

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen: 22.04.2015 I 12-1.12.2-15/14

Zulassungsnummer:

Z-12.2-121

Antragsteller:

ArcelorMittal Wire France
Rue des Trefileries
21401 CHATILLON SUR SEINE CEDEX
FRANKREICH

Zulassungsgegenstand:

Kaltgezogener Spannstahldraht St 1470/1670 - rund, profiliert - Nenndurchmesser: 5,5-6,0-6,5-7,0-7,5 mm

Geltungsdauer

vom: 25. Januar 2015 bis: 25. Januar 2020

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst elf Seiten und drei Anlagen. Der Gegenstand ist erstmals am 24. Januar 2013 allgemein bauaufsichtlich zugelassen worden.

Allgemeine bauaufsichtliche Zulassung Nr. Z-12.2-121

Seite 2 von 11 | 22. April 2015

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 4 Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Allgemeine bauaufsichtliche Zulassung Nr. Z-12.2-121

Seite 3 von 11 | 22. April 2015

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Zulassungsgegenstand ist kaltgezogener Spannstahldraht St 1470/1670 mit nahezu kreisförmigem Querschnitt mit den Nenndurchmessern: von 5,5-6,0-6,5-7,0 und 7,5 mm. Die Oberfläche ist durch Kaltwalzen profiliert gemäß Anlage 1. Die Relaxation des Spannstahldrahts ist sehr niedrig.

1.2 Anwendungsbereich

- (1) Der Zulassungsgegenstand darf für Spannbeton verwendet werden:
- nach DIN 1045-1:2008-08 / DIN Fachbericht 102:2009-03,
- nach DIN EN 1992-1-1:2011-01 in Verbindung mit DIN EN 1992-1-1/NA:2013-04,
- nach DIN EN 1992-2:2010-12 in Verbindung mit DIN EN 1992-2/NA:2013-04.

Der Zulassungsgegenstand darf auch zur Herstellung von Felsankern nach DIN 4125:1990-11 bzw. DIN EN 1537:2001-01 in Verbindung mit DIN SPEC 18537:2012-02 verwendet werden.

Es dürfen stets nur die Regeln ein und derselben Norm angewendet werden.

- (2) Das zum Vorspannen angewandte Spannverfahren bedarf zum Nachweis seiner Verwendbarkeit einer allgemeinen bauaufsichtlichen Zulassung oder einer Zustimmung im Einzelfall durch die zuständige oberste Bauaufsichtsbehörde.
- (3) Die Verwendung des profilierten Spannstahldrahtes St 1470/1670 zum Vorspannen von Fertigteilen aus Normalbeton im Spannbett (sofortiger Verbund) gemäß DIN 1045-1:2008-08 bzw. DIN EN 1992-1-1:2011-01 in Verbindung mit DIN EN 1992-1-1/NA:2013-04 bzw. nach DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA ist zulässig. Dafür ist keine Spannverfahrenszulassung notwendig.

2 Bestimmungen für den Zulassungsgegenstand

2.1 Eigenschaften und Zusammensetzung

2.1.1 Abmessungen und Metergewicht

- (1) Die Nenndurchmesser, -querschnitte, -gewichte pro laufenden Meter (Ifdm) und die geometrischen Maße der profilierten Drahtoberfläche sowie die jeweiligen Toleranzen sind in Anlage 1 Tabelle 1 angeben. Das prinzipielle Aussehen der profilierten Drahtoberfläche ist in Anlage 1 dargestellt.
- (2) Die sich aus den Toleranzen ergebenden Werte sind als 5 %-Quantilen der Grundgesamtheit definiert. Die Produktion ist so einzustellen, dass bei durchmesserweiser Betrachtung die mittlere Querschnittsfläche \overline{A}_{p} nicht kleiner als der Nennquerschnitt ist.
- (3) Die Querschnittsfläche A_p ist mittels Wägung zu ermitteln, wobei die Rohdichte des kaltgezogenen Drahtes mit 7,81 [g/cm³] und die Oberflächengestaltung als gleichmäßig über die Oberfläche verteilt anzunehmen sind.

2.1.2 Mechanische Eigenschaften

- (1) Die Anforderungen an die mechanischen Eigenschaften sind in Anlage 2 Tabelle 2 und die Spannungs-Dehnungslinie in Anlage 3 angegeben.
- (2) Die Werte der Tabelle 2 sind, falls nicht anders angegeben, definiert als 5 %-Quantilen der Grundgesamtheit; zudem dürfen diese Werte bei den Merkmalen Dehngrenze $R_{p0,1}$ bzw. $R_{p0,2}$ und Zugfestigkeit R_m im Einzelfall um höchstens 5 % unterschritten werden.

Nr. Z-12.2-121

Seite 4 von 11 | 22. April 2015

- (3) Die 95 %-Quantile der Zugfestigkeit einer Fertigungsmenge (Schmelze oder Herstelllos) darf die Nennfestigkeit von R_m = 1670 N/mm² höchstens um 12 % überschreiten.
- (4) Die Prüfwerte der Relaxation dürfen bei einer Prüftemperatur von 20 °C die in Anlage 2, Tabelle 3 angegebenen Werte um höchstens 10 % überschreiten.
- (5) Die der Bestätigung der Wöhlerlinie nach DIN 1045-1 und nach DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA bzw. nach DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA zu Grunde liegenden Prüfergebnisse sind beim Deutschen Institut für Bautechnik hinterlegt.

2.1.3 Zusammensetzung

(1) Kaltgezogener Spannstahldraht nach dieser Zulassung besitzt folgende charakteristische chemische Zusammensetzung in Massen-% (Schmelzanalyse):

С	Si	Mn	Р	S
			max.	max.
0,70 bis 0,90	0,10 bis 0,35	0,50 bis 0,90	0,025	0,025

(2) Die detaillierte Zusammensetzung ist beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegt.

2.2 Herstellung, Transport, Lagerung und Kennzeichnung

2.2.1 Herstellung

- (1) Die Herstellbedingungen sind so einzuhalten, wie sie beim Deutschen Institut für Bautechnik hinterlegt sind.
- (2) Fertigungstechnisch bedingte Schweißstellen müssen aus dem Draht entfernt werden.
- (3) Nachträgliches Richten des Spannstahldrahtes ist nicht zulässig.

2.2.2 Verpackung, Transport, Lagerung

- (1) Der Zulassungsgegenstand darf in Ringen gewickelt geliefert werden. Dabei darf das 0,9-fache der Dehngrenze $R_{p0,1}$ nicht überschritten werden.
- (2) In Ringen gewickelter Spannstahldraht muss sich gerade abwickeln lassen.
- (3) Der Zulassungsgegenstand ist in geschlossenen Transportbehältnissen (z. B. Container, LKW mit Plane) oder durch geeignete Verpackung vor Feuchtigkeit zu schützen.
- (4) Transportbehältnisse und Lagerräume müssen trocken und frei sein von Korrosion hervorrufenden Stoffen (z. B. Chloriden, Nitraten, Säuren).
- (5) Während des Transportes und der Lagerung ist sorgfältig darauf zu achten, dass der Spannstahldraht weder mechanisch beschädigt noch verschmutzt wird.

2.2.3 Kennzeichnung und Lieferschein

(1) Der in Ringform gewickelte oder bereits in Konfektionslängen geschnittene und gebündelte Spannstahldraht muss mit einem etwa 60 x 120 mm² großen, witterungsbeständigen und gegen mechanische Verletzungen unempfindlichen Anhängeschild mit Ü-Zeichen und folgender Aufschrift versehen sein:

Herstellwerk: Vorsicht empfindlicher Spannstahl! Spannstahldraht Trocken und vor Korrosion geschützt lagern! nach Zul.-Nr. Z-12.2-121 Sorte: St 1470/1670 rund, profiliert Nicht beschädigen, nicht verschmutzen! Relaxationsklasse: sehr niedrig Wöhlerlinien-Klasse: 1 Bitte aufbewahren und bei Beanstandung Nenndurchmesser: mm einschicken! Schmelze-Nr.: Auftrags-Nr.: Lieferdatum: Empfänger:

Nr. Z-12.2-121

Seite 5 von 11 | 22. April 2015

(2) Der Lieferschein muss die gleichen Angaben enthalten wie das Anhängeschild nach Abschnitt 2.2.3(1) und vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 (Übereinstimmungsnachweis) erfüllt sind.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

- (1) Die Bestätigung der Übereinstimmung des Spannstahldrahtes mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung des Spannstahldrahtes nach Maßgabe der folgenden Bestimmungen erfolgen.
- (2) Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Spannstahldrahtes eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.
- (3) Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.
- (4) Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats unverzüglich zur Kenntnis zu geben.
- (5) Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

- (1) In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass das von ihm hergestellte Bauprodukt den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entspricht.
- (2) Die werkseigene Produktionskontrolle soll mindestens die in der "Richtlinie für Zulassungs- und Überwachungsprüfungen für Spannstähle" des Deutschen Instituts für Bautechnik aufgeführten Maßnahmen einschließen.
- (3) Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und gemäß der in der "Richtlinie für Zulassungs- und Überwachungsprüfungen für Spannstähle" genannten Kriterien auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:
- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials,
- Art der Kontrolle oder Prüfung,
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials,
- Ergebnis der Kontrollen und Prüfungen und Vergleich mit den Anforderungen,
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.
- (4) Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Nr. Z-12.2-121

Seite 6 von 11 | 22. April 2015

(5) Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

- (1) In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.
- (2) Im Rahmen der Fremdüberwachung sind Prüfungen nach dem in Abschnitt 2.3.2 (2) genannten Grundsätzen durchzuführen. Es müssen auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.
- (3) Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Mechanische Eigenschaften

- (1) Als Rechenwert für den Elastizitätsmodul ist E_P = 201.000 N/mm² anzunehmen.
- (2) Der charakteristische Wert der 0,1%-Dehngrenze ist mit $f_{p0,1k}$ = 1420 N/mm² (entspricht $R_{p0,1}$) anzunehmen.
- (3) Der charakteristische Wert der Zugfestigkeit des Spannstahls ist mit f_{pk} = 1670 N/mm² (entspricht R_m) anzunehmen.
- (4) Die charakteristische Dehnung des Spannstahls unter Höchstkraft ist mit ϵ_{uk} = 3,5 % (entspricht A_{ot}) anzunehmen.

3.2 Zeitabhängige Spannungsverluste (Relaxation)

- (1) Die Rechenwerte für die Relaxation des Spannstahls sind der Anlage 2, Tabelle 3 zu entnehmen. Diese Spannungsverluste gelten für Temperaturen, die in Bauteilen klimabedingt auftreten. Für andere Temperaturen mit Ausnahme des in Abschnitt 3.2(2) geregelten Anwendungsfalles sind die Relaxationswerte besonders zu bestimmen.
- (2) Werden Spannbetonfertigteile unter einer Spannbettvorspannung von 0,8 $R_{p0,1}$ bzw. 0,65 R_m (der kleinere Wert ist maßgebend) und bei Temperaturen bis zu +80 °C wärmebehandelt (~ 8 h), so darf der Relaxationsverlust $\Delta R_{z,w}$ mit 4 % angesetzt werden. In diesem Fall kann angenommen werden, dass der gesamte Relaxationsverlust während der Wärmebehandlung auftritt und alle späteren Relaxationsverluste unter Normaltemperatur vorweggenommen sind.

3.3 Verankerung im sofortigen Verbund im Normalbeton

3.3.1 Im Regelungsbereich von DIN 1045-1/ DIN Fachbericht 102

(1) Bei Vorspannung im sofortigen Verbund darf im Abschnitt der Krafteinleitung auf eine Querbewehrung verzichtet werden, wenn das Nennmaß der Betondeckung c_{nom} nachfolgende Werte nicht unterschreitet:

Festigkeitsklasse des Betons	C30/37	C35/45	C40/50	C45/55	≥ C50/60
c _{nom} [mm]	50	45	45	40	40

Nr. Z-12.2-121

Seite 7 von 11 | 22. April 2015

- (2) Bei Anwendung von DIN 1045-1 sind die Verbundspannungen f_{bp} nach Tabelle 7, Spalte 1 zu verwenden.
- (3) Zur Spannkrafteinleitung ist ungerissener Beton erforderlich, eine Sprengrissbildung an der Bauteilstirnseite im Zuge oder nach der Spannkraftkrafteinleitung ist unzulässig. Dazu ist das DAfStb-Heft 525, Abschnitt 8.7.6 zu beachten.

3.3.2 Im Regelungsbereich von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA bzw. von DIN EN 1992-2 und DIN EN 1992-2/NA

(1) Sofern sich nach DIN EN 1992-1-1 bzw. DIN EN 1992-2, Abschnitt 4.4.1 in Verbindung mit DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA, Abschnitt 4.4.1 keine höhere Betondeckung ergibt, darf das Nennmaß der Betondeckung c_{nom} (zur Sicherstellung des Verbundes) in Abhängigkeit von der Betonfestigkeitsklasse folgende Werte nicht unterschreiten:

Festigkeitsklasse des Betons	C30/37	C35/45	C40/50	C45/55	≥ C50/60
c _{nom} [mm]	50	45	45	40	40

- (2) Bei Anwendung von DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA bzw. von DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA ist die Verbundspannung f_{bpt} nach Gleichung (8.15) mit η_{p1} = 2,85, $\alpha_{ct} \le 0,85$ und $\gamma_c \ge 1,5$ (γ_c und α_{ct} zur Bestimmung von $f_{ctd}(t)$ und f_{ctd}) und die Verbundfestigkeit f_{bpd} nach Gleichung (8.20) mit η_{p2} = 1,4 zu ermitteln.
- (3) Zur Spannkrafteinleitung ist ungerissener Beton erforderlich, eine Sprengrissbildung an der Bauteilstirnseite im Zuge oder nach der Spannkraftkrafteinleitung ist unzulässig. Dazu ist das DAfStb-Heft 600 Abschnitt 8.10.2 zu beachten.

3.4 Nachweis der Ermüdung im Normalbeton

3.4.1 Im Regelungsbereich von DIN 1045-1/ DIN Fachbericht 102

(1) Für den Nachweis gegen Ermüdung des profilierten Spannstahldrahts ist die Wöhlerlinie gemäß DIN 1045-1, Abschnitt 10.8 mit den relevanten Parametern N*, k_1 , k_2 und $\Delta\sigma_{Rsk}$ nach Tabelle 1a anzunehmen.

Im sofortigen Verbund gilt die mit Parametern aus Tabelle 1a, Zeile 1 beschriebene Wöhlerlinie nur außerhalb des Verankerungsbereichs.

- (2) Für den Nachweis innerhalb des Verankerungsbereichs ist die Spannbewehrung im sofortigen Verbund am Ende der Übertragungslänge auf die Spannungsschwingbreite $\Delta\sigma_{Rsk}$ von 70 N/mm² des Spannstahldrahts zu begrenzen. Diese Regelung gilt uneingeschränkt für bis zu maximal 10 Mio. Lastzyklen.
- (3) Zur Bestimmung der Verankerungslänge des profilierten Spannstahldrahts im sofortigen Verbund unter zyklischer Beanspruchung l_{ba} wird Gleichung (56) aus DIN 1045-1, Abschnitt 8.7.6, (10a)) wie folgt ersetzt:

$$I_{ba} = I_{bpd} + \frac{A_p}{\pi \cdot d_p} \cdot \frac{\left(\sigma_{pd} - \sigma_{pmt}\right)}{\left(f_{bp} \cdot \eta_1 \cdot \eta_p \cdot \eta_{dyn}\right)} \qquad \text{mit } \eta_{dyn} = 2/3$$
 (1a)

Eine Rissbildung innerhalb des Verankerungsbereiches l_{ba} nach Gleichung (1a) ist nicht zulässig.

Nr. Z-12.2-121

Seite 8 von 11 | 22. April 2015

Hierzu ist nachzuweisen, dass innerhalb der Verankerungslänge l_{ba} die Betonzugspannung folgende Werte nicht überschreitet:

- für die Oberlast der zyklischen Beanspruchung den Wert 0,85 f_{ctk;0,05} und
- unter statischer Maximalbeanspruchung im Grenzzustand der Gebrauchstauglichkeit (unter seltener (charakteristischer) Einwirkungskombination bei Ansatz von $\psi_{0,i}$ = 1,0) den Wert $f_{ctk:0.05}$.

Tabelle 1a: Parameter der Wöhlerlinien für Spannstahldraht St 1470/1670 (Klasse 1)

		Spalte	1	2	3	4	
Zeile				Spannung	sexponent	$\Delta\sigma_{Rsk}$ bei N*	
20110		N*	<i>k</i> ₁	k ₂	Zyklen in N/mm² b		
1	im sofortiger	n Verbund (gerade) ^{c)}	10 ⁶	5	9	185	
2		Einzellitzen in Kunststoffhüllrohren	10 ⁶	5	9	185	
3	im nach- träglichen	Gerade Spannglieder, gekrümmte Spannglieder in Kunststoffhüllrohren	10 ⁶	5	9	150	
4	Verbund	Gekrümmte Spannglieder in Stahlhüllrohren	10 ⁶	3	7	120	
5		Kopplungen und Verankerungen	10 ⁶	3	5	80	
С	Werte im eingebauten Zustand Im sofortigen Verbund gilt die beschriebene Wöhlerlinie nur außerhalb des Verankerungsbereichs						

3.4.2 Im Regelungsbereich von DIN EN 1992-1-1und DIN EN 1992-1-1/NA bzw. von DIN EN 1992-2 und DIN EN 1992-2/NA

(1) Für den Nachweis gegen Ermüdung des profilierten Spannstahldrahts ist die Wöhlerlinie gemäß DIN EN 1992-1-1 bzw. DIN EN 1992-2, Abschnitt 6.8 und DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA zu Abschnitt 6.8. mit den relevanten Parametern N*, k_1 , k_2 und $\Delta\sigma_{Rsk}$ nach Tabelle 1b anzunehmen.

Im sofortigen Verbund gilt die mit Parametern aus Tabelle 1b, Zeile 1 beschriebene Wöhlerlinie nur außerhalb des Verankerungsbereichs.

- (2) Für den Nachweis innerhalb des Verankerungsbereichs ist die Spannbewehrung im sofortigen Verbund am Ende der Übertragungslänge auf die Spannungsschwingbreite $\Delta\sigma_{Rsk}$ von 70 N/mm² des Spannstahldrahts zu begrenzen. Diese Regelung gilt uneingeschränkt für bis zu maximal 10 Mio. Lastzyklen.
- (3) Zur Bestimmung der Verankerungslänge des profilierten Spannstahldrahts im sofortigen Verbund unter zyklischer Beanspruchung I_{bpd} wird Gleichung (8.21) aus DIN EN 1992-1-1 1 bzw. DIN EN 1992-2, Abschnitt 8.10.2.3; Gleichung (8.21) und DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA, zu 8.10.2.3 wie folgt ersetzt:

$$I_{bpd} = I_{pt2} + \alpha_2 \cdot \phi \cdot (\sigma_{pd} - \sigma_{pm\infty}) / (f_{bpd} \cdot \eta_{dvn})$$
(1b)

Nr. Z-12.2-121

Seite 9 von 11 | 22. April 2015

Dabei ist DIN EN 1992-1-1 bzw. DIN EN 1992-2, Abschnitt 8.10.2.2 und DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA, NCI Zu 8.10.2.2 zu berücksichtigen.

$$\begin{array}{lll} \text{mit} & \eta_{\text{dyn}} & = 2/3 \\ & \eta_{\text{p2}} & = 1,4 \\ & \gamma_{\text{c}} & \geq 1,5 \end{array} & \text{(zur Bestimmung von } f_{\text{ctd}}(t) \text{ und } f_{\text{ctd}}) \\ \text{und} & \alpha_{\text{ct}} & \leq 0,85 & \text{(zur Bestimmung von } f_{\text{ctd}}(t) \text{ und } f_{\text{ctd}}) \end{array}$$

Eine Rissbildung innerhalb des Verankerungsbereiches I_{bpd} nach Gleichung (1b) ist nicht zulässig.

Hierzu ist nachzuweisen, dass innerhalb der Verankerungslänge I_{bpd} die Betonzugspannung folgende Werte nicht überschreitet:

- für die Oberlast der zyklischen Beanspruchung den Wert 0,85 f_{ctk;0,05} und
- unter statischer Maximalbeanspruchung im Grenzzustand der Gebrauchstauglichkeit (unter seltener (charakteristischer) Einwirkungskombination bei Ansatz von $\psi_{0,i}$ = 1,0) den Wert $f_{ctk;0.05}$.
- (4) Sofern sich nach DIN EN 1992-1-1 bzw. DIN EN 1992-2, Abschnitt 8.10.2.3 unter Berücksichtigung von DIN EN 1992-1-1/NA bzw. DIN EN 1992-2/NA, zu 8.10.2.3 und NCI zu 8.10.2.3, (NA.7) eine größere Verankerungslänge für I_{bpd} ergibt als nach Abschnitt 3.4.2, Satz (3), Gleichung (1b), ist diese maßgebend.

Tabelle 1b: Parameter der Wöhlerlinien für Spannstahldraht St 1470/1670 (Klasse 1)

		Spalte	1	2	3	4
Zeile		N*	Spannung k ₁	sexponent k ₂	$\Delta\sigma_{ m Rsk}$ bei N* Zyklen in N/mm $^{ m 2}$ $^{ m b}$	
1	im sofortige	10 ⁶	5	9	185	
2		Einzellitzen in Kunststoffhüllrohren	10 ⁶	5	9	185
3	im nach- träglichen Verbund ^d	Gerade Spannglieder, gekrümmte Spannglieder in Kunststoffhüllrohren	10 ⁶	5	9	150
4		Gekrümmte Spannglieder in Stahlhüllrohren	10 ⁶	3	7	120

b Werte im eingebauten Zustand

4 Bestimmungen für die Ausführung

(1) Bei der Anwendung nach DIN 1045-1 gelten die Bestimmungen von DIN 1045-3:2008 und DIN 1045-4:2001.

Bei der Anwendung nach DIN EN 1992-1-1 mit DIN EN 1992-1-1/NA bzw. von DIN EN 1992-2 mit DIN EN 1992-2/NA gelten die Bestimmungen von DIN EN 13670 in Verbindung mit DIN 1045-3:2012 und DIN 1045-4:2012

Bei der Herstellung von Felsankern gelten die Bestimmungen von DIN 4125:1990 bzw. DIN EN 1537:2001 in Verbindung mit DIN SPEC 18537:2012.

Im sofortigen Verbund gilt die beschriebene Wöhlerlinie nur außerhalb des Verankerungsbereichs

Werte für Verankerungen und Kopplungen sind den allgemeinen bauaufsichtlichen Zulassungen für Spannverfahren zu entnehmen.

Nr. Z-12.2-121

Seite 10 von 11 | 22. April 2015

(2) Hinsichtlich der Behandlung und des Schutzes des Spannstahldrahtes an der Anwendungsstelle sind die maßgebenden Bestimmungen (z. B. Normen, Richtlinien) zu beachten. Spannstahldraht muss auch während der Verarbeitung bis zur Herstellung des endgültigen Schutzes (z. B. Verpressen mit Zementmörtel) gegen Korrosion, mechanische Beschädigungen usw. geschützt sein.

- (3) Beschädigter Spannstahldraht darf nicht verwendet werden.
- (4) Spannstahldraht darf nicht geschweißt werden.
- (5) Nachträgliches Richten des Spannstahldrahtes ist nicht zulässig.

Sofern im vorliegenden Zulassungsbescheid keine anderen Angaben gemacht sind, wird auf folgende Bestimmungen Bezug genommen:

DIN Fachbericht 102:2009-03	Betonbrücken
DAfStb-Heft 525:2003:09	Erläuterung zu DIN 1045-1 einschließlich Berichtigung 1:2005-05
DAfStb-Heft 600:2012	Erläuterung zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA (Eurocode 2)
DIN 1045-1:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion
DIN 1045-3:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 3: Bauausführung
DIN 1045-3:2012-03	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 3: Bauausführung - Anwendungsregeln zu DIN EN 13670
DIN 1045-4:2001-07	Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 4: Ergänzende Regeln für die Herstellung und die Konformität von Fertigteilen
DIN 1045-4:2012-02	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 4: Ergänzende Regeln für die Herstellung und die Konformität von Fertigteilen
DIN EN 1537:2001-01	Ausführung von besonderen geotechnischen Arbeiten (Spezialtiefbau) Verpressanker
DIN EN 1992-1-1:2011-01	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010
DIN EN 1992-2:2010-12	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 2: Betonbrücken - Bemessungs- und Konstruktionsregeln; Deutsche Fassung EN 1992-2:2005 +AC:2008
DIN EN 1992-1-1/NA:2013-04	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
DIN EN 1992-2/NA:2013-04	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 2: Betonbrücken - Bemessungs- und Konstruktionsregeln

Nr. Z-12.2-121 Seite 11 von 11 | 22. April 2015

DIN 4125:1990-11 Verpressanker, Kurzzeitanker und Daueranker,

Bemessung, Ausführung und Prüfung

DIN EN 13670:2011-03 Ausführung von Tragwerken aus Beton, Deutsche Fassung von

EN 13670:2009

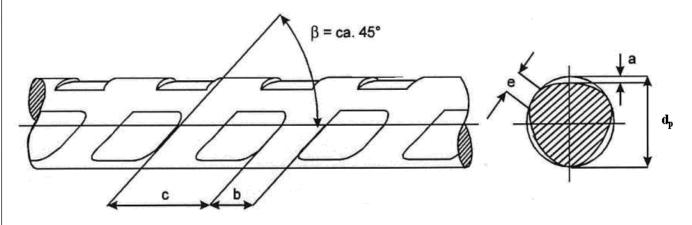
DIN SPEC 18537:2012-02 Ergänzende Festlegungen zu DIN EN 1537:2001-01, Ausführung

von besonderen geotechnischen Arbeiten (Spezialtiefbau)

- Verpressanker

Deutsches Institut für Bautechnik "Richtlinie für Zulassungs- und Überwachungsprüfungen für

Spannstähle", Fassung 2004


Andreas Kummerow

Referatsleiter

Beglaubigt

Bild 1: Darstellung der Spannstahl-Profilierung

Eine Profilreihe ist gegenläufig.

 $\Sigma e \le 0.2 \pi d_p$

Tabelle 1: Abmessungen, Gewichte und Toleranzen

1	2	3	4	5	6	7	8
Festigkeits- klasse			Nenn- querschnitt ²⁾ A _p	Nenngewicht 3)	Profil- Tiefe a	Profil- Breite b	Profil- Abstand c
N/mm²	mm	Toleranz mm	mm²	g/m	mm	mm	mm
	5,5	±0,05	23,8	186	0,12 ±0,05	2,0 ±0,5	5,5 ±0,5
	6,0	±0,05	28,3	221	0,15 ±0,05	3,0 ±0,5	8,0 ±0,5
1470/1670	6,5	±0,05	33,2	259	0,15 ±0,05	3,0 ±0,5	8,0 ±0,5
	7,0	±0,05	38,5	301	0,15 ±0,05	3,0 ±0,5	8,0 ±0,5
	7,5	±0,05	44,2	345	0,15 ±0,05	3,0 ±0,5	8,0 ±0,5

¹⁾ vor dem Profilieren

Kaltgezogener Spannstahldraht St 1470/1670 - rund, profiliert -

Darstellung der Spannstahl-Profilierung, Abmessungen, Gewichte und Toleranzen

Anlage 1

Querschnittstoleranzen: ±2 %

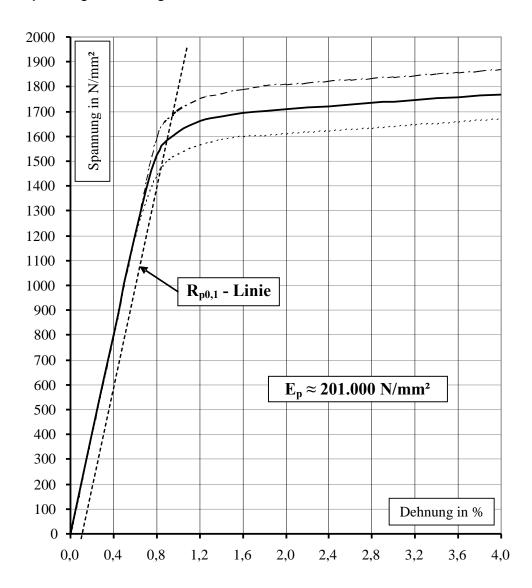
Rohdichte = 7,81 (g/cm³)

Tabelle 2: Festigkeits- und Verformungseigenschaften

1	Stahlsorte Relaxationsklasse			St 1470/1670 sehr niedrig	Quantil- wert p 1) %
2	Elastizitätsgrenze	R _{p0,01}	N/mm²	1300	5
3	0,1%-Dehngrenze	R _{p0,1}	N/mm²	1420	5
4	0,2%-Dehngrenze	R _{p0,2}	N/mm²	1470	5
5	Zugfestigkeit	R _m	N/mm²	1670	5
6	Gesamt-Dehnung bei Höchstkraft	A _{gt}	%	3,5	5
7	Biegezahlen am Einzeldraht mit Dorndurchmesser 2r = 5 • d _p nach DIN ISO 7801:2008-10	N _b	-	3	5

¹⁾ Quantile für eine statistische Wahrscheinlichkeit von 1 - α = 0,95 (einseitig)

 $\underline{\text{Tabelle 3}}\text{:}\quad \text{Rechenwerte für Spannungsverluste } \Delta \ R_{z,t} \ \text{in } \% \ \text{der Anfangsspannung } R_i$


	Für kaltgezogenen Spannstahl St 1470/1670						
			Mit	sehr niedriger	Relaxation		
R _i /R _m			Zeitspanne r	nach dem Vors	pannen in Stun	den	
	1	10	200	1000	5000	5x10 ⁵	10 ⁶
0,45	Unter 1%						
0,50	"						
0,55	"					1,0	1,2
0,60	"				1,2	2,5	2,8
0,65	"			1,3	2,0	4,5	5,0
0,70	"		1,0	2,0	3,0	6,5	7,0
0,75		1,2	2,5	3,0	4,5	9,0	10,0
0,80	1,0	2,0	4,0	5,0	6,5	13,0	14,0

Kaltgezogener Spannstahldraht St 1470/1670 - rund, profiliert -	Autono O
Mechanische Eigenschaften, Relaxationswerte	Anlage 2

Z25194.15 1.12.2-15/14

Bild 2: Spannungs - Dehnungslinie

Die gestrichelten Linien markieren den Bereich, innerhalb dessen die tatsächlichen Spannungs – Dehnungslinien auftreten können.

Kaltgezogener Spannstahldraht St 1470/1670
- rund, profiliert
Spannungs - Dehnungslinie

Anlage 3

Z25194.15 1.12.2-15/14