

European Technical Approval ETA-06/0022

Handelsbezeichnung <i>Trade name</i>		DYWIDAG-Litzenspannverfahren mit nachträglichem Verbund DYWIDAG Bonded Strand Post-tensioning System		
Zulassungsinhaber Holder of approval		DYWIDAG-Systems International GmbH Destouchesstraße 68 80796 München DEUTSCHLAND		
Zulassungsgegenstand und Verwendungszweck		DYWIDAG-Litzenspannverfahren mit 3 bis 37 Litzen (140 und 150 mm ²) zur Vorspannung mit nachträglichem Verbund		
Generic type and use of construction product		Dywidag Bonded Post-tensioning System for 3 to 37 Strands (140 and 150 mm²)		
Geltungsdauer: Validity:	vom from bis	13 January 2011		
	to	13 January 2016		
Herstellwerk Manufacturing plant		DYWIDAG-Systems International GmbH Max-Planck-Ring 1 40764 Langenfeld DEUTSCHLAND		

English translation prepared by DIBt - Original version in German language

Diese Zulassung umfasst This Approval contains

Diese Zulassung ersetzt This Approval replaces

ETA-06/0022 mit Geltungsdauer vom 12.01.2006 bis 12.01.2011 ETA-06/0022 with validity from 12.01.2006 to 12.01.2011

45 Seiten einschließlich 21 Anhänge

45 pages including 21 annexes

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 45 | 13 January 2011

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Post-tensioning kits for prestressing of structures", ETAG 013.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12
- ² Official Journal of the European Communities L 220, 30 August 1993, p. 1 ³ Official Journal of the European Union L 201, 24 October 2002, p. 95
- ³ Official Journal of the European Union L 284, 31 October 2003, p. 25
- Bundesgesetzblatt Teil I 1998, p. 812
 Dendesgesetzblatt Teil I 2000 p. 812
- ⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

⁶ Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 45 | 13 January 2011

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the construction product

1.1 Definition of the construction product

The present European technical approval applies to a kit:

DYWIDAG- Bonded Strand Post-Tensioning System

consisting of 3 to 37 strands with nominal tensile strength 1770 MPa or 1860 MPa (Y1770 S7 or Y1860 S7), nominal diameter 15.3 mm (0.6" – 140 mm²) or 15.7 mm (0.62" – 150 mm²) which are used in normal-weight concrete with the following anchorages (stressing and fixed anchorages and couplers; see Annex 1):

- 1 Stressing (active) anchorage and fixed (passive) anchorage type ED with bearing plate and wedge plate for tendons of 3, 4 and 5 strands,
- 2 Stressing (active) anchorage and fixed (passive) anchorage type MA with cast iron anchor body and wedge plate for tendons of 5, 7, 9, 12, 15, 19, 22, 27, 31 and 37 strands,
- 3 Couplers R (fixed) for tendons of 5, 7, 9, 12, 15, 19, 22, 27, 31 and 37 strands,
- 4 Couplers D (movable) for tendons of 3, 4, 5, 7, 9, 12, 15, 19, 22, 27, 31 and 37 strands,
- 5 Loop anchorage for tendons of 3, 4, 5, 7, 9, 12, 15, 19 and 22 strands.
- 6 Bursting reinforcement (helixes and stirrups)
- 7 Sheathing (ducts)
- 8 Corrosion protection

The strands are anchored in wedge plates and couplers by means of wedges.

1.2 Intended use

The Post-Tensioning System is assumed to be used for the prestressing of structures of normal-weight concrete with internal bonded tendons. No optional use category is intended. The structural members used to be designed in accordance with national regulations.

The couplers shall only be used if the calculated stressing force at the coupler is at least 0.7 $P_{m0,max}$ (see Section 2.2.2).

The provisions made in this European technical approval are based on an assumed working life of the PT-System of 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer (or the Approval Body), but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Page 4 of 45 | 13 January 2011

2 Characteristics of product and methods of verification

2.1 Characteristics of product

2.1.1 General

The components correspond to the drawings and provisions given in this European technical approval including the Annexes. The characteristic material values, dimensions and tolerances of the components not indicated in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval. The arrangement of the tendons, the design of the anchorage zones, the anchorage components and the diameters of the ducts shall correspond to the attached description and drawings; the dimensions and materials shall comply with the values given therein.

The first digit of the designation of components of anchorages and couplings (6) identifies the nominal strand diameter in tenfold of inches (0.6"/0.62"), the second digit is an internal code and the last two digits refer to the number of strands (size of tendon). The components (except helix and additional reinforcement) fit for tendons with both strand strengths

2.1.2 Strands

Only 7-wire strands shall be used in accordance with national provisions with the characteristics given in Annex 18.

To avoid confusion only strands with one nominal diameter shall be used on one site. If the use of strands with $R_m = 1860$ MPa is intended on site, these shall solely be used there.

Only strands stranded in the same direction shall be used in a tendon.

2.1.3 Wedges

Wedges (see Annex 2) are approved with 30°-tooth or 45°-tooth. The segments of the wedges for strands \emptyset 15.3 mm are 42 mm long and the segments of the wedges for strands \emptyset 15.7 mm are 45 mm long.

Wedges of one supplier only may be used at one construction site.

2.1.4 Wedge plates and couplers

The conical drills of the wedge plates and couplers shall be clean, stainless and provided with a corrosion protection grease.

2.1.5 Bearing Plates

For 3 to 5 strands circular bearing plates (type ED) shall be used (see Annexes 3 and 4).

2.1.6 Cast-iron anchor bodies

For 5 to 37 strands multi-plane cast-iron anchor bodies (type MA) shall be used (see Annexes 5 and 6).

2.1.7 Helixes and stirrups

The steel grades and dimensions of the helixes and of the stirrups shall comply with the values given in the Annexes. The central position in the structural concrete member on site shall be ensured according the section 4.2.3.

The outer end of the helix shall be welded to the anchor plate ED or the anchor body MA. This is not necessary if the final turn is welded to form a closed ring.

7

The technical documentation of this European Technical Approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 45 | 13 January 2011

2.1.8 Ducts, tubes and trumpets

Ducts shall be used in according to EN 523:2003. For tendons with 3 to 5 strands oval ducts may be used. For these ducts EN 523:2003 applies accordingly. The dimensions of the ducts shall comply with values given in Annex 2.

In the deviation region of the loop anchorages it is also possible to use smooth steel tubes of a minimum wall thickness of 2 mm according to EN 10216 or EN 10217 (see Annexes 13 and 14).

The trumpets at stressing, fixed anchorages and couplers (see Annexes 2 to 6, 11 and 12a) are manufactured from 3.0 mm thick PE material (see Annex 17).

Also plastic ducts which meet the requirements according to ETAG 013, Annex C.3 and in accordance with regulations valid at the place of use can be used. Plastic ducts or the accompanying boundary conditions are not covered by ETA-06/0022.

2.1.9 Grout

Grout according to EN 447:1996 shall be used.

2.2 Methods of verification

2.2.1 General

The assessment of the fitness of the DYWIDAG-Bonded Strand Post-Tensioning System for the intended use in the relation to the requirements for mechanical resistance and stability in the sense of Essential Requirement 1 has been made in accordance with the "Guideline for European technical approval of Post-Tensioning kits for prestressing of structures, ETAG 013".

The release of dangerous substances (Essential Requirement 3) is determined according to ETAG 013, clause 5.3.1. A declaration was made by the manufacturer that the product does not contain any dangerous substances.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

The structural members (normal-weight concrete) prestressed by means of the DYWIDAG-Internal Bonded Strand Post-Tensioning System used to be designed in accordance with national regulations.

2.2.2 Tendons

Prestressing and over-tensioning forces are specified in the respective provisions.

The maximum force P₀ applied to a tendon shall not exceed the force P_{0,max} = 0.9 A_p f_{p0,1k} laid down in Table 1 (140 mm²) or in Table 2 (150 mm²). The value of the initial prestressing force P_{m0} immediately after tensioning and anchoring shall not exceed the force P_{m0,max} = 0.85 A_p f_{p0,1k} laid down in Table 1 (140 mm²) or in Table 2 (150 mm²).

Page 6 of 45 | 13 January 2011

Tendon Desig	Number of	Cross section Ap	Prestressing force Y1770 S7 f _{p0,1k} = 1520 N/mm²		$\begin{array}{c} \text{Cross} \\ \text{section} \\ \text{Ap} \end{array} \begin{array}{c} \text{Prestressing force} \\ \text{Y1770 S7} \\ f_{p0,1k} = 1520 \text{ N/mm}^2 \end{array} \begin{array}{c} \text{Prestressing} \\ \text{Y1860} \\ f_{p0,1k} = 1600 \end{array}$		sing force 0 S7 00 N/mm²
nation	stranus	[mm²]	P _{m0,max} [kN]	P _{0,max} [kN]	P _{m0,max} [kN]	P _{0,max} [kN]	
6803	3	420	543	575	571	605	
6804	4	560	724	766	762	806	
6805	5	700	904	958	952	1008	
6807	7	980	1266	1341	1333	1411	
6809	9	1260	1628	1724	1714	1814	
6812	12	1680	2171	2298	2285	2419	
6815	15	2100	2713	2873	2856	3024	
6819	19	2660	3437	3639	3618	3830	
6822	22	3080	3979	4213	4189	4435	
6827	27	3780	4884	5171	5141	5443	
6831	31	4340	5607	5937	5902	6250	
6837	37	5180	6693	7086	7045	7459	

140 for the first of the f	Table 1:	Maximum prestressing forces ⁸ for tendons with Ap = 140 mm
--	----------	---

Table 2: Maximum prestressing forces⁸ for tendons with Ap = 150 mm²

Tendon Desig	Number of	Cross section Ap	Prestressi Y1770 f _{p0,1k} = 152	ing force) S7 0 N/mm²	Prestress Y186 f _{p0,1k} = 160	sing force 0 S7 00 N/mm²
nation	Suanus	[mm²]	P _{m0,max} [kN]	P _{0,max} [kN]	P _{m0,max} [kN]	P _{0,max} [kN]
6803	3	450	581	616	612	648
6804	4	600	775	821	816	864
6805	5	750	969	1026	1020	1080
6807	7	1050	1357	1436	1428	1512
6809	9	1350	1744	1847	1836	1944
6812	12	1800	2326	2462	2448	2592
6815	15	2250	2907	3078	3060	3240

8

The forces stated are maximum values. The actual values are to be found in national regulations valid in the place of use. Compliance with the stabilisation and crack width criteria in the load transfer test was verified to a load level of 0.80 F_{pk} .

Page 7 of 45 | 13 January 2011

Tendon Desig	Number of	Cross section Ap	Prestressing force Y1770 S7 f _{p0,1k} = 1520 N/mm²		Prestressing force Y1860 S7 f _{p0,1k} = 1600 N/mm ²	
nation	stranus	[mm²]	P _{m0,max} [kN]	P _{0,max} [kN]	P _{m0,max} [kN]	P _{0,max} [kN]
6819	19	2850	3682	3899	3876	4104
6822	22	3300	4264	4514	4488	4752
6827	27	4050	5233	5540	5508	5832
6831	31	4650	6008	6361	6324	6696
6837	37	5550	7171	7592	7548	7992

The number of strands in a tendon may be reduced by leaving out strands lying radialsymmetrically in the wedge plate. The provisions for tendons with wedge plates (basic types) completely filled also apply to tendons with only partly filled wedges plates. Into the cones not filled, short pieces of strands with wedges have to be pressed to assure a sufficient bending stiffness of the wedge plates.

The admissible prestressing force is reduced per strand left out as shown in Table 3.

Table 3:Reduction of the prestressing force when leaving out one strand

A _p	Y177	70 S7	Y1860 S7		
	ΔP_{m0} [kN]	ΔP_0 [kN]	ΔP_{m0} [kN]	ΔP_0 [kN]	
140 mm²	181	192	190	201	
150 mm²	194	205	204	216	

2.2.3 Losses of the prestressing force due to friction and wobble effects

The losses of the prestressing force due to friction and wobbling effects may normally be determined in the calculation by using the friction coefficients μ and the unintentional angular displacement k (wobble coefficient) given in Table 4. The values μ and k depend on the given duct dimensions and the maximum distances between the tendon supports.

Table 4:Friction and wobble effects

Tendon size	inner diameter of Duct (mm)	Friction coefficient µ [rad⁻¹]	Wobble coefficient k [rad/m]	distances between tendon supports [m]	Friction Losses ΔΡ _{μΑ} (%)
6803	41 50 55/21*)	0.21 0.18 0.15	7*10 ⁻³ 5*10 ⁻³ 14*10 ⁻³	max 1.8	1
6804	45 55 70/21*)	0.24 0.19 0.15	5*10 ⁻³ 5*10 ⁻³ 14*10 ⁻³		
6805	50 60 85/21*)	0.20 0.20 0.15	5*10 ⁻³ 5*10 ⁻³ 14*10 ⁻³		

Page 8 of 45 | 13 January 2011

Tendon size	inner diameter of Duct (mm)	Friction coefficient µ [rad ⁻¹]	Wobble coefficient k [rad/m]	distances between tendon supports [m]	Friction Losses ΔΡ _{μΑ} (%)
6806	55 65	0.22 0.19	5*10 ⁻³ 5*10 ⁻³	max 1.8	0.5
6807	60 65	0.22 0.19	5*10 ⁻³ 5*10 ⁻³		
6808	70 75	0.20 0.19	5*10 ⁻³ 5*10 ⁻³		
6809	70 75	0.20 0.19	5*10 ⁻³ 5*10 ⁻³		
6810	75 80	0.19 0.19	5*10 ⁻³ 5*10 ⁻³		
6812	75 80	0.19 0.19	5*10 ⁻³ 5*10 ⁻³		
6815	85 90	0.20 0.19	5*10 ⁻³ 5*10 ⁻³		
6819	90 95	0.21 0.20	5*10 ⁻³ 5*10 ⁻³		
6822	95 100	0.20 0.20	5*10 ⁻³ 5*10 ⁻³		
6827	110	0.20	5*10 ⁻³		
6831	120	0.20	5*10 ⁻³		
6837	130	0.20	5*10 ⁻³		
*) ov	al ducts				

The given values of k only apply if the strands are in the ducts at time of concreting.

If the strands are arranged after concreting, the given values k shall only be used in the calculation if the ducts are adequately braced during concreting, e.g. by means of PE and/or PVC pipes, or if reinforced ducts are used in connection with smaller distances between tendon supports.

For the determination of strains and forces of prestressing steel friction losses $\Delta P_{\mu A}$ in the active anchorage zone shall be taken into account according to Table 4, last column.

Page 9 of 45 | 13 January 2011

2.2.4 Radius of curvature of the tendons in the structure

The smallest admissible radius of curvature of the tendons with circular duct depending on the strands strength, the cross section of the strands and the diameter of the ducts is given in Table 5 to 8.

Table 5: Smallest radius of curvature (circular duct) for strands

Tendon	Radius of curvature [m] (Inner diameter of the duct [mm])				
6803	3,50	(40)	3,10	(50)	
6804	4,20	(45)	3,90	(55)	
6805	4,70	(50)	4,20	(60)	
6807	4.50	(60)	4,40	(65)	
6809	5,10	(70)	4,90	(75)	
6812	6,10	(75)	5,90	(80)	
6815	6,70	(85)	6,50	(90)	
6819	7,90	(90)	7,60	(95)	
6822	8,60	(95)	8,20	(100)	
6827			9,20	(110)	
6831			9,60	(120)	
6837			10,60	(130)	

Y1770 S7 with Ap = 140 mm²

Table 6: Smallest radius of curvature (circular duct) for strands Y1770 S7 with $Ap = 150 \text{ mm}^2$

Tendon	Radius of curvature [m] (Inner diameter of the duct [mm])				
6803	3,70	(40)	3,30	(50)	
6804	4,50	(45)	4,20	(55)	
6805	4,90	(50)	4,40	(60)	
6807	4,80	(60)	4,60	(65)	
6809	5,30	(70)	5,20	(75)	
6812	6,50	(75)	6,10	(80)	
6815	7,10	(85)	6,80	(90)	
6819	8,50	(90)	8,00	(95)	
6822	9,30	(95)	8,90	(100)	

Page 10 of 45 | 13 January 2011

Tendon	Radius of curvature [m] (Inner diameter of the duct [mm])				
6827			9,90	(110)	
6831			10,40	(120)	
6837			11,40	(130)	

Table 7: Smallest radius of curvature (circular duct) for strands Y1860 S7 with $Ap = 140 \text{ mm}^2$

Tendon	Radius of curvature [m] (Inner diameter of the duct [mm])				
6803	3,70	(40)	3,30	(50)	
6804	4,40	(45)	4,10	(55)	
6805	4,80	(50)	4,40	(60)	
6807	4,70	(60)	4,50	(65)	
6809	5,20	(70)	5,00	(75)	
6812	6,30	(75)	6,00	(80)	
6815	6,90	(85)	6,70	(90)	
6819	8,20	(90)	7,80	(95)	
6822	9,00	(95)	8,60	(100)	
6827			9,60	(110)	
6831			10,10	(120)	
6837			11,10	(130)	

Table 8: Smallest radius of curvature (circular duct) for strands Y1860 S7 with Ap = 150mm²

Tendon	Radius of curvature [m] (Inner diameter of the duct [mm])								
6803	4,00	(40)	3,40	(50)					
6804	4,70	(45)	4,40	(55)					
6805	5,00	(50)	4,50	(60)					
6807	5,00	(60)	4,70	(65)					

Page 11 of 45 | 13 January 2011

Tendon	Radius of curvature [m] (Inner diameter of the duct [mm])									
6809	5,50	(70)	5,30	(75)						
6812	6,90	(75)	6,50	(80)						
6815	7,60	(85)	7,20	(90)						
6819	9,10	(90)	8,60	(95)						
6822	9,90	(95)	9,40	(100)						
6827			10,50	(110)						
6831			11,00	(120)						
6837			12,20	(130)						

According to ETAG 013, for tendons with at least five strands and circular ducts the following formula for calculation of the minimal radius of curvature can be used if admissible at the place of use:

$$R_{\min} = \frac{2 \cdot P_{m0,\max} \cdot d_{strand}}{p_{R,\max} \cdot d_{duct}}$$

with

R _{min}	minimum admissible radius of curvature in [m]
P _{m0,max}	$P_{m0,max} = 0.85 A_p f_{p0,1k}$ according to section 2.2.2 in [kN]
d _{strand}	diameter of the strands in [mm]
p _{R,max}	maximum admissible pressure under a strand (p _{R,max} = 130 to 150 kN/m)
d _{duct}	inner duct diameter in [mm]

R_{min} shall be given with an accuracy of 0.1m (shall be rounded up).

The smallest admissible radius of curvature of the tendons with oval duct depending on the bending axis is given in Table 9. For oval ducts bending only is allowed around one axis (the stiff or the weak).

Table 9: Smallest radius of curvature (oval duct)

Tendon	Inner duct dimensions	Radius of curvature [m]		
	[mm x mm]	Bending axis		
		stiff	weak	
6803	55 x 21	5,30	2,50	
6804	70 x 21	7,20	2,50	
6805	85 x 21	9,00	2,50	

Page 12 of 45 | 13 January 2011

2.2.5 Concrete strength

At the time of transmission of the full prestressing force to the concrete member the mean concrete strength of the normal weight concrete in the anchorage zone shall be at least $f_{cmj,cube}$ or $f_{cmj,cyl}$ according to Table 10. The mean concrete strength ($f_{cmj,cube}$ or $f_{cmj,cyl}$) shall be verified by means of at least three specimens (cube with the edge length of 150 mm or cylinder with diameter of 150 mm and height of 300 mm), which shall be stored under the same conditions as the concrete member, with the individual values of specimens not differ more than 5 %.

Table 10: Necessary mean concrete strength fcmj of the specimens at time of prestressing for anchorages ED and MA

Anchorage	fcmj,cube [N/mm²]	fcmj,cyl [N/mm²]
ED	25	20
ED	35	28
ED	45	36
MA	28	23
MA	40	33
MA	52	42

For partial prestressing with 30 % of the full prestressing the minimum value of the concrete compressive strength to be proved is $0.5 f_{cmj,cube}$ or $0.5 f_{cmj,cyl}$; intermediate values may be interpolated linearly.

2.2.6 Centre and edge distances of the tendon anchorages, concrete cover

The centre and edge distances of the tendon anchorages shall be the values given in the Annexes depending on the actual mean concrete strength.

The values of the centre or edge distances of the anchorages given in the Annexes may be reduced in one direction up to 15 %, however, not to a smaller value than the external diameter of the helix plus 2 cm (see Annexes 3, 4 and 7 to 10). The centre or edge distances of the anchorages in the other direction shall be increased for keeping the same concrete area in the anchorage zone. The dimensions of the additional reinforcement shall be fitted accordingly.

All centre and edge distances have only been specified in conjunction with load transfer to the structure; therefore, the concrete cover given in national standards and provisions shall be taken into account additionally.

The concrete cover may under no circumstance be less than 20 mm nor smaller than the concrete cover of the reinforcement installed in the same cross section. The concrete cover of the anchorage should be at least 20 mm. Standards and regulations on concrete cover valid in place of use shall be considered.

2.2.7 Reinforcement in the anchorage zone

The anchorages (including reinforcement) for the transfer of the prestressing forces to the structural concrete are verified by means of tests. The resistance to the forces occurring in the structural concrete in the anchorage zone outside the helix and the additional reinforcement shall be verified. An adequate transverse reinforcement shall be provided here in particular for the occurring transverse tension forces (not shown in the attached drawings).

Page 13 of 45 | 13 January 2011

The steel grades and dimensions of the additional reinforcement (stirrups) shall follow the values given in the Annexes. This reinforcement must not be taken into account as part of the statically required reinforcement. However, existing reinforcement in a corresponding position more than the given reinforcement may be taken into account for the additional reinforcement. The additional reinforcement shall be of closed stirrups (stirrups closed by means of bends or hooks or an equivalent method) or of orthogonal reinforcement properly anchored. The stirrups locks (bends or hooks) shall be placed staggered.

In the anchorage zone vertically led gaps shall be provided for proper concreting. If in exceptional cases⁹ – due to an increased amount of reinforcement – the helix or the concrete cannot be properly placed, the helix can be replaced by different equivalent reinforcement.

2.2.8 Slip at the anchorages

The slip at the anchorages (see section 4.2.5) shall be taken into account in the static calculation and the determination of the tendon elongation.

2.2.9 Resistance to fatigue of the anchorages and couplers

With the fatigue tests carried out in accordance with ETAG 013, the stress range of 80 MPa of the anchorages and couplers at the maximum load of $0.65 f_{pk}$ at 2×10^6 load cycles was demonstrated.

2.2.10 Increased tension losses at couplers

For verification of crack control and stress ranges increased tension losses of prestressing forces shall be taken into account at the couplers due to creep and shrinkage of the concrete. The losses in prestressing force of the tendons, determined without the influence of the couplers, shall be multiplied in the coupling zone by the factor 1.5. No increase need be taken into account for the movable couplers.

2.2.11 Couplers

The coupler shall only be used if the calculated stressing force at the coupler is at least 0.7 $P_{m0,max}$ (see section 2.2.2). Couplers shall be positioned in straight tendon sections with straight length of at least 1.0 m to each side. For movable couplers the position and length of the coupler duct shall ensure a movement over the length of at least 1.2 ΔI or at least ΔI + 120mm, respectively, where ΔI is the maximum elongation length at the time of prestressing.

2.2.12 Loop anchorages

Tendons with loop anchorages shall only be used in concrete members subject to static action and considering the layouts given in the Annexes 13 and 14. Both straight legs of the loop shall be of the same length, at both ends stressing anchorages shall be applied. They shall generally be simultaneously stressed at both ends.

Prior to the installation the smooth steel tubes and ducts respectively for the area of deflection of the hairpin bars (stirrups) shall be pre-bent with special bending techniques (bending model or bending machine). The minimum admissible radius min R is given in Annexes 13 and 14. The tube or duct wall should not buckle and should still be leak tight. The ducts in the loop area shall be braced, e.g. with fixed, diagonal reinforcement.

Page 14 of 45 | 13 January 2011

The minimum concrete thickness h and the required cross-section area of additional reinforcement (hairpin bars) are given in the Annexes 13 and 14. The hairpin bars shall be secured in position with perpendicular reinforcement.

In addition to the hairpin bars at least 40 % of the existing prestressing force from the loop anchor (in the area of deflection) shall be anchored by reinforcing backwards, i.e. beyond the end of the loop. This reinforcement, evenly distributed above and below the loop duct (on the top and bottom side of the plate), shall be arranged in the direction of the leg of the loop (Annexes 13 and 14, direction Y). In the area of deflection this reinforcement shall be arranged vertically with the same cross section (Annexes 13 and 14, direction X). The reinforcement shall be arranged as close as possible to the loop duct and only that part of the reinforcement may be taken into account whose resulting tensile force possibly lies in the axis of the ending loop anchor. It shall be made sure that the force (40 % of the prestressing force) is accepted by the reinforcement and the formation of cracks excluded.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 98/456/EC of the European Commission¹⁰ the system 1+ of attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1+: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed test plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control;
 - (6) audit-testing of samples taken at the manufacturer.

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial materials stated in the technical documentation of this European technical approval.

10

Page 15 of 45 | 13 January 2011

The factory production control shall be in accordance with the "control plan of 10 December 2010 relating to the European technical approval ETA -06/0022 issued on 13 January 2011" which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.¹¹

The basic elements of the Control Plan comply with ETAG 013, Annex E1 (see Annexes 19a and 19b).

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

The records shall contain at least the following information:

- designation of the product or the initial material and the components
- kind of control or testing
- date of manufacture and of testing of product or components and of initial material
- results of controls and tests and, where specified, comparison with the requirements
- name and signature of person responsible for the factory production control.

The records shall be kept for at least ten years and on request they shall be presented to Deutsches Institut für Bautechnik.

If the test result is not satisfactory, the manufacturer shall take immediate measures to eliminate the deficiency. Construction products and components which do not comply with the requirements shall be handled such that they cannot be mistaken for products complying with the requirements. After elimination of the deficiency the relevant test shall be immediately repeated as far as is technically possible and necessary for verifying the deficiency elimination.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of Post-Tensioning Kits for Prestressing of Structures in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of the European technical approval ETA 06/0022 issued on 13 January 2011.

At least once a year specimens shall be taken from one job site and one series of single tensile element test shall be performed according ETAG 013, Annex E3 (see Annex 20). The results of these test series shall be made available to the approved body.

At least once a year, each components manufacturer shall be audited by the manufacturer (see ETAG 013, 8.2.1.1)

11

The "control plan" is a confidential part of the European technical approval and only handed over to the approved body/bodies involved in the procedure of attestation of conformity. See section 3.2.2.

Page 16 of 45 | 13 January 2011

3.2.2 Tasks of approved bodies

3.2.2.1 General

The approved body shall perform the measures according the section 3.2.2.2 to 3.2.2.5 and in accordance with the provisions laid down in the "Control Plan of 06 December 2005 relating to the European technical approval ETA – 06/0022 issued on 13 January 2011".

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written reports.

The approved certification body involved by the manufacturer (DYWIDAG-Systems International GmbH) shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its "Control Plan" are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.2.2.2 Initial type-testing of the product

For initial type-testing the results of the tests performed as part of the assessment for the European technical approval may be used unless there are changes in the production line or plant. In such cases the necessary initial type-testing has to be agreed between the Deutsches Institut für Bautechnik and the approved body involved.

3.2.2.3 Initial inspection of factory and of factory production control

The approved body shall ascertain that, in accordance with the "Control Plan", the factory, in particular the staff and equipment, and the factory production control are suitable to ensure a continuous and orderly manufacturing of the Post-tensioning system with the specifications mentioned in section 2.1 as well as in the Annexes to the European technical approval.

3.2.2.4 Continuous surveillance, assessment and approval of factory production control

The approved body shall visit the manufacturer at least once a year. Each factory of the components listed in annex 20 shall be audited at least once in five years. It has to be verified that the system of factory production control and the specified manufacturing process are maintained taking account of the "Control Plan".

Continuous surveillance and assessment of factory production control have to be performed according to the control plan.

The results of product certification and continuous surveillance shall be made available on demand by the approved body to the Deutsches Institut für Bautechnik.

3.2.2.5 Audit-testing of samples taken at the manufacturer

During surveillance inspections the approved body shall take samples of components of the Post-tensioning system for independent testing. For the most important components Annex 20 contains the minimum procedures which have to be performed by the approved body.

The basic elements of the Audit testing comply with ETAG 013, Annex E2 (see Annex 20)

Page 17 of 45 | 13 January 2011

3.3 CE marking

The CE marking shall be affixed on the delivery note. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name or identifying mark of the manufacturer and of the production plant (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval
- the identification of the product (trade name)
- nominal cross section and tensile strength of the strands

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA shall be necessary.

The tendon may be manufactured on site or in the manufacturing plant (prefabricated tendons)

4.2 Installation

4.2.1 General

Assembly and installation of the tendons shall only be performed by qualified post-tensioning specialist companies which have the required technical skills and experiences with this DYWIDAG-Post-tensioning system. The company's site manager shall have a certificate of the ETA holder certifying that he is instructed by the ETA holder and has the required knowledge and experience with this post-tensioning system. National standards and regulations valid on site shall be considered.

The ETA holder is responsible to inform anyone concerned about the use of this DYWIDAG-Post-tensioning system. Additional information as listed in ETAG 013, section 9.2 shall be held available at the ETA holder and shall be distributed as needed.

The tendons and the components shall be handled carefully.

4.2.2 Welding

Welding at the anchorages is only permitted at the following points:

a) Welding of the end of the helix to a closed ring.

b) For ensuring the central position the helix may be attached to the bearing plate or anchor body by welding.

Page 18 of 45 | 13 January 2011

After placing the strands in the ducts, no more welding shall be performed at the anchorages.

4.2.3 Installation of the tendon

The central position of the helix or stirrups shall be ensured by tack-welding to the bearing plate or the anchor body or other appropriate mountings. The bearing plate or anchor body and the anchor head shall be in direction perpendicular to the axis of the tendon.

The tendon shall be placed straightforward the first meter at the anchorage.

The connection between trumpet and duct shall be sealed carefully by tape in order to prevent the penetrating of concrete.

4.2.4 Coupler

To make it possible to control the depth of pushing in the necessary depth of pushing in shall be colour-marked at the ends of the strands of the second construction phase.

4.2.5 Wedging force, slip at anchorages, wedge securing and corrosion protection compound

If the calculated prestressing force is less than 0.7 $P_{m0,max}$ the wedges of fixed anchorages shall be pre-wedged with $P_{0,max}$ (see section 2.2.2).

The draw-in of the anchorage to be taken into account for the determination of the elongations and at load transfer from the jack onto the anchorage shall be taken from Table 11.

The wedges of all anchorages (fixed anchorages and couplers) which are no more accessible during tensioning shall be secured by means of wedge keeping plates and bolts.

	Draw-in at ancho	t stressing orage	Draw-in at fixed anchorage	Draw-in at coupling R	Draw-in at coupling D		
	Draw-in to be considered for calculation of elongation	Draw-in at load transfer from the jack onto the anchorage	Draw-in to be considered for calculation of elongation				
Without pre-wedging or power-seating,	1	8	6	4	8		
With power-seating 20 kN per strand at stressing anchorage	1	4	-	-	-		
With pre-wedging P0,max at fixed anchorage	-	-	1	-	-		

 Table 11:
 Draw-in values for calculation of elongation [mm]

At installation of the wedges into the conical borings of the not accessible fixed anchorages and of second construction phase of coupler R the surfaces and gaps shall be filled with corrosion protection compound (for example Denso-Jet or Petro-Plast). The specifications of these compounds are deposited at the Deutsches Institut für Bautechnik.

Page 19 of 45 | 13 January 2011

Before the pouring of concrete, the wedge plates of the not accessible fixed anchorages shall be sealed with a grout cap.

4.2.6 Stressing and stressing records

4.2.6.1 Stressing

At time of stressing the minimum mean concrete strength shall comply with the values given in section 2.2.5.

It is admissible to restress the tendons by releasing and re-using the wedges. After restressing and anchoring, wedge marks on strands resulting from first stressing shall be moved to the outside by at least 15 mm.

The minimum straight length for tensioning behind the anchorages (strand protrusion) depends on the jack which is used on site. All strands of a tendon shall be stressed simultaneously. This can be done by centrally controlled individual jacks or by a bundle jack. Loop tendons shall be stressed at both ends simultaneously.

4.2.6.2 Stressing record

All stressing operations shall be recorded for each tendon. In general, the required prestressing force shall be achieved. The elongation is measured and compared with the calculated value. If during tensioning the difference between measured and calculated elongation is more than 15 % of the calculated value then the engineer shall be informed and the causes shall be found.

4.2.6.3 Prestressing jacks and space requirements, safety-at-work

For stressing hydraulic jacks are used. Information about the stressing equipment has been submitted to Deutsches Institut für Bautechnik.

To stress the tendons, clearance of 1.0 to 1.5 m shall be considered directly behind the anchorages.

The safety-at-work and health protection regulations shall complied with.

4.2.7 Grouting

4.2.7.1 Grout and grouting procedures

Grout according section 2.1.9 shall be used. Grouting procedures shall be carried out in accordance with EN 446:1996.

4.2.7.2 Water rinse

Normally, ducts shall not be rinsed with water.

4.2.7.3 Grouting speed

The grouting speed shall be in the range between 3 m/min and 12 m/min.

4.2.7.4 Grouted section and re-grouting

The length of a grouted section shall not exceed 120 m for tendons with 3 to 22 strands, 95 m for tendons with 23 to 27 strands and 50 m for tendons with 28 to 37 strands. When exceeding these tendon lengths, additional grouting openings shall be provided. Where the tendon is led via distinct high points, re-groutings shall be performed in order to avoid voids. For re-groutings corresponding measures shall be taken into account already in design.

4.2.7.5 Surveillance

Surveillance according to EN 446:1996 shall be carried out.

Page 20 of 45 | 13 January 2011

5 Packaging, transport and storage

The components and the tendons shall be protected against moisture and staining.

The tendons shall be kept away from areas where welding procedures are performed.

During transport the smallest admissible diameter of curvature of tendons with duct up to 22 strands is 1.65 m and exceeding 22 strands is 2.0 m. For tendons without duct the smallest diameter of curvature during transport is 1.65 m.

Georg Feistel Head of Department *beglaubigt* Wittig

Page 21 on European technical approval ETA-06/0022 on 13 January 2011

Designation	Figure	Tendon	Max. stressing force [kN]							
		Size	Strand 140mm²	Strand 150mm²						
Plate anchorage Type ED (Annex 3-4/15)		68 03 68 04 68 05	571 762 952	612 816 1020						
Multiplane anchorage Type MA (Annex 5-10/15)		68 05 68 07 68 09 68 12 68 15 68 19 68 22 68 27 68 31 68 37	952 1333 1714 2285 2856 3618 4189 5141 5902 7045	1020 1428 1836 2448 3060 3876 4488 5508 6324 7548						
Coupler Type R (Annex 11/16)		68 05 68 07 68 09 68 12 68 15 68 19 68 22 68 27 68 31 68 37	952 1333 1714 2285 2856 3618 4189 5141 5902 7045	1020 1428 1836 2448 3060 3876 4488 5508 6324 7548						
Coupler Type D (Annex 12)		68 03 68 04 68 05 68 07 68 09 68 12 68 15 68 19 68 22 68 27 68 31 68 37	571 762 952 1333 1714 2285 2856 3618 4189 5141 5902 7045	612 816 1020 1428 1836 2448 3060 3876 4488 5508 6324 7548						
DYWIDAG Bond	ded Strand Post-tensioning Systen	n	A	ov 1						
Component	ts - anchorage and coupling		Annex 1							

Page 22 on European technical approval ETA-06/0022 on 13 January 2011

Wedg	ge:		Strand	140 mm	1² (0,6")			Sti	rand 150) mm²	(0,62")		
	$\frac{1}{42}$ $\frac{1}{42}$ $\frac{1}{50}$ $\frac{1}{29}$ $\frac{1}{29}$ $\frac{1}{29}$ $\frac{1}{50}$							Wedge tooth geometry (for both wedge sizes) 30° 45°						
Duct:	Duct: PE-Tape Grout tube													
	Duct Grouting coupler													
Pitch	circles:	,	Wedge	plate		Spa	acer	с		We	dge kee	eper plat	te 6	
Dimensi	* ↓ ons in mm					2000 2000 2000 2000 2000 2000 2000 200			dØ				t summer specific for function	
Tendon	size		6803	6804	6805	6807	6809	6812	6815	6819	6822	6827	6831	6837
No. of st	trands		03	04	05	07	09	12	15	19	22	27	31	37
Spacer		С			40	40	40	40	40	60	60	60	60	60
Wedge plate	keeper	Øp	80	80	90	100	115	135	155	170	185	195	215	215
Pitch cir	cles	f f* f**	 44 	 50 	 60 	0 70 	0 86 	 40 105 	 60 125 	0 70 136 	 86 152 	 38 100 165	0 126 190	0 65 126 190
Duct Type I Type II Type	Ø Ø "oval"	ID ID ID	41 50 55/21	45 55 70/21	50 60 85/21	60 65 	70 75 	75 80 	85 90 	90 95 	95 100 	 110 	 120 	 130
	DYWIDAG Bonded Strand Post-tensioning System Details: Wedge / Cone / Duct										Annex 2			

Page 23 on European technical approval ETA-06/0022 on 13 January 2011

ALL											
Anchor plate ED Wedge plate ED											
Dimensions in mm											
Tendon size		6803 6804 6805					6805				
Strand			140mm ²	², fpk=186	60N/mm ²	² (Fpk=20	60,4kN)	and fpk=	1770N/m	nm² (Fpk	=247,8kN)
No. of strands		03		04				05			
Cone pattern and	position										
Minimum actual co strength at stressi fcm,0,cyl [N/mm²]	oncrete ng		20	28	36	20	28	36	20	28	36
Cent	ter distance	A	215	190	175	240	215	195	270	240	220
Edge	e distance F	र		(),5 x Cer	nter dista	nce + Co	ncrete co	over - 10	mm	
Anchor plate Type 2351 / 2352	Ø Ø	a b c		165 72 30			165 72 30		19 8 3	90 86 80	185 86 30
Wedge plate Type 1350	Ø Ø	d d* e*		110 71 55 47	_		110 71 55 47			135 85 55 47	
Helix (Material see Annex 17)	Turns ∅ Ø	n* d s d a i* min I*	5 14 180 45 195	5 14 150 40 175	5 14 150 40 175	5 12 205 40 175	5 14 180 45 195	5 14 150 40 175	6 12 230 40 215	5 14 205 45 195	5 14 170 40 175
Trumpet	Length	m		170			170			280	
DY	WIDAG E	Bonded Plate	Strand ancho 7 15,3 a	Post-te prage E	ensionir ED rand Y17	ng Syste 70S7 15,	em 3			Annex	3

Page 24 on European technical approval ETA-06/0022 on 13 January 2011

NII Helix, n* x ds min I*												
Anchor plate ED Wedge plate ED												
Dimensions in mm												
Tendon size				6803			6804			6805		
Strand			150mm ²	², fpk=186	60N/mm ²	² (Fpk=27	79kN) a	nd fpk=17	770N/mm	1² (Fpk=2	265,5kN)	
No. of strands				03			04			05		
Cone pattern and	position		Ŷ									
Minimum actual c strength at stress fcm,0,cyl [N/mm²	oncrete ing]		20	28	36	20	28	36	20	28	36	
Cer	ter distance A	4	225	200	185	250	225	210	280	250	235	
Edg	e distance R			C),5 x Cer	ter dista	nce + Co	oncrete co	over - 10	mm		
Anchor plate Type 2351 / 2352	Ø Ø	a b c		165 72 30			165 72 30		19 8 3	90 86 80	185 86 30	
Wedge plate Type 1350	Ø Ø	d d* e e*		110 71 55 47			110 71 55 47			135 85 55 47		
Helix (Material see Annex 17)	Turns Ø Ø	n* d s d a i* min l*	5 14 180 45 195	5 14 150 40 175	5 14 150 40 175	5 12 205 40 175	5 14 180 45 195	5 14 150 40 175	6 12 230 40 215	5 14 205 45 195	5 14 170 40 175	
Trumpet	Length	m		170			170			280		
DY	DYWIDAG Bonded Strand Post-tensioning System Plate anchorage ED for strand Y1860S7 15,7 and for strand Y1770S7 15,7									Annex 4		

Page 25 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

e* j m o o o o o o o o o o o o o o o o o o o											
Anchor body MA (f, f* acc. to Annex 2)											
Dimensions in mi Tendon size	n		6805	6807	6809	6812	6815				
No. of strands			05	07	09	12	15				
Cone pattern and	l position		6 00	ô	\$°°}	٢					
Anchor body MA Type 2301	Ø Ø Ø	a b b* j s	150 90 80 90 18	170 98 90 100 18	190 114 100 125 18	220 130 120 180 21	250 150 130 200 23				
Wedge plate Type 1362	Ø Ø	d d* e e*	117 88 55 47	130 96 60 52	145 112 60 52	170 128 65 55	190 148 70 60				
Trumpet	Length	m	190	160	280	350	390				
DYWIDAG Bonded Strand Post-tensioning System Annex 5 Multiplane anchorage MA Dimensions of Components for 6805 - 6815											

Page 26 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

Anchor body MA $\int \int \frac{1}{\sqrt{1-\frac{1}}{1-\frac{1}}}}}}}}}}}} } } } } } } } } } } } } }$											
Tendon size			6819	6822	6827	6831	6837				
No. of strands			19	22	27	31	37				
Cone pattern an	d position		66666 66666 666666 666666 666666 66666 6666	66666 66666 66666 66666	00000 00000 00000 00000 00000	000000 000000 00000 00000 00000	666666 6668666 8668666 8668666 8668666 866866				
Anchor body MA Type 2301	A Ø Ø Ø	a b b* j s	280 162 145 220 27	310 179 161 220 32	340 190 161 240 38	420 217 196 350 50	420 217 196 350 50				
Wedge plate Type 1362	Ø Ø	d d* e e*	210 159 80 68	220 176 85 73	240 188 95 80	270 214 100 80	270 214 115 95				
Trumpet	Length	m	430	550	550	550	550				
DYWIDAG Bonded Strand Post-tensioning System Annex 6 Multiplane anchorage MA Dimensions of Components for 6819 - 6837											

Page 27 on European technical approval ETA-06/0022 on 13 January 2011

		i A	n* x ds	nal rei	nforce				_			d a x			
Tendon size		6805 6807 6809 6812									6815				
Strand	140n	40mm ² ,f _{pk} =1860N/mm ² (F _{pk} =260,4kN) and 140mm ² ,f _{pk} =1770N/mm ² (F _{pk} =247,8									,8kN)				
No. of strands		05 07 09 12						12			15				
Minimum actual concrete strength at stressing fcm,0,cyl [N/mm²] Center distance A	23 33 42 23 33 42 23 33 42 23 265 220 200 310 260 235 350 295 270 409					23 405	33 345	42 310	23 455	33 385	33 42 385 345				
Edge distance R				(),5 x (Center	dista	nce +	Concr	ete co	over -	10 mn	n		
Additional reinforcement (Material see Annex 17) No. n Ø d s z i x/y	6 12 40 50 230	5 12 40 50 190	5 12 40 50 170	6 12 40 50 280	5 12 40 55 230	5 12 40 55 205	6 12 40 50 320	5 12 40 60 265	4 12 40 65 240	7 12 40 50 375	6 12 40 60 315	5 14 40 65 275	7 14 40 60 420	6 14 40 65 350	6 14 40 70 310
Helix (Material see Annex 17) Turns n* Ø d s Ø d a i* min I*	4,5 14 220 45 270	4,5 14 200 45 270	4 14 180 40 230	5 14 255 45 295	5 14 235 45 295	5 14 205 40 270	6 14 290 45 340	5,5 16 250 45 320	5 16 225 40 270	7 14 345 45 385	6,5 16 290 45 365	6 16 265 45 340	7 16 380 45 385	7 16 340 45 385	7 16 290 45 385
DYWIDAG Bonded Strand Post-tensioning System Multiplane anchorage MA Center and edge distances of tendon sizes 6805 - 6815 for strand Y1860S7 15,3 and for strand Y1770S7 15,3							Anne	x 7							

Page 28 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

Г

		i A o elix, r	n* x de	nal rei			, n x (d a x			
Dimensions in mm Tendon size		6819			6822			6827			6831			6837	
Strand	140m	I I I I I I I I I I I I I I I I I I I								,8kN)					
No. of strands		19 22 27 31							37	37					
Minimum actual concrete strength at stressing fcm,0,cyl [N/mm²] Center distance A	23 515	23 33 42 23 33 42 23 33 42 23 33 515 430 390 555 470 420 615 525 475 665 5					33 570	42 520	23 730	33 630	42 580				
Edge distance R				(0,5 x (Center	[·] dista	nce +	Conci	rete co	over -	10 mn	n	,	
Additional reinforcement (Material see Annex 17) No. n Ø d s z i x/y	8 16 40 60 480	7 16 40 65 395	6 16 40 70 355	8 16 40 60 520	8 16 40 65 435	7 16 40 65 385	9 16 40 60 580	8 16 40 65 490	7 16 40 70 440	9 20 40 75 625	8 20 40 80 530	8 20 40 80 480	10 20 40 75 690	9 20 40 75 590	8 20 40 85 540
Helix (Material see Annex 17) Turns n* Ø d s Ø d a i* min l*	7,5 16 445 45 410	7,5 16 390 45 410	7,5 16 320 45 410	8 16 485 45 430	7,5 16 430 50 445	7,5 16 360 50 445	7 20 535 55 460	7 20 450 55 460	7 20 405 55 460	10 20 590 55 625	9 20 510 60 615	8 20 465 65 595	11 20 630 50 625	9 20 550 60 615	8 20 500 65 595
DYWIDAG E M Center and e for strand Y	Bonde ultip edge d 1860S	ed Str lane istanc 57 15,3	and anc es of 3 and	Post- hora tendor for st	tensi age l n size: rand \	oning MA s 6819 (1770)	g Sys 9 - 683 87 15	stem 37 ,3					Anne	x 8	

Page 29 on European technical approval ETA-06/0022 on 13 January 2011

			n* x ds		e and a second		, n x (_			d a x			
Dimensions in mm Tendon size		6805			6807			6809			6812			6815	
Strand	150r	0mm ² ,f _{pk} =1860N/mm ² (F _{pk} =279kN) and 150mm ² , f _{pk} =1770N/mm ² (F _{pk} =265,5								,5kN)					
No. of strands		05 07 09 12								15					
Minimum actual concrete strength at stressing fcm,0,cyl [N/mm²] Center distance A	23 270	23 33 42 23 33 42 23 33 42 23 270 230 210 320 270 245 360 305 280 4				23 415	33 355	42 320	23 470	33 395	42 355				
Edge distance R				(),5 x (Center	dista	nce +	Conci	rete co	over -	10 mn	n I		
Additional reinforcement (Material see Annex 17) No. n Ø d s Z i x/y	5 12 40 50 240	5 12 40 50 200	5 12 40 50 180	6 12 40 50 290	5 12 40 55 240	5 12 40 55 215	6 12 40 50 330	5 12 40 60 275	4 12 40 65 250	7 12 40 50 385	6 12 40 60 325	5 14 40 65 285	7 14 40 60 435	6 14 40 65 360	6 14 40 70 320
Helix (Material see Annex 17) Turns n* Ø d s Ø d a i* min l*	4,5 14 230 45 270	4,5 14 205 45 270	4 14 185 40 230	5 14 270 45 295	5 14 240 45 295	5 14 210 40 270	6 14 300 45 340	5,5 16 260 45 320	5 16 230 40 270	7 14 360 45 385	6,5 16 300 45 365	6 16 270 45 340	7 16 400 45 385	7 16 350 45 385	7 16 300 45 385
DYWIDAG B M Center and e for strand Y	onde ultip dge d 18605	ed Str lane istanc 57 15,7	and anc es of 7 and	Post- hora tendor for st	tensi age l n size: rand \	oning VA s 6805 (1770)	g Sys 5 - 681 S7 15	stem 15 ,7					Anne	x 9	

Page 30 on European technical approval ETA-06/0022 on 13 January 2011

		i o Helix,	Additio		ainforc	emen	t, n x	ds	_						-
Tendon size		6819			6822			6827			6831			6837	
Strand	150n	50mm ² ,fpk=1860N/mm ² (Fpk=279kN) and 150mm ² , fpk=1770N/mm ² (Fpk=265,5k									,5kN)				
No. of strands		19 22 27 31							37						
Minimum actual concrete strength at stressing fcm,0,cyl [N/mm²] Center distance A	23 530	33 445	42 400	23 570	33 485	42 435	23 640	33 540	42 490	23 690	33 590	42 535	23 760	33 650	42 600
Edge distance R				(),5 x (Center	dista	nce +	Conci	rete co	over -	10 mn	n		
Additional reinforcement (Material see Annex 17) No. n Ø d s z i x/y	8 16 40 60 495	7 16 40 65 410	6 16 40 70 365	8 16 40 60 535	8 16 40 65 450	7 16 40 65 400	9 16 40 60 605	8 16 40 65 505	7 16 40 70 455	9 20 40 75 650	8 20 40 80 550	8 20 40 80 495	10 20 40 75 720	9 20 40 75 610	8 20 40 85 560
Helix (Material see Annex 17) Turns n* Ø d s Ø d a i* min l*	7,5 16 460 45 410	7,5 16 400 45 410	7,5 16 330 45 410	8 16 510 45 430	7,5 16 440 50 445	7,5 16 370 50 445	7 20 560 55 460	7 20 460 55 460	7 20 420 55 460	10 20 620 55 625	9 20 530 60 615	8 20 480 65 595	11 20 660 50 625	9 20 570 60 615	8 20 520 65 595
DYWIDAG E M Center and e for strand Y	Sonde ultip edge d	ed Str Iane istanc 57 15,7	and anc es of 7 and	Post- hora tendor for st	tensi age l n size: rand N	onin VA s 6819 ′1770	g Sys 9 - 683 S7 15	stem					Anne	x 10	

Page 31 on European technical approval ETA-06/0022 on 13 January 2011

<u>GFK-1</u>	Tape	-			Gr h							
Duct	Duct sl	eeve	ØC*	End true	mpet							
es q	j s	٩*			* R 0000	Ð	h h	*	(f, f*,	f** acc.	to Anne:	(2)
Anchor	body M	a IA	ţ	C		r plate	e R		W	edae	/ Spri	ina
Dimensions in mm	1	., .			s apro	piere			•••	euge	, op.	
Tendon size			6805	6807	6809	6812	6815	6819	6822	6827	6831	6837
No. of strands			05	07	09	12	15	19	22	27	31	37
Anchor body MA Type 2302	Ø Ø Ø	ab b js	150 90 80 90 18	170 98 90 100 18	190 114 100 125 18	220 130 120 180 21	250 150 130 200 23	280 162 145 220 27	310 179 161 220 32	340 190 161 240 38	420 217 196 350 50	420 217 196 350 50
Coupler plate R Type 2320	Ø Ø	d d* h h1	207 88 115 75 105	207 96 115 75 105	224 112 115 75 105	246 128 115 75 105	264 148 120 76 110	289 159 130 85 120	340 176 135 90 125	380 188 145 100 135	435 214 170 120 158	435 214 170 120 158
Pitch circles	Ø Ø	fR fR*	152	152	168	188	207	224	244 276	261 314	306 370	306 370
End trumpet	Length ∅ Ø	1 C C*	460 185 75	370 185 75	350 205 85	500 232 90	450 250 100	570 268 105	640 297 120	660 333 120	870 395 137	870 395 137
C	enter and e	dge d	istances	and add	litional re	einforcer	nent and	helix se	e Annex	7 - 10		
DY	WIDAG I	Bond	ed Stra	ind Pos	st-tensi	oning S	System					
		Dir	Cou	u pling s of Con	R	3				Þ	Annex 11	

Page 32 on European technical approval ETA-06/0022 on 13 January 2011

Page 34 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

٦

Stressing anch	orage Typ	e ED or T	ype MA		77	For	static	load	
						арр	licatio	n only	'!
Grout inlet	$\frac{ece}{\partial ID_2 \text{ is en}}$	R. 0.35 × In			Versio Versio Addition reinforce Orthogon reinforcer	al ement al ment	h (ID ₁ + 5m (ID ₁ + 5m)	m) ≧ 20 m) 	0,15 x h 0,35 x h m 0
Installation versions:									
Version 1		Version 2			Ver	sion 3			
Dimensions in mm								$\leq 2x mir$	
Tendon size	6803	6804	6805	6807	6809	6812	6815	6819	6822
No. of strand	03	04	05	07	09	12	15	19	22
Minimum actual concrete strength at stressing				min f _{cm,0,c}	_{cyl} = 23 N/	′mm²			
Loop ØID ₁ [mm]	50	55	60	75	85	95	110	120	130
with steel tube min R [mm]	750	750	750	750	900	1100	1250	1500	1700
with duct min R [mm]	1500	1500	1500	1500	1800	2200	2500	3000	3400
Duct ØID ₂ [mm]	40	45	50	60	75	80	90	95	100
Additional reinforcement (Mat. s. Annex 17) [cm²]	12,50	16,50	21,00	29,00	37,50	50,00	62,50	79,00	91,50
DYWIDAG B	Loop sions and	ancho additiona	ost-tensi rage I reinforce	oning Sy	ystem			Annex ?	13
tor strand Y1	186057 15	b,3 and fo	r strand Y	1770571	5,3				

Page 35 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

Stressing anche	orage Typ	e ED or T	static licatio	load n only	· !				
Grout inlet	$\frac{ece}{\partial ID_2 \text{ is en}}$	larged ØID ₁)			Versio Versio Addition reinforce Orthogon reinforcer	al ement al nent	$\frac{h}{(ID_1 + 5m)}$	im) ≧ 20 im) 	0,15 × h _ 0,35 × h m0
Installation versions:		Version 2			Ver	sion 3			5
Dimensions in mm								$\geq 2x mir$	
Tendon size	6803	6804	6805	6807	6809	6812	6815	6819	6822
No. of strand	03	04	05	07	09	12	15	19	22
Minimum actual concrete strength at stressing				min f _{cm,0,0}	_{cyl} = 23 N	′mm²			
Loop ØID ₁ [mm]	50	55	60	75	85	95	110	120	130
with steel tube min R [mm]	800	800	800	800	950	1150	1350	1600	1800
with duct min R [mm]	1600	1600	1600	1600	1900	2300	2700	3200	3600
Duct ØID ₂ [mm]	40	45	50	60	75	80	90	95	100
Additional reinforcement (Mat. s. Annex 17) [cm²]	13,50	18,00	22,00	31,00	40,00	53,50	67,00	85,00	98,00
DYWIDAG Bonded Strand Post-tensioning System Loop anchorage Dimensions and additional reinforcement for strand Y1860S7 15,7 and for strand Y1770S7 15,7							Annex 14		

Page 37 on European technical approval ETA-06/0022 on 13 January 2011

Designation	Material	S	Standard		
Wedge	Case hardened steel *	EN 102 EN 1008	77-2: 1999-10 83-2: 1996-10		
Wedge plate Type ED und MA	Quenched and tempered steel *	EN 1008 EN 1008	83-1: 1996-10 83-2: 1996-10		
Multiplane anchor body Type MA	Cast ductile iron *	3 \536			
Anchor plate Type ED	Structural steel *	25: 1994-03			
Coupler plate Type R	Quenched and tempered steel *	EN 10083-1: 1996-10 EN 10083-2: 1996-10			
Barrel chuck Type D	Quenched and tempered steel *	Quenched and EN 10083-1: 1996-1 cempered steel * EN 10083-2: 1996-1			
Fitting bolt Type D	Structural steel *	25: 1994-03			
Spring Type D	Spring steel *	DIN 209	98-1		
Spacer	Polyethylen (PE)	EN 1872	2		
Helix	S 235 JR Reinf. steel Re ≧ 500 MPa	EN 1002 EN 1008	25: 1994-03 80		
Additional reinforcement	Re ≧ 500 MPa	EN 1008	80		
Trumpet	Polyethylen (PE)	EN 1872	2		
* exact material properties a	nd definitions deposited at DIBt				
DYWIDAG Bonded	Strand Post-tensioning System				
Materials an	d standard references		Annex 17		

I

I

Page 39 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

DIMENSIONS AND PROPERTIES OF 7-WIRE STRANDS

Designation	Symbol	Unit	Value				
Tensile strength	R _m /F _{pk}	MPa	1770 or 1860				
Strand							
Nominal diameter	D	mm	15,3 15,7				
Nominal cross section	Ap	mm²	140 150				
Nominal mass	М	g/m	1093 1172				
Surface configuration	-	-	plain				
Strength at 0,1%	f _{p0,1k}	MPa	1520 c	or 1600			
Strength at 0,2%	f _{p0,2}	MPa	1570 c	or 1660			
Modulus of elasticity	E	MPa	≈ 195.000				
Individual wires				-			
External wire diameter	d	mm	5,0 ± 0,04 5,2 ± 0,0				
Core wire diameter	d'	mm	1,02 to 1,04 d 1,02 to 1,04				

As long as EN 10138 does not exist 7-wire strands in accordance with national provisions and with the characteristics given in the table above shall be used.

DYWIDAG Bonded Strand Post-tensioning System	
7-wire strands	

6803 - 6837

Annex 18

Z10406.11

Page 40 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

CONTENT OF CONTROL PLAN

Component	Item	Test/ Check	Traceability ⁴	Minimum frequency	Documen- tation
Anchor plate	material	check	bulk	100 %	"2.2" ¹
for 3 to 5 strands	detailed dimensions⁵	test		3 % ≥ 2 specimen	yes
	visual inspection ³	check		100 %	no
Cast-iron	material	check	full	100 %	"3.1" ²
anchor body for 5 to 37 strands	detailed dimensions ⁵	test		3% ≥ 2 specimen	yes
	visual inspection ³	check		100 %	no
Wedge plate	material	check	full	100 %	"3.1" ²
	detailed dimensions⁵	test		5 % ≥ 2 specimen	yes
	visual inspection ³	check		100 %	no
Coupler plate R	material	check	full	100 %	"3.1" ²
Strand coupler D	detailed dimensions⁵	test		5 % ≥ 2 specimen	yes
	visual inspection ³	check		100 %	no
Wedge	material	check	full	100 %	"3.1" ²
	treatment, hardness	test		0,5 % ≥ 2 specimen	yes
	detailed dimensions ⁵	test		5 % ≥ 2 specimen	yes
	visual inspection ³	check		100 %	no
Duct	material	check	"CE"	100 %	"CE"
	visual inspection ³	check		100 %	no

DYWIDAG Bonded Strand Post-tensioning System

Annex 19a

Control Plan
6803 - 6837

CONTENT OF CONTROL PLAN - CONTINUED -					
Component	Item	Test/ Check	Traceability ⁴	Minimum frequency	Documen- tation
Tensile element strand	material ⁶	check	full	100 %	yes
	diameter	test		each coil/bundle	no
	visual inspection ³	check		each coil/bundle	no
Constituents of filling material as per EN 447	cement	check	full	100 %	yes
	admixtures, additions	check	full	100 %	yes
Helix	material	check	full	100 %	yes
	visual inspection ³	check		100 %	no
Stirrups	material	check	full	100 %	yes
	visual inspection ³	check		100 %	no
Springs for couplers	material	check	full	100 %	"2.2" ¹
	visual inspection ³	check		100 %	no
Grease	material ⁷	check	full	100 %	"2.2" ¹
Wax	material ⁸	check	full	100 %	"2.2" ¹

All samples shall be randomly selected and clearly identified.

- 1 "2.2" : Test report type "2.2" according to EN 10204
- 2 "3.1" : Inspection certificate type "3.1" according to EN 10204
- 3 Visual inspections means e.g.: Main dimensions, gauge testing, correct marking or labelling, appropriate performance, surface, fins, kinks, smoothness, corrosion, coating, etc., as given in the Control Plan
- 4 full : Full traceability of each component to its raw material.
 - bulk : Traceability of each delivery of components to a defined point.
- 5 Detailed dimensions mean measuring of all dimensions and angles according to the specification as given in the Control Plan
- 6 Characteristic material properties see Annex 18
- 7 Grease according to the composition deposited by the supplier at the Deutsches Institut für Bautechnik. Characteristic material properties shall comply with ETAG 013, Annex C4.1
- 8 Wax according to the composition deposited by the supplier at the Deutsches Institut für Bautechnik. Characteristic material properties shall comply with ETAG 013, Annex C4.2

DYWIDAG Bonded Strand Post-tensioning System

Annex 1	9b
---------	----

Control Plan continued	
6803 - 6837	

Page 42 on European technical approval ETA-06/0022 on 13 January 2011

English translation prepared by DIBt

Component	Item	Test/Check ²	Sampling - Number of components per audit
Wedge plate	material according to specification	check, test	1
	detailed dimensions	test	
	visual inspection ¹	check	
Cast-iron anchor body	material according to specification	check, test	1
	detailed dimensions	test	
	visual inspection ¹	check	
Coupler plate R Strand coupler D	material according to specification	check, test	1
	detailed dimensions	test	
	visual inspection ¹	check	
Wedge	material according to specification	check, test	2
	treatment	test	2
	detailed dimensions	test	1
	main dimensions, surface hardness	test	5
	visual inspection ¹	check	5
Single tensile element test.	ETAG 013 Annex E.3	test	1 series

1 Visual inspections means e.g.: Main dimensions, gauge testing, correct marking or labelling, appropriate performance, surface, fins, kinks, smoothness, corrosion, etc.

6803 - 6837

2 All samples shall be randomly selected and clearly identified.

DYWIDAG Bonded Strand Post-tensioning System	
Audit Testing	Annex 20

1 Manufacture

The setup of the DYWIDAG strand tendon allows its prefabrication in the workshop or on site or a production in the structure itself.

Tendons prefabricated at the factory are preassembled and ready for installation complete with the sheathing. Longer prefabricated tendons are transported to the site on coils or in the form of loop. The minimum transport diameter is 1.65 m, for tendons 6827 and beyond at least 2.0 m.

On-site the tendons are either preassembled as they are when manufactured in the factory or the strands are pulled/pushed into the already installed sheathings.

2 Ducts

Round corrugated steel ducts according to EN 523 are used as sheathings. Their joints are covered with threadable duct couplers. If the strands are pushed/pulled into already installed sheathing or after concreting, ducts of larger inner diameter (Type II) are used. The strands of tendons are placed in a duct without spacer. The sheathings are widened by means of trumpets in the region of the anchorages and couplers because of the need to spread out the strands. All transitions and joints are to be carefully sealed with adhesive tape.

The use of oval sheathings is also permissible for tendon types 6803, 6804 and 6805 in conjunction with the plate anchorage (ED). For the oval sheathing EN 523 applies accordingly.

3 Wedges

The three part wedges made of case-hardened steel differ in the shape of their teeth. The wedge length is 42 mm for 0.6" and 45 mm for 0.62" strands. Further dimensions of wedges and their distinguishing features can be found in Annex 2.

4 Anchorages

Anchorages depending on the tendon sizes are identical for both strand sizes and steel grades.

The anchorage consists of an anchor plate or an anchor body and a wedge plate with 3 to 37 conical borings – depending on the tendon size – in which the strands are anchored with wedges, each consisting of three segments.

4.1 Plate anchorage ED

At these anchorages for tendons 6803 – 6805 the wedge plate is supported by an anchor plate which transfers the prestressing force to the structure. This type of anchorage can be used as stressing- and accessible fixed anchorage and also as not accessible fixed anchorage if a wedge keeper plate is used. The conical borings of the not accessible fixed anchorages shall be filled with corrosion protection compound before threading and wedging of the strands.

DYWIDAG Bonded Strand Post-tensioning System	
Description of the DYWIDAG Bonded Strand Post-Tensioning System	Annex 21a

The bursting forces caused by the load transfer to the concrete member shall be carried by a helix made of plain steel or reinforcement steel. Additional reinforcement beyond the common minimum reinforcement for structural concrete members such as straight bars or stirrups is not required.

4.2 Multiplane anchorage MA

These anchorages for tendons 6805 – 6837 consist of a concrete-encased anchor body and a wedge plate which can be mounted on it. This type of anchorage can likewise be used as a stressing and accessible passive anchorage – and with a wedge keeper plate as not accessible. The wedges of the embedded passive anchorages have to be sealed. The bursting forces caused by the load transfer to the concrete member shall be carried by a helix made of plain steel or reinforcement steel. Additional reinforcement such as straight bars or stirrups is also required.

4.3 Loop anchorage

The loop anchorage is a part of a tendon with standard anchorages at the tendon ends. This type of anchorage is designed for the application in flat structures with predominantly static loading. The length of the straight sections of the tendon at both sides of the loop must be the same. The strands will be pushed into the sheathing after hardening of concrete. The stressing must be applied at both anchorages simultaneously.

The sheathing in the curved area must be pre-bent with the aid of a bending template of a bending machine under consideration of the minimum bending radius.

5 Couplers

Tendons can be coupled with fixed or movable couplers.

5.1 Fixed coupler R

The coupler is supported directly on the concrete-encased anchor body. The coupler is preassembled and consists of a coupler plate, wedges, springs, lock washers and a cover cap in each conical hole which is removed prior for installation of the departing tendon. The cones are filled with corrosion protection grease. The strands of the arriving tendon are anchored in the coupler plate in the same way as in an active anchorage. The strands of the departing tendon are held in a radial pattern of inclined conical borings and anchored by three-segment wedges in the coupler. These wedges are retained by a spring and a lock washer in their seating.

The correct position of the strands of the departing tendon within the coupler is checked by colour marking on the strands ends.

During the stressing of the tendon a wedge slip of 4 mm occurs due to the seating of these wedges.

The transition area from the coupler to the duct will be closed with a coupler trumpet.

DYWIDAG Bonded Strand Post-tensioning System

Description of the DYWIDAG Bonded Strand Post-Tensioning System Annex 21b

5.2 Movable coupler D

The strands are jointed individually by means of a strand coupler.

A strand coupler consists of two identical halves connected by a splice bolt. Each half consists of a barrel, a three segment wedge and a spring. The strands to be spliced are inserted into the preassembled coupler. The proper seating of the two strand ends is to be checked with colour markings.

The transition area from the coupler to the duct will be closed with a coupler trumpet.

6 Stressing

A hydraulic pump unit and a centre hole jack are used for the stressing of tendons. The strands pass through the jack and are anchored in the tension disk with clamping jaws. All strands of a tendon are stressed simultaneously. The prestressing force is checked with the aid of a pressure gauge. Furthermore, the elongation of the prestressing steel serves as control of the prestressing force. Long tendons for which the jack stroke is insufficient can be stressed in stages provided section 4.2.6 of specific conditions is observed.

Stressing in load steps and resetting of the jack is easily done. After stressing, the wedges are power seated by means of a seating device within the jack. A wedge slip of approx. 4 mm remains after the wedge seating procedure.

Straight tendons strands can be stressed individually by mono jacks.

7 Grouting

After stressing cement grout is injected into the void between prestressing steel and sheathing thus forming bond between strands and concrete. Moreover, cement grout serves as corrosion protection of the strands. The grout is injected through the anchor body MA, through the grout inlet in the trumpet of anchorage type ED or through inlets at the deepest points of the sheathing.

The ducts are vented at the ends of the tendons by means of venting pipes or grouting caps.

Intermediate venting points at high points are necessary in case of long tendons. Couplers are always equipped with vents. Grouting shall be executed in accordance with EN 445, EN 446 and EN 447.

Description of the DYWIDAG Bonded Strand Post-Tensioning System Annex 21c