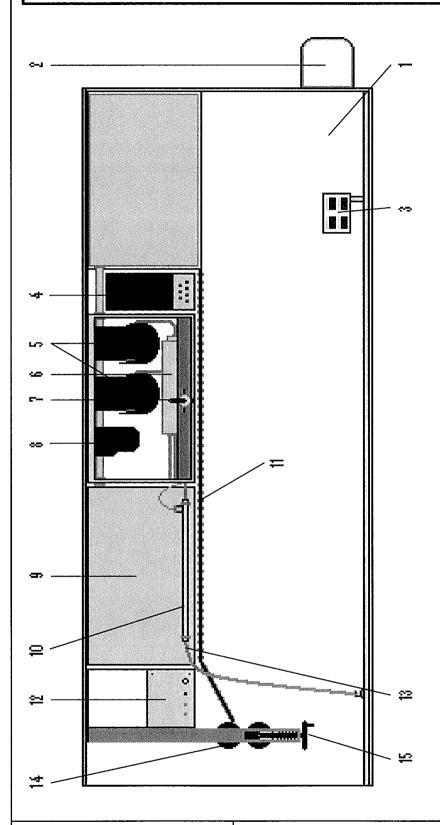

Lineraufbau

Anlage 1

zur allgemeinen bauaufsichtlichen

Zulassung Nr. Z-42.3-398

OPOS.50.50 mov



Antragsteller:

RS Technik AG Bachweg 3 CH-8133 Esslingen Grundriss Draufsicht Anlage 2

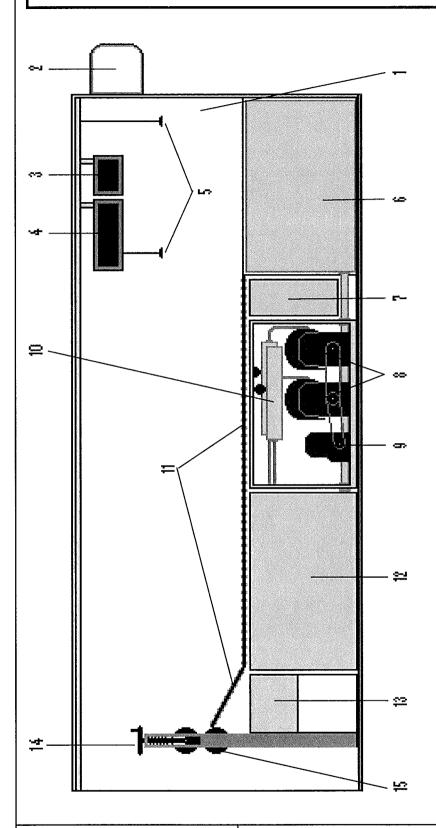
zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom Q2.Q2.2010

RS RoboLiner® - Seitenansicht - L

- 1 RS RoboLiner®
- 2 Innenraum Kühlanlage
- 3 Digitalanzeigen Mischanlage
- 4 Anlagensteuerung
- 5 Komponentenpumpen
- 6 Durchflussmengenmessung
- 7 Bedienhebel
- Pumpenantrieb
- Härtertank
- 10 Statikmischer
- 11 Rollentisch
- 12 Kalibrierwalzensteuerung
- 13 Linerfüllschlauch
- 14 Kalibrierwalzen
- 15 Kalibriereinstellung

Denteches Institut für Bautechnik

Antragsteller:


RS Technik AG Bachweg 3 CH-8133 Esslingen

Seitenansicht - L

Anlage 3

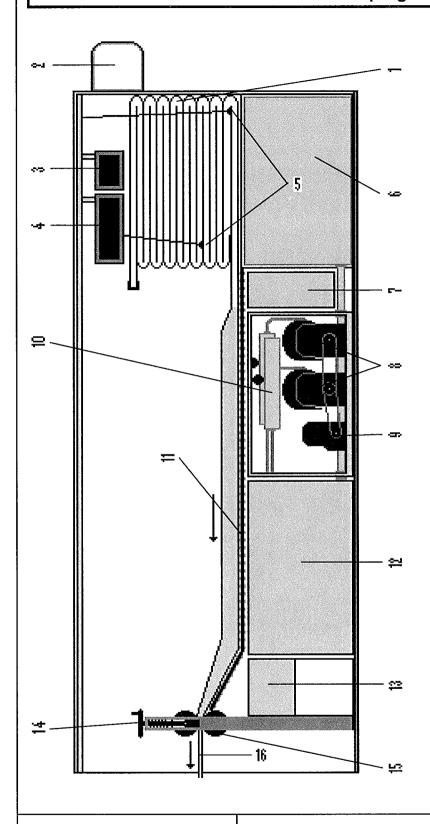
zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398

RS RoboLiner® - Seitenansicht - R

- 1 RS RoboLiner®
- 2 Innenraum Kühlanlage
- 3 Batterieladegerät
- 4 Vakuumpumpe
- 5 Vakuumschläuche
- 6 Harztank
- 7 Anlagensteuerung
- 8 Komponentenpumpen
- 9 Pumpenantrieb
- 10 Durchflussmengenmessung
- 11 Rollentisch
- 12 Härtertank
- 13 Kalibrierwalzensteuerung
- 14 Kalibriereinstellung
- 15 Kallbrierwalzen

Deutsches Institut für Bautechulk

Antragsteller:


RS Technik AG

Bachweg 3 CH-8133 Esslingen Seitenansicht - R

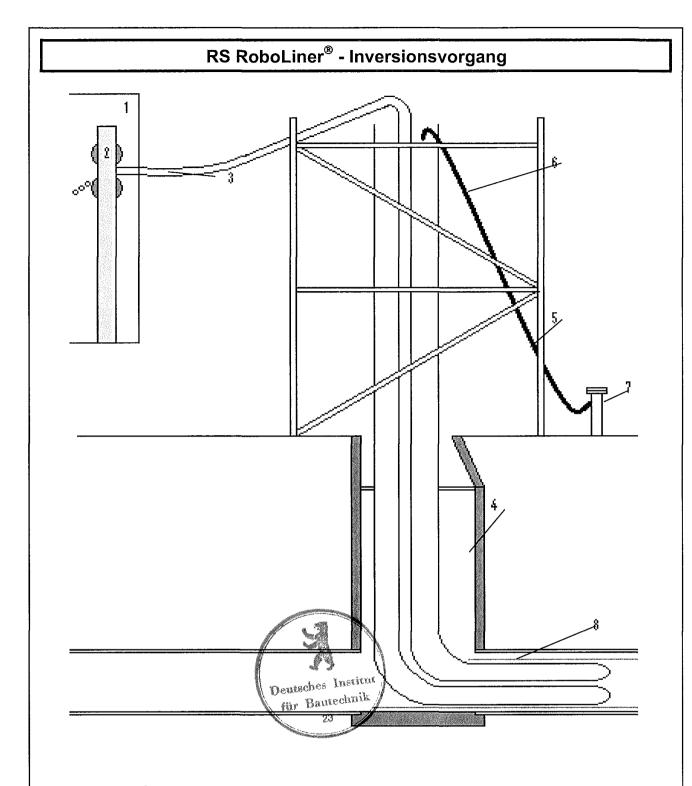
Anlage 4

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398

RS RoboLiner® - Imprägnierung

- 1 Liner trocken
- 2 Innenraum Kühlanlage
- 3 Batterieladegerät
- 4 Vakuumpumpe
- 5 Vakuumschläuche
- 6 Harztank
- 7 Anlagensteuerung
- 8 Komponentenpumpen
- 9 Pumpenantrieb
- 10 Durchflussmengenmessung
- 11 Rollentisch
- 12 Härtertank
- 13 Kalibrierwalzensteuerung
- 14 Kalibriereinstellung
- 15 Kalibrierwalzen
- 16 Liner imprägniert Deutsches Institut für Bautechnik

Antragsteller:

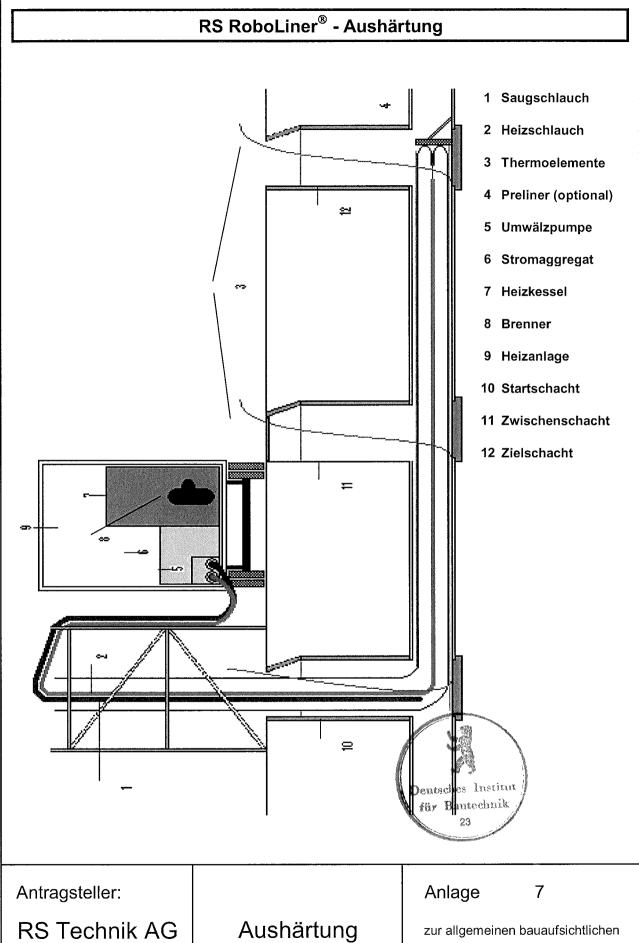

RS Technik AG Bachweg 3 CH-8133 Esslingen

Imprägnierung

Anlage 5

zur allgemeinen bauaufsichtlichen

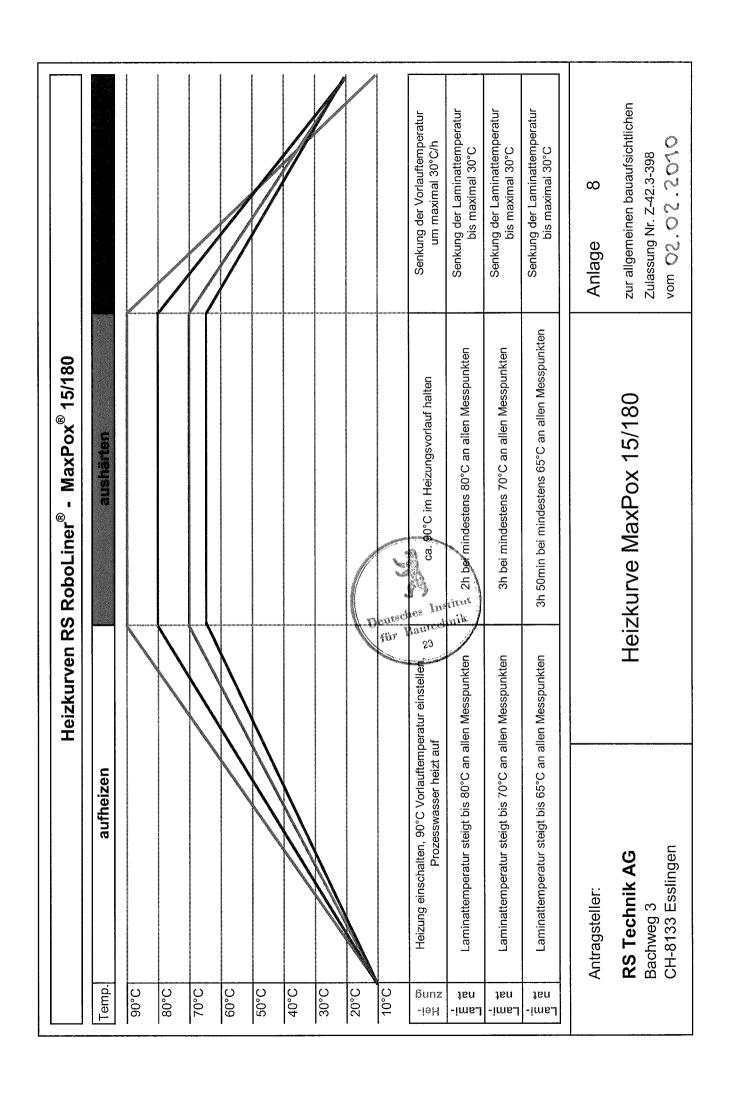
Zulassung Nr. Z-42.3-398



- 1 RS RoboLiner[®] Imprägnieranlage2 Kalibrierwalzen

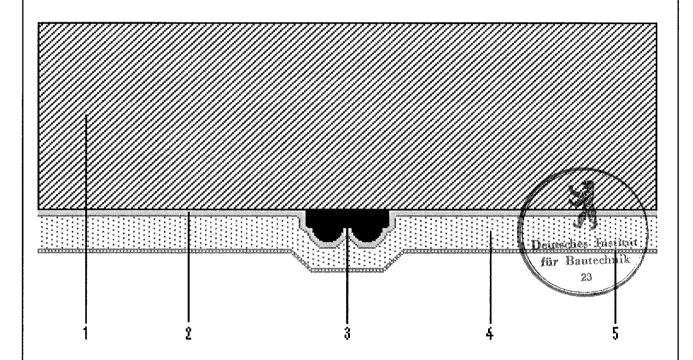
- 3 imprägnierter Liner 4 Schacht (Startschacht)

- 5 Inversionsgerüst
- 6 Wassersäule
- 7 Hydrant 8 Preliner (optional)


Antragsteller:		Anlage 6
RS Technik AG Bachweg 3 CH-8133 Esslingen	Inversion	zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom 02.02.2010

RS Technik AG Bachweg 3

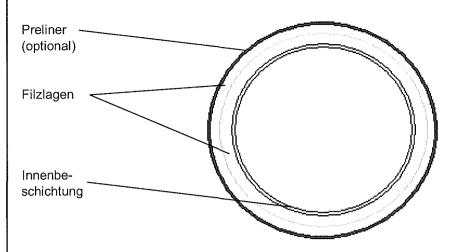
CH-8133 Esslingen


Zulassung Nr. Z-42.3-398

RS RoboLiner® - Einsatz Quellband (Schacht) 1 Altrohr 2 Liner 3 Quellband 4 Mörtel 5 Schacht (Zwischenschacht) ј1-2 ст са, 30 см Deutsches Institut für Bautechnik Antragsteller: Anlage 9 Einsatz Quellband RS Technik AG zur allgemeinen bauaufsichtlichen Bachweg 3 (Schacht) Zulassung Nr. Z-42.3-398 CH-8133 Esslingen 0105.50.50 mov

RS RoboLiner® - Einsatz Quellband

- 1 Altrohr
- 2 Preliner (optional)
- 3 Quellband
- 4 Laminat
- 5 PU Beschichtung


Antragsteller:

RS Technik AG Bachweg 3 CH-8133 Esslingen Einsatz Quellband

Anlage 10

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom Q2.Q2.2010

RS RoboLiner[®] - Lineraufbau, Mindestlagenzahl, Wandstärke

Dimension	Wandstärke	Mindestlagenz.
150	3,0	1
150	4,5	1
150	4,5	2
200	3,0	1
200	4,5	2
200	6,0	2
225	4,5	2
225	6,0	2
250	4,5	2
250	6,0	2
250	7,0	2
300	4,5	2

Dimension	Wandstärke	Mindestlagenz.
300	6,0	2
300	7,0	2
300	9,0	2
350	6,0	2
350	7,0	2
350	9,0	2
375	7,0	2
375	9,0	2
400	6,0	2
400	7,0	2
400	9,0	2

Deutsches Institut für Bautechnik 23

weitere Wandstärken gemäß statischen Erfordernissen möglich

Antragsteller:

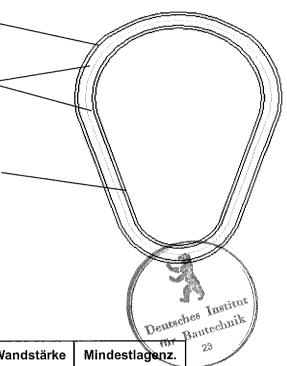
RS Technik AG
Bachweg 3

CH-8133 Esslingen

Lineraufbau Kreisprofil Anlage 11

zur allgemeinen bauaufsichtlichen

Zulassung Nr. Z-42.3-398


0105.50.50 mov

RS RoboLiner® - Lineraufbau, Mindestlagenzahl, Wandstärke

Preliner (optional)

Filzlagen

Innenbeschichtung

		111
Dimension	Wandstärke	Mindestlagenz.
200/300	6,0	2
250/375	6,0	2
250/375	7,5	2
300/450	6,0	2
300/450	7,5	2
350/525	6,0	2
350/525	7,5	2

weitere Wandstärken gemäß statischen Erfordernissen möglich

Antragsteller:

RS Technik AG Bachweg 3 CH-8133 Esslingen Lineraufbau Eiprofil Anlage 12

zur allgemeinen bauaufsichtlichen
Zulassung Nr. Z-42.3-398

RS RoboLiner® - durchschnittliche Linerbreiten liegend

	Dimension	Breite liegend ca.*	
DN	150	190 - 215	mm
DN	200	265 - 280	mm
DN	225	300 - 320	mm
DN	250	330 - 355	mm
DN	300	400 - 425	mm
DN	350	475 - 495	mm
DN	375	510 - 530	mm
DN	400	Institut 545 - 570	mm

* abhängig von der Wandstärke, Lagenzahl und Kompression des Liners

Antragsteller:

RS Technik AG Bachweg 3 CH-8133 Esslingen Linerbreiten Kreisprofil Anlage 13

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398

RS RoboLiner® - durchschnittliche Linerbreiten liegend

	Dimension	Breite liegend ca.*	
DN	200/300	335 - 355	mm
DN	250/375	430 - 450	mm
DN	300/450	520 - 540	mm
DN	350/525	112 cirus 610 - 630	mm

* abhängig von der Wandstärke, Lagenzahl und Kompression des Liners

Antragsteller:

RS Technik AG Bachweg 3 CH-8133 Esslingen Linerbreiten Eiprofil Anlage 14

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom Q2.Q2.2010

RS RoboLiner® - Harzgemisch je Meter Liner

DN	3,0	4,5	6,0	7,0	9,0	10,5	12,0	15,0
150	1,4	2,1						
200	1,8	2,7	3,6					
225		2,1	3,0					
250		3,4	4,5	5,3				
300		4,1	5,4	6,3	8,1			
350			6,3	7,4	9,5			
375			6,8	7,9	10,1			
400			7,2	8,4	10,8			

Dentsches Institut für Bautechnik 23

Antrage	steller:
---------	----------

RS Technik AG Bachweg 3 CH-8133 Esslingen erforderliche Harzmenge Kreisprofil Anlage 15

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom 02.02.2010

RS RoboLiner® - Harzgemisch je Meter Liner

DN	6,0	7,5	9,0	10,5	12,0	13,0	15,0	19,0	21,0
200/300	4,5	5,6							
250/375	5,7	7,1	8,5						
300/450	6,8	8,5	10,2						
350/525	7,9	9,9	11,9						

Denisches Instit.

Antragsteller:

RS Technik AG Bachweg 3 CH-8133 Esslingen erforderliche Harzmenge Eiprofil Anlage 16

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom 02.02.2010

	RS RoboLiner® - N	- Mindestwanddicke	in mm für Kurzzeit	estwanddicke in mm für Kurzzeitringsteifigkeiten S_{R}	
Nennringsteifigkeit	SN 630	SN 1250	SN 2500	0009 NS	SN 10.000
Kurzzeitringsteifigkeit	S _R = 0,005 N/mm ²	S _R = 0,01 N/mm ²	S _R = 0,02 N/mm ²	$S_{R} = 0.04 \text{N/mm}^{2}$	S _R = 0,08 N/mm ²
Außendurchmesser des Liners [mm]	Wanddicke s [mm]	Wanddicke s [mm]	Wanddicke s [mm]	Wanddicke s [mm]	Wanddicke s [mm]
150	2,6	3,2	4,1	5,1	6,5
200	3,4	4,3	5,4	6,8	8,6
225	3,8	4,8	6,1	7,7	7,6
250	4,3	5,4	6,8	8,5	10,8
300	5,1	6,5	8,1	10,3	12,9
350	6,0	7,5	9,5	12,0	15,1
375	6,4	8,1	10,2	12,8	16,2
400	6,8	8,6	10,9	13,7	17,2
	euisches Institut für Bautechnik 23				
Antragsteller:				Anlage	17
RS Technik AG Bachweg 3 CH-8133 Esslingen	ن ک	Ringstei Kreis	Ringsteifigkeiten Kreisprofil	zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom 02.02.2010	sichtlichen 8 10

ngsteifigkeiten S _R	SN 5000 SN 10.000	S _R = 0,04 N/mm ² S _R = 0,08 N/mm ²	Wanddicke s [mm] Wanddicke s [mm]	8,6	10,7	12,9	17,0 21,5		Anlage 18	zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom 02.02.2010			
- Mindestwanddicke in mm für Kurzzeitringsteifigkeiten $\mathtt{S}_{\mathtt{R}}$	SN 2500	S _R = 0,02 N/mm ²	Wanddicke s [mm]	6,8	8,5	10,2	13,5			Ringsteifigkeiten Eiprofil			
lindestwanddicke	SN 1250	$S_R = 0.01 \text{N/mm}^2$	Wanddicke s [mm]	5,4	8,9	8,1	10,7		Ringste				
RS RoboLiner® - N	009 NS	S _R = 0,005 N/mm²	Wanddicke s [mm]	4,3	5,4	6,4	8,5	entsches Institut ür Bautechnik 23					
	Nennringsteifigkeit	Kurzzeitringsteifigkeit	Außendurchmesser des Liners [mm]	200/ 300	250/375	300/ 450	350/ 525		Antragsteller:	RS Technik AG Bachweg 3 CH-8133 Esslingen			

ı

RS RoboLiner® - zur Sanierung mindestens erforderliche Geräte

Fahrzeugausstattung Tränkanlage

- Edelstahltanks für Epoxidharz (2.800 kg) und Härter (800 kg)
- Mischanlage mit elektronischer Überwachung von Fördermenge,

Mischungsverhältnis und Komponententemperatur

- Rollentisch
- Vakuumpumpe mit 3 Saugschläuchen und Unterdrucküberwachung
- Thermo King Kühlanlage
- Standheizung
- Batterieladegerät
- Elektrisch angetriebene Kalibrierwalzen mit Justierskala

Ausstattung mobile Heizanlage

- Warmwasserheizanlage (Vorlauf min. 80°C)
- Förderpumpen
- Stromaggregat
- Saugschläuche
- Heiz- und Befüllschläuche

Ausstattung System

- Wasser- und Schmutzwasserpumpen
- Schmutzwasserschläuche
- Seiltrommel
- Inversionsgerüst
- Fixierstangen (Befestigung Dner) hes Institut
- Kompressor
- Druckluftwerkzeuge
- Absperrpylone
- Absperrlampen

Antragsteller:

RS Technik AG

Bachweg 3 CH-8133 Esslingen mindestens erforderliche Geräte

Anlage 19

zur allgemeinen bauaufsichtlichen

Zulassung Nr. Z-42.3-398

	S RoboLiner® - Pro	tokon nerstenar	19 / Ellibau	
Lineranlage Nr.:		ım:	Baustellennr.:	
Kunde:			Einzug Nr.:	
Bauvorhaben:				
Startschacht:	Zielschad		Anz. Schächte:	
Vetterbedingungen	trocken	bewölkt	Regen	
	sonnig	Lufttemperatur:		°C
Canalreinigung	<u></u> ја	Datum: _		
or der Sanierung	nein —	Grund:		
TV Untersuchung	<u></u> ја ———	─────────────────────────────────────		
or der Sanierung	nein —	→ Grund:	~	
lindernisbeseitigung	notwendig	Datum: _	<u> </u>	
		Bemerkung:		
bwasserfreiheit	Überpumpen	Umleiten	Rückstau	
Grundwasser	eindringendes Grund	dwasser sichtbar 🚤	an Muffen	
	kein eindringendes (an Rissen/ S	Scherben
nfo durch BL	Grundwasser vorhai		Höhe über Rohrscheitel:	m
Altrohrprofil	Kreis	DN:	mm Rohrl.:	m
	nicht notwendig	Tiefe Startschacht:	m Linerl.:	m
larzsystem	MaxPox [®] 15	Charge Nr.:		
	MaxPox® 180	Charge Nr.:		
iner	RS PU-Liner	Charge Nr.:	Wandst.:	mn
emperaturen	Harz:	°C	Härter:	°C
akuum	Luft:		Vakuum: -	bar
poxidharz lischungsverhältnis	Soll Harz/ Härter: Ist Harz/ Härter:	100 : 28 =	kg :	kg
nischungsvernaithis	lst Harz/ Härter: Gesamtverbrauch Harzmis		kg :	kg
mprägnierung	Beginn Tränkung:		kg rersion beendet:	Uh
Rückstellproben	Liner	Beschriftung:	ersion beenget.	
(donotonprobon	Harzmischung	Beschriftung:		
nstallation	mit Gefälle	Preliner verwe	endet Quellband ve	erwendet
	gegen Gefälle	Kalibrierschla	- Million	
	Gefälle (+/-):	transportant	Höhe Wassersäule:	m
	Wassersäule:		orierwalzenabstand:	mn
leizanlage	Heizleistung:		nzahl Heizschläuche:	St.
-	Pumpenleistung:		DN Heizschläuche:	mn
	Pumpendruck:	bar Läi	nge Heizschläuche:	m
leizphase	Heizung einschalten, Vorl. auf	90°C um	Aufsicht:	·
	Verwendete Aushärtungstemp	eratur:	°C	
	Härtungstemp. von	bis	Aufsicht:	
	Abkühlung von	bis	Aufsicht:	
Probeentnahme	Zwischenschacht	Zielschacht	an Muffen	
	Jeanskappe	Wickelfalzroh	<u> </u>	Scherb e n
<u> </u>	Probestück übergeb	en an Auftraggeber	Länge Kopf:	m
Patum/ Unterschrift			Deut	asches In
			100	
				23
No. 1 . 1 . 1		1	A - I	
Antragsteller:			Anlage 20	
_	P	rotokoll	Anlage 20 zur allgemeinen bauaufsichtliche	en
Antragsteller: RS Technik AG Bachweg 3	i	rotokoll lung / Einbau	J	

RS RoboLiner® - Messpunktzuordnung

Vor Messbeginn vollständig ausfüllen und Messpunkte entsprechend markieren, um Verwechslungen auszuschliessen.

Bauvorhaben:		
KstSt.:	Da	tum:
Haltung von:	n	ach:
Anlage:	Anlagenfül	hrer:
1. Messung um:	Uhr testo-Serien	-Nr.:
1 - Lufttemperatur		
2 - Vorlauf Heizanla	ige	
3 - Rücklauf Heizan	lage	
4 - Schacht:	Position	n: Uhr
5 - Schacht:	Position	n: Uhr
6 - Schacht:	Position	n: Uhr
7 - Schacht:	Position	n: Uhr
8 - Schacht:	Position	n: Uhr
9 - Schacht:	Position	n: Uhr
10 - Schacht:	Position	n: Uhr
11 - Schacht:	Position	n: Uhr
12 - Schacht:	Position	n: Uhr
13 - Schacht:	Position	n: Uhr
14 - Schacht:	Position	n: Uhr
15 - Schacht:	Position	n: Uhr
16 - Schacht:	Position	n: Uhr
17 - Schacht:	Position	n: Uhr
18 - Schacht:	Position	n: Uhr
19 - Schacht:	Position	n: Uhr
20 - Schacht:	Position	n: Uhr
21 - Schacht:	Position	n: Uhr
22 - Schacht:	Position	n: Uhr
23 - Schacht:	Position	n: Uhr
24 - Schacht:	Position	n: Uhr
25 - Schacht:	Position	n: Uhr
	·	
	Schacht in jede Zeile die entsprechen Schacht im Uhrzeigersinn vorgehen	
	06:00/ 09:00< in die Zeile eintragen.	
	T	für Bautechtik
Antragsteller:		Anlage 21 23
RS Technik AG	Protokoll	zur allgemeinen bauaufsichtlichen
Bachweg 3	Messpunktzuordnung	Zulassung Nr. Z-42.3-398
CH-8133 Esslingen		vom 02.02.2010

RS Ro	oboLiner [®] - Dicl	ntheitspr	üfung
gemäss DIN	EN 1610, Absch	nitt 13.3 \	Verfahren W
Bauvorhaben:		· · · · · · · · · · · · · · · · · · ·	
KstSt.:		Datum:	
Haltung von:		nach:	
Anlage:	Anlag	jenführer: _.	
Innendurchmesser D _i :			m
Länge der Haltung L:			m
Innenfläche der Haltung A=3,	14 x L x D _i :		m²
zulässige Wasserzugabe:		0,15	l/m² in 30 +/- 1 min
zul. Wasserzugabe der Haltur (Innenfläche x zul. Wasserzuga	_		I
Vorfüllzeit:h	(üblicherweise ist 1	I h ausreich	nend) ¹⁾
Beginn der Prüfung:	Uhr En	de der Prüf	ung: (30 +/- 1 min)
Prüfdruck:kPa	(höchstens 50 kF	Pa / mindes	tens 10 kPa am Rohrscheitel)
Wasserzugabe der Haltung:			Liter
zul. Wasserzugabe der Haltu	ng:		Liter
Dichtheitsprüfung bestanden	1	ia ja	nein
Bemerkungen:			
Die normgerechte Durc	chführung der Dicht	heitsprüfun	g wird hiermit bestätigt.
Datum:	Unterschrift:		Deutsches Inst
eine längere Vorfüllzeit kann aufgrund trockener Kl		tonrohren erforderli	√ für Bautechn
Antragsteller:			Anlage 22
RS Technik AG	Protoko	Ш	zur allgemeinen bauaufsichtlichen
Bachweg 3	Dichtheitspr	üfung	Zulassung Nr. Z-42.3-398
CH-8133 Esslingen			vom 02.02.2010

RS RoboLiner	[®] - Rückmel	debericht (Cutter / Roboter
Roboter/ Cutter: Bauvorhaben: Straße:	Datum:		Baustellen-Nr.:
von Schacht:		nach So	chacht:
Optischer Eindruck Liner			
iner liegt an (Muffen sichtbar)?	ja	nein	Wenn nein, bitte beschreiben*
ind die Anschlüsse sichtbar?	ja	nein	Wenn ja, bitte beschreiben*
Sind Flickstellen sichtbar?	ja	nein	Wenn ja, bitte beschreiben*
Qualitätseindruck Liner			
Liner an den Anschlüssen hart?	ja	nein	Wenn nein, bitte beschreiben*
Hat der Liner weiche Stellen?	ja	nein	Wenn ja, bitte beschreiben*
Erschwernisse beim Öffnen			
/erschmiert der Fräskopf?	ja	nein	Wenn ja, bitte beschreiben*
Sind die Anschlüsse verharzt?	ja	nein	Wenn ja, bitte beschreiben*
vollständige Bemerkungen			
		· · · · · · · · · · · · · · · · · · ·	
*solite der	Platz nicht ausreiche	n, bitte separates B	latt benutzen
Datum:	Unterschrift:		Deutsches für Bau
Antragsteller:			Anlage 23
RS Technik AG Bachweg 3 CH-8133 Esslingen	Rückmeld Rob	ung Cutter ooter	zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-42.3-398 vom 02.02.2010

	RS R	oboLiner [©]	® - Probe	enbegleit	schei	in	
1 Angaben zur Probenent	nahme						
entnommen durch:			Datu	m:			
2 Probenidentifikation	•		Stras	sse:			
Bauvorhaben:	1	•	Prüfe	er:			
Kostenstelle:				ichtung:		r	adial
Auftraggeber:				geometrie:			
Hersteller:				dimension:			·
Material:	EP	Synthesefase	r Entn	ahmeposition	 ;		
Charge Liner:		-	Umfa	angsmessung	:		.1.
Charge Harz:			Läng	e:			
Charge Härter:			Herg	estellt am:			
von Schacht:			bis S	chacht:			
Probenbez:		·	- 10.0			l	
geforderte Kurzzeit - Ei	genschaften	gemäss stat	ischem Nac	hweis			
Biege-E-Modul E _b [MPa]:				angs-E-Modul	E _{II} [MF	Pal:	
Biegezugfestigkeit σ _b [MPa			ngsringsteifigl				
Siegezugiestigkeit o _{ն [ivir-a} Abminderungsfaktor A₁:	·		ddicke s [mm		· · · · · · · · · · · · · · · · · · ·		
	und Motori-	laiganaah-4-			1-	<u> </u>	
4 Ermittlung der Bauteil-				LICO 479/ DIN	EN 4256	CC 4	
Ermittlung der Biegefestigke Prüfdatum	eit una des Bi	ege-E-Moduls	nach DIN EN	E _b [MPa]	EN 1350	00-4	
s [mm]				σ- _B [MPa]			
rmittlung der Anfangs- Rir	actoifiakoit I	ınd dos Anfan	as E Module		1229/ 0	IN 52760 2	
Prüfdatum	igsterrigken t	inu des Aman	ys-E-Wioddis	E _U [MPa]	1220/ D	114 55709-5	
s [mm]				S ₀ [MPa]			
rüfung der Wasserdichthei	t in Δnlehnun	o an DIN FN 1	610	1 00			
Prüfdatum		- CALLETT	010	Prüfzeit		30 1	Minuten
dicht		0		undicht			0
Sestimmung der spezifische	en Dichte gen	näss DIN EN IS	O 1183-1	<i>3</i>		<u> </u>	
Prüfdatum					[Dichte p [g/cm³]	
soll				ist		-	
Sestimmung des Glühverlus	stes nach DIN	EN ISO 1172 (Kalzinierung	sverfahren)			
Harz	zanteil [%]		Rücks	tand [%]		Zuschl	agstoff [%]
soll	i:	st	soll	ist		soll	ist
Spektralanalyse in Anlehnui	ng an ASTM E)5576 (FT-IR)		T		· · · · · · · · · · · · · · · · · · ·	
Prüfdatum	·		Korrelation				
Korrelation z	l .			Faktor		<u> </u>	
Thermische Analyse nach D	IN EN ISO 11:	375-1/ DIN 5376	65 (DSC-Mes	sung) - Vergle	ich mit	Referenz	
Prüfdatum Referenz T _G	· -			T _{GH1} is	+-	ı	
Referenz T _G				T _{GH1} is			
restoronz regi	12,			I GH1 IS	-		
							Deutsches
atum			Unters	chrift Prüfer			für Baut
							230
Antragsteller:					Ani	age	24
DC Toobaile AC			Protoko	11		damainan hawar-f-	ichtlichen
RS Technik AG		Probe	nbegleit	schein	- 1	allgemeinen bauaufs	
Bachweg 3 CH-8133 Esslingen			J		1	ssung Nr. Z-42.3-39	
∍⊓-o iss Essingen	}			vom	05.05.	2010	