

Deutsches Institut für Bautechnik

ANSTALT DES ÖFFENTLICHEN RECHTS

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Mitglied der Europäischen Organisation für Technische Zulassungen EOTA und der Europäischen Union für das Agrément im Bauwesen UEAtc

Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de

Datum: Geschäftszeichen: 3. Juni 2010 II 22-1.9.1-761/08

Zulassungsnummer:

Z-9.1-761

Geltungsdauer bis:

30. Juni 2015

Antragsteller:

MiTek Industries GmbH

Deutz - Kalker Straße 1, 50679 Köln

Zulassungsgegenstand:

Nagelplatte M 20 H als Holzverbindungsmittel

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst zehn Seiten und vier Anlagen.

Seite 2 von 10 | 3. Juni 2010

Z-9.1-761

I. ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Deutsches Institut für Bentechnik

Z-9.1-761

Seite 3 von 10 | 3. Juni 2010

II. BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Die MiTek Nagelplatten MI-PLATE M 20 H sind Holzverbindungsmittel aus 1,00 mm dickem verzinkten Bandstahl der Sorte S 350 GD + Z mit der Form und den Maßen nach Anlage 1.

Die allgemeine bauaufsichtliche Zulassung erstreckt sich nicht auf Nagelplatten aus nichtrostendem Stahl.

1.2 **Anwendungsbereich**

Die Nagelplatten dürfen als Holzverbindungsmittel für tragende Holzkonstruktionen aus Vollholz und/oder Brettschichtholz angewendet werden, die nach der Norm DIN 1052¹ zu bemessen und auszuführen sind, soweit in dieser allgemeinen bauaufsichtlichen Zulassung nichts anderes bestimmt ist.

Holzbauteile aus Vollholz müssen mindestens aus Nadelholz der Sortierklasse S 10 nach DIN 4074-1:2003-06, Sortierung von Holz nach der Tragfähigkeit - Teil 1: Nadelschnittholz, sein. Das Brettschichtholz muss den Anforderungen der Norm DIN 1052 entsprechen.

Die Nagelplatten dürfen nur für Verbindungen von Holzbauteilen bei Tragwerken verwendet werden, die vorwiegend ruhend belastet sind (siehe DIN 1055-3:2006-03).

Für den Anwendungsbereich in Abhängigkeit vom Korrosionsschutz gelten die Technischen Baubestimmungen DIN 1052:2008-12, Abschnitt 6.3 mit Tabelle 2.

2 Bestimmungen für die MiTek Nagelplatten MI-PLATE M 20 H

2.1 Eigenschaften und Zusammensetzung

2.1.1 Die Nagelplatten sind aus Stahl der Sorte S 350 GD+Z nach DIN EN 10326:2004-09 - Kontinuierlich schmelztauchveredeltes Band und Blech aus Baustählen - Technische Lieferbedingungen - herzustellen, der vor dem Stanzen folgende mechanische Eigenschaften haben muss:

 \geq 350 N/mm², Streckgrenze ReH \geq 420 N/mm², Zugfestigkeit R_m Bruchdehnung A₈₀ ≥ 16 %.

2.1.2 Form und Maße der Nagelplatten müssen den Anlagen 1 und 2 entsprechen. Die Dicke der Nagelplatten muss betragen:

 Nenndicke 1,00 mm - Kleinstwert 0,94 mm Größtwert 1.09 mm.

Die Bleche müssen so gestanzt sein, dass die Nägel etwa rechtwinklig zur Plattenebene stehen.

- 2.1.3 Die Nagelplatten müssen den Korrosionsschutz nach DIN 1052 haben. Eine Kunststoffbeschichtung ist unzulässig.
- 2.1.4 Die Nägel dürfen am Nagelgrund keine Anrisse haben. Die Nägel müssen ausreichend biegsam sein.

Deutsches institut

33

Z-9.1-761

Seite 4 von 10 | 3. Juni 2010

2.2 Verpackung und Kennzeichnung

Die Verpackung der Nagelplatten oder der Lieferschein der Nagelplatten müssen vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Darüber hinaus müssen die Verpackungen oder der Lieferschein folgende Angaben enthalten:

- Bezeichnung des Zulassungsgegenstandes
- Art des Korrosionsschutzes (z. B. Z 350 nach DIN EN 10326:2004-09)

Die Nagelplatten müssen mit dem Kennzeichen "M 20 H" versehen sein.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der Nagelplatten mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung der Nagelplatten nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Nagelplatten eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen:

- Abmessungen der Nagelplatten gemäß den Anlagen 1 und 2
- Nagelbiegsamkeit
- Korrosionsschutz der Nagelplatten
- Bleche nach DIN EN 10326:2004-09 sind mindestens mit Werkszeugnis "2.2" nach DIN EN 10204:2005-01, Metallische Erzeugnisse – Arten von Prüfbescheinigungen - zu beziehen, anhand des Lieferscheins bzw. der Prüfbescheinigung ist die Einhaltung der Anforderungen nach Abschnitt 2.1.1 und 2.1.2 zu überprüfen.

Einzelheiten der Überwachung sind im Überwachungsvertrag zu regeln.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials
- Art der Kontrolle und Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts

DIB

Allgemeine bauaufsichtliche Zulassung

Z-9.1-761

Seite 5 von 10 | 3. Juni 2010

- Ergebnis der Kontrolle und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Nagelplatten durchzuführen und können auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung von Nagelplattenverbindungen

3.1 Allgemeines

- 3.1.1 Für den Entwurf und die Bemessung von Nagelplattenverbindungen mit den MiTek Nagelplatten MI-PLATE M 20 H gilt die Norm DIN 1052, soweit in dieser allgemeinen bauaufsichtlichen Zulassung nichts anderes bestimmt ist.
- 3.1.2 Die im Folgenden angegebenen charakteristischen Tragfähigkeitswerte sowie Rechenwerte für den Verschiebungsmodul gelten für jeweils eine Nagelplatte.
- 3.1.3 Der Verschiebungsmodul K_{ser} für eine Nagelplatte MI-PLATE M 20 H beträgt für den Gebrauchstauglichkeitsnachweis:
 - $K_{ser} = 7,0 \text{ N/mm je mm}^2 \text{ wirksame Platten- bzw. Anschlussfläche.}$

Der Rechenwert des Verschiebungsmoduls K_u für den Tragfähigkeitsnachweis ist zu 2/3 des Rechenwertes des Verschiebungsmoduls für den Gebrauchstauglichkeitsnachweis anzunehmen.

- 3.1.4 Für die Einbindetiefe s der Nagelplatten in den Stäben gilt DIN 1052:2008-12, Abschnitt 13.2.1 (6).
- 3.1.5 Abweichend von DIN 1052:2008-12, Abschnitt 8.8.1 (10) darf bei Auflagerknoten von Nagelplattenbindern auch im Bereich innerhalb der Verbindungselemente die Übertragung von Kontaktkräften zwischen den Stäben rechnerisch angesetzt werden.
- 3.1.6 Nagelplatten mit Längen über 800 mm dürfen nur mit einer Länge = 800 mm in Rechnung gestellt werden.

Deutsches Institut für Bautechnik

Seite 6 von 10 | 3. Juni 2010

Z-9.1-761

3.2 Bemessung nach DIN 1052

3.2.1. Beanspruchung in Nagelplattenebene

3.2.1.1 Allgemeines

Die wirksame Anschlussfläche $A_{\rm ef}$ einer Nagelplatte ist die gesamte Kontaktfläche zwischen Nagelplatte und Holz, reduziert um einen 5 mm breiten Streifen zu den faserparallelen Holzrändern und um Streifen zu den Stabenden in Faserrichtung der Holzbauteile (Hirnholz) von einer Breite, die der sechsfachen Nenndicke der Nagelplatte entspricht.

3.2.1.2 Charakteristische Nageltragfähigkeit

Für die charakteristischen Werte der Nageltragfähigkeit nach DIN 1052:2008-12, Abschnitt 13.2.2 gilt Tabelle 1 dieser allgemeinen bauaufsichtlichen Zulassung.

Tabelle 1: Charakteristische Nageltragfähigkeiten $f_{a,0,0,k}$ und $f_{a,90,90,k}$ in N/mm² für Vollholz und Brettschichtholz und die Konstanten k_1 , k_2 und α_0

Charakteristische Nageltragfähi	N/mm²	2,97	
Charakteristische Nageltragfähi	gkeit f _{a,90,90,k} 1)	N/mm²	1,37
k ₁ = -0,0079 N/(°· mm²)	k ₂ = 0,0157 N/(°· mm²)		α ₀ = 60°
bei Spannweiten über 20,0 m Redul	ktion um 10 %		

Der charakteristische Wert der Nageltragfähigkeit pro Platte beträgt für 0° < β ≤ 45°:

$$f_{a,\alpha,0,k} = \max \begin{cases} f_{a,\alpha,0,k} - (f_{a,\alpha,0,k} - f_{a,90,90,k}) \cdot \frac{\beta}{45^{\circ}} \\ f_{a,0,0,k} - (f_{a,0,0,k} - f_{a,90,90,k}) \cdot \sin[\max(\alpha,\beta)] \end{cases}$$
 (1)

und für $45^{\circ} < \beta \le 90^{\circ}$:

$$f_{a,\alpha,\beta,k} = f_{a,0,0,k} - (f_{a,0,0,k} - f_{a,90,90,k}) \cdot \sin \left[\max (\alpha,\beta) \right]$$
 (2)

Der charakteristische Wert der Nageltragfähigkeit pro Platte in Faserrichtung des Holzes beträgt:

$$f_{a,\alpha,0,k} = \begin{cases} f_{a,0,0,k} + k_1 \cdot \alpha & \text{für } 0 < \alpha \le \alpha_0 \\ f_{a,0,0,k} + k_1 \alpha_0 + k_2 (\alpha - \alpha_0) & \text{für } \alpha_0 < \alpha \le 90^{\circ} \end{cases} \tag{3}$$

In den Gleichungen (1) bis (3) bedeuten:

x = Winkel zwischen x-Richtung und der Kraftrichtung

x-Richtung = Hauptrichtung der Nagelplatte

3 = Winkel zwischen Faserrichtung des Holzes und der Kraftrichtung

Alternativ dürfen die charakteristischen Werte der Nageltragfähigkeit $f_{a,\alpha,\beta,k}$ der Tabelle 2 verwendet werden.

Deutscher Institut für Bautechnik

33

Z-9.1-761

Seite 7 von 10 | 3. Juni 2010

Tabelle 2: Charakteristische Werte der Nageltragfähigkeit $f_{a,\alpha,\beta,k}$ in N/mm² für Vollholz und Brettschichtholz

α	$f_{a,\alpha,\beta,k}{}^{1)}{}^{2)}$ in N/mm 2										
β	0°	15°	30°	45°	60°	75°	90°				
0°	2,97	2,99	3,02	2,75	2,49	2,72	2,96				
15°	2,73	2,74	2,76	2,54	2,31	2,50	2,69				
30°	2,49	2,50	2,51	2,32	2,13	2,28	2,43				
45°	2,25	2,25	2,25	2,10	1,96	2,06	2,17				
60°	2,01	2,00	1,99	1,89	1,78	1,84	1,90				
75°	1,78	1,76	1,74	1,67	1,61	1,62	1,64				
90°	1,54	1,51	1,48	1,46	1,43	1,40	1,37				

² Zwischenwerte dürfen linear interpoliert werden

Die charakteristischen Werte der Nageltragfähigkeit wurden auf der Basis einer charakteristischen Rohdichte ρ_k von 350 kg/m³ bestimmt.

3.2.1.3 Charakteristische Plattentragfähigkeit

Für die charakteristischen Werte der Plattentragfähigkeit nach DIN 1052:2008-12, Abschnitt 13.2.2 gilt Tabelle 3 dieser allgemeinen bauaufsichtlichen Zulassung. Bei der Ermittlung der Bemessungswerte der Plattentragfähigkeiten sind die Werte $f_{n,0,d}$ in Gleichung (250) und $f_{n,90,d}$ in Gleichung (251) mit dem Faktor k_{α} nach Gleichung (4) dieser Zulassung abzumindern, wobei α der Winkel zwischen der x-Richtung der Nagelplatte und der Kraftrichtung ist.

$$k_{\alpha} = \begin{cases} 1 - 0.5 \cdot \cos^{2}\alpha \cdot \sin^{2}\alpha & \text{bei Zugbeanspruchung} \\ 1.0 & \text{bei Druckbeanspruchung} \end{cases} \tag{4}$$

Tabelle 3: Charakteristische Werte der Plattentragfähigkeit für MiTek Nagelplatten MI-PLATE M 20 H in N/mm

Charakteristische Plattenzugtragfähigkeit $f_{t,0,k}$ in der x-Richtung ($\alpha=0^{\circ}$) in N/mm	171
Charakteristische Plattenzugtragfähigkeit $f_{t,90,k}{}^{1)}$ in der y-Richtung ($\alpha=90^{\circ}$) in N/mm	158
Charakteristische Plattendrucktragfähigkeit $f_{c,0,k}{}^{1)}$ in der x-Richtung ($\alpha=0^{\circ}$) in N/mm	88
Charakteristische Plattendrucktragfähigkeit $f_{c,90,k}^{1)}$ in der y-Richtung ($\alpha=90^{\circ}$) in N/mm	99
Charakteristische Plattenschertragfähigkeit $f_{v,0,k}$ ^{1) 2)} in der x-Richtung ($\alpha=0^{\circ}$) in N/mm	83
Charakteristische Plattenschertragfähigkeit $f_{v,90,k}^{1)}$ in der y-Richtung ($\alpha=90^{\circ}$) in N/mm	43
Plattenkennwert γ ₀	-11°
Plattenkennwert k _v	1,50
1) hei Spannweiten über 20.0 m Reduktion um 10.%	

bei Spannweiten über 20,0 m Reduktion um 10 %

²⁾ erforderliche Plattenbreite (Plattenquerrichtung) mindestens 76 mm

²⁾ bei Spannweiten über 20,0 m Reduktion um 10 %

Z-9.1-761

Seite 8 von 10 | 3. Juni 2010

Alternativ kann der Nachweis der Plattentragfähigkeit nach den Gleichungen (5) und (6) erfolgen. Die charakteristischen Werte der Plattentragfähigkeit für diesen Nachweis sind Tabelle 4 zu entnehmen.

$$s_{t(c),\alpha,d} = \frac{F_{t(c),\alpha,d}}{\ell_c} \pm \frac{2 \cdot F_{M,d}}{\ell_c}$$
(5)

Dabei ist

 $F_{t(c),\alpha,d}$ Bemessungswert der Zug- oder Druckkraft in einer Nagelplatte (d. h. die Hälfte der Gesamtkraft im Stab) rechtwinklig zur Fuge,

 $F_{M,d}$ Bemessungswert der Kraft infolge des Momentes M_d auf eine Nagelplatte (d. h. die Hälfte des Gesamtmomentes im Stab, $F_{M,d} = \frac{2 \cdot M_d}{\ell_s}$),

 ℓ_{s} Länge des durch die Nagelplatten abgedeckten Teiles der Fuge, gemessen in Fugenrichtung; dabei dürfen zug- oder druckbeanspruchte freie Plattenbereiche höchstens mit der Länge 8 · d, scherbeanspruchte freie Plattenbereiche höchstens mit der Länge 40 · d berücksichtigt werden mit d als Blechdicke der Nagelplatte.

Die folgende Bedingung muss erfüllt sein:

$$\left(\frac{s_{t(c),\alpha,d}}{f_{t(c),\alpha,d}}\right)^{2} + \left(\frac{s_{v,\alpha,d}}{f_{v,\alpha,d}}\right)^{2} \le 1$$
(6)

Dabei ist

 $s_{v,\alpha,d} \qquad \text{Bemessungswert der Scherbeanspruchung einer Nagelplatte parallel zur Fuge,} \\ s_{v,\alpha,d} = \frac{F_{v,\alpha,d}}{\ell_s} \,,$

 $F_{v, \alpha, d}$ Bemessungswert der Scherkraft in einer Nagelplatte (d. h. die Hälfte der Gesamtkraft im Stab).

 $f_{t(c),\alpha,d}$ Bemessungswert der Plattenzug- oder Plattendrucktragfähigkeit, $f_{t(c),\alpha,d} = f_{t(c),\alpha,k} / \gamma_M$,

 $f_{v,\alpha,d}$ Bemessungswert der Plattenschertragfähigkeit, $f_{v,\alpha,d}=f_{v,\alpha,k}$ / γ_M ,

 γ_{M} Teilsicherheitsbeiwert nach DIN 1052:2008-12, Abschnitt 5.4, γ_{M} = 1,25.

Z-9.1-761

Seite 9 von 10 | 3. Juni 2010

Tabelle 4: Charakteristische Werte der Plattentragfähigkeit $f_{t,\alpha,k}$, $f_{c,\alpha,k}$ und $f_{v,\alpha,k}$ für MiTek Nagelplatten MI-PLATE M 20 H bei einer Bemessung der Nagelplatten nach den Gleichungen (5) und (6) in N/mm

α	f _{t,α,k} ¹¹ in N/mm	f _{c,α,k} ¹) in N/mm	f _{ν,α,k} ^{1) 2)} in N/ mm			
0°	171	88	83			
15°	158	84	87			
30°	144	80	110			
45°	109	78	117			
60°	142	76	101			
75°	150	87	73			
90°	158	99	43			
105°	150	87	69			
120°	142	76	75			
135°	109	78	86			
150°	144	80	86			
165°	158	84	91			
180°	171	88	83			

bei Spannweiten über 20,0 m Reduktion um 10 %

3.2.1.4 Füllstäbe mit rechtwinkligen oder halbkreisförmigen Stabenden

Bei Nagelplattenverbindungen mit Füllstäben mit rechtwinkligen oder halbkreisförmigen Stabenden mit freien Plattenbereichen (s. Anlagen 3 und 4) dürfen in Bezug auf den Anschluss dieser Füllstäbe

- freie Plattenbereiche, die durch eine Druckkraft rechtwinklig zur Fuge beansprucht werden, höchstens mit der Länge 8 d berücksichtigt werden.
- freie Plattenbereiche, die durch eine Scherkraft parallel zur Fuge beansprucht werden, höchstens mit der Länge 40 d berücksichtigt werden.

Hierin bedeutet d die Blechdicke der Nagelplatte. Die freie Plattenlänge darf dabei für jeden Teilbereich der Platte, der einen ungestützten Rand enthält, einmal, und für jeden Teilbereich der Platte, der entlang seines Umfangs kontinuierlich gestützt ist, zweimal angesetzt werden (s. Anlage 4). Bei Zugbeanspruchung darf die gesamte Fugenlänge im kontinuierlich gestützten Plattenbereich berücksichtigt werden.

3.2.2 Beanspruchung rechtwinklig zur Nagelplattenebene

3.2.2.1 Die charakteristische Tragfähigkeit rechtwinklig zur Nagelplattenebene je Nagelplatte $f_{ax,k}$ darf für eine Beanspruchung mit kurzer Lasteinwirkungsdauer, z. B. durch Windkräfte oder mit sehr kurzer Lasteinwirkungsdauer durch Kräfte aus dem Lastfall Transport und Montage, mit $f_{ax,k} = 10,0$ N/mm in Rechnung gestellt werden.

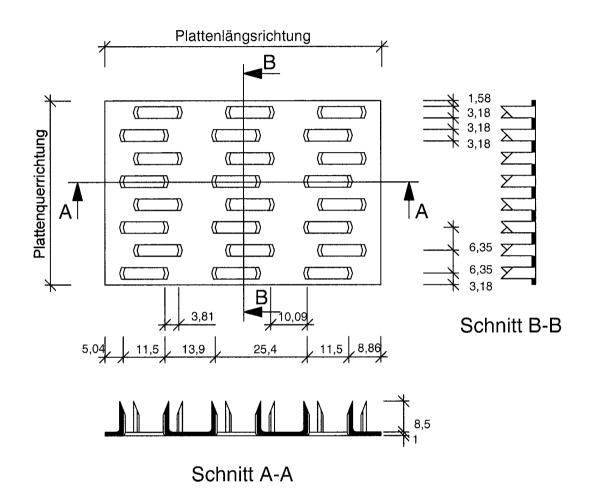
3.2.3 Beanspruchung bei Transport- und Montagezuständen

3.2.3.1 Für die aus den Mindestkräften F_d und V_d nach DIN 1052:2008-12, Gleichungen (254) und (255) resultierenden Nagelbelastungen braucht eine Abminderung der charakteristischen Nageltragfähigkeiten um 10 % nach Tabelle 1, Fußnote 1 und Tabelle 2, Fußnote 2 nicht vorgenommen zu werden.

Deutscher Institut für Bautechnik

erforderliche Plattenbreite (Plattenquerrichtung) mindestens 76 mm

Z-9.1-761


Seite 10 von 10 | 3. Juni 2010

4 Bestimmungen für die Ausführung von Nagelplattenverbindungen

- Für die Ausführung von Nagelplattenbindern unter Verwendung der MiTek Nagelplatten MI-PLATE M 20 H gilt DIN 1052, soweit im Folgenden nichts anderes bestimmt ist.
- 4.2 Die Länge von Bindern mit den Nagelplatten des Typs MI-PLATE M 20 H darf nicht mehr als 35,0 m betragen.
- 4.3 Bei Obergurtauflagerungen ist der aufgelagerte Gurt zu mindestens 90 % seiner Höhe durch die Nagelplatte des auflagernahen Knotens abzudecken, falls kein genauerer Nachweis erfolgt. Das Auflager soll unmittelbar am Knoten liegen.
- 4.4 Die Holzdicke muss mindestens 35 mm betragen. Bei Binderlängen über 12 m muss die Holzdicke von ungehobeltem Holz mindestens 50 mm, bei gehobeltem Holz mindestens 45 mm betragen.
 - Die zu verbindenden Hölzer müssen bei Dreieckbindern, parallelgurtigen Fachwerkbindern u. ä. mindestens 38 mm hoch sein.
- 4.5 Die Nagelplatten dürfen auch im Bereich von Keilzinkungen nach DIN 1052:2008-12, Anhang I verwendet werden.
- 4.6 Abweichend von den Anforderungen der DIN 1052 dürfen die Nagelplatten in Vollholz und Brettschichtholz mit einer Mindesthöhe der zu verbindenden Hölzer von 70 mm auch eingewalzt (eingerollt) werden.
- 4.7 Nagelplattenverbindungen dürfen unter folgenden Voraussetzungen mit Füllstäben mit rechtwinkligen oder halbkreisförmigen Stabenden mit freien Plattenbereichen (s. Anlagen 3 und 4) hergestellt werden:
 - Die Breite von rechtwinklig gekappten Füllstäben beträgt höchstens 50 mm
 - Die Breite von Füllstäben mit halbkreisförmigen Stabenden beträgt höchstens 90 mm
 - Die an den Hirnholzenden der Füllstäbe anschließende ungestützte Nagelplattenfläche ist an allen Rändern gestützt. Dieses ist in der Regel z. B. bei K-Knoten oder Firstknoten erfüllt (s. Anlagen 3 und 4).
- 4.8 Die Montage und der Transport müssen sorgfältig geschehen. Die Teile sind gebündelt zu transportieren. Beim Bewegen von Einzelbauteilen mit Längen > 10 m sind in der Regel Gehänge oder Traversen zu verwenden.

Schäpel

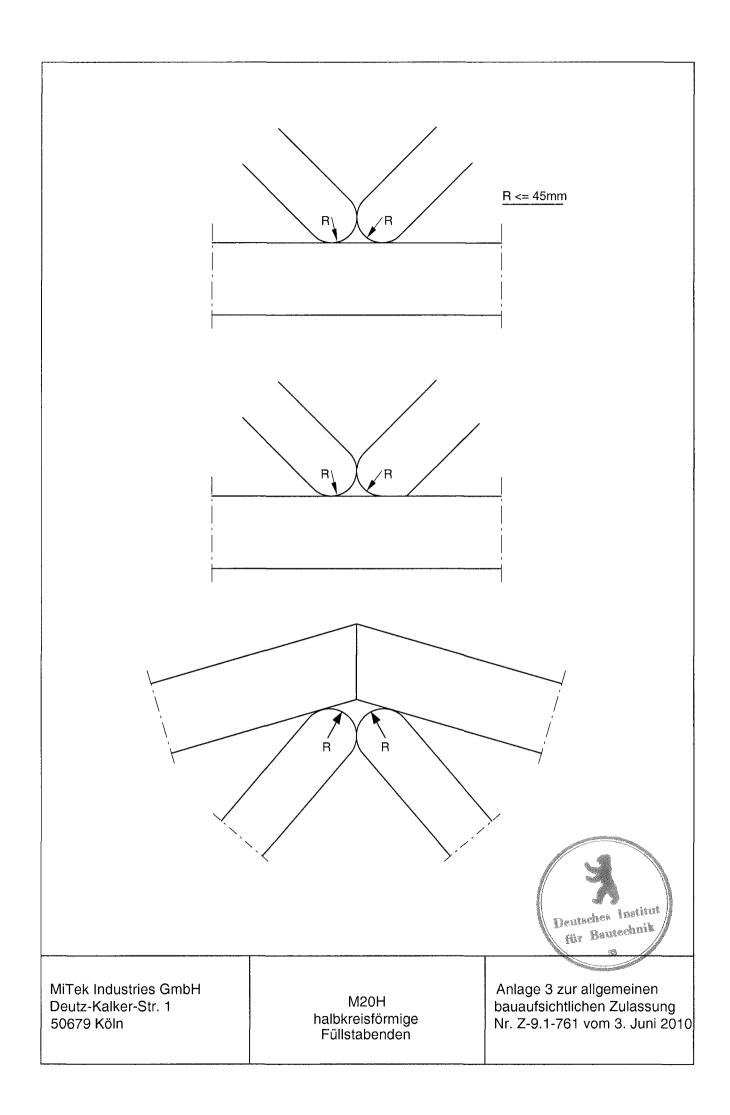
Alle Maße in mm

MiTek Industries GmbH Deutz-Kalker-Str. 1 50679 Köln

M20H Form und Maße Anlage 1 zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-761 vom 3. Juni 2010

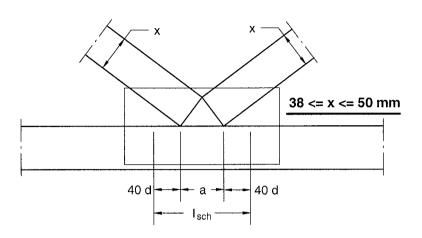
Plattenquerrichtung M20H

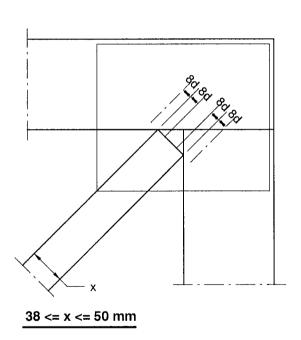
mm/mm	25	38	51	64	76	102	114	127	152	178	203	229	255	305
76	X	Х	Х	Х	Х	Х	Х	Х	Х	Х				
102	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х			
127			Х	Х	Х	Х	Х	Х	X	Х	Х	Х		
152			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
178			Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х
203			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
229					Х	Х	Х	Х	X	Х	Х	X	Х	Х
254					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
279					Х	Х	Х	Х	Х	Х	Х	Х	X	Х
305					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
330					X	X	X	Х	Х	Х	Х	Х	Х	Х
356						Х	Х	Х	X	X	Х	X	Х	Х
381						Х	Х	Х	Х	Х	Х	Х	Х	Х
406						Х	Х	Х	Х	Х	Х	Х	Х	Х
457						Х	Х	Х	Х	Х	X	X	Х	X
508						Х	Х	Х	Х	Х	×	X	X	X
1016*						Х	Х	Х	Х	Х	X	X	X	echni X


Alle Maße in mm
*) siehe Abschnitt 3.1.6
Zwischenlängen im 25,5 mm Raster zulässig

Die hier aufgeführten Plattengrößen sind zugelassen. Produktionsbedingte Größen sind unbedingt beim Hersteller zu erfragen.

MiTek Industries GmbH Deutz-Kalker-Str. 1 50679 Köln


Plattenlängsrichtung M20H


M20H Plattengrößen Anlage 2 zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-761 vom 3. Juni 2010

Beispiele für die Berücksichtigung freier Plattenbreiche entsprechend Abschnitt 3.2.1.4:

Scheren: wirksame Länge $l_{sch} = min \begin{cases} a + 80 \text{ d} \\ 160 \text{ d} \end{cases}$

Druck: wirksame Länge $I_{Dr} = 32 d$

MiTek Industries GmbH Deutz-Kalker-Str. 1 50679 Köln

M20H rechtwinklig geschnittene Füllstabenden Anlage 4 zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-761 vom 3. Juni 2010