

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-09/0339 of 30 May 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Halfen anchor channel HTA
Product family to which the construction product belongs	Anchor channels
Manufacturer	Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND
Manufacturing plant	Leviat Werke
This European Technical Assessment contains	34 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330008-04-0601, Edition 03/2024
This version replaces	ETA-09/0339 issued on 7 December 2021

Page 2 of 34 | 30 May 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 34 | 30 May 2024

Specific Part

1 Technical description of the product

The HALFEN Anchor Channels HTA is a system consisting of a C-shaped channel profile of steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. HALFEN channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 and/ or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	N _{Rk,s,c} see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C2
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A7 $M_{Rk,s,flex}$ see Annex C1
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3
- Resistance to concrete cone failure	h_{ef} see Annex B3 $k_{cr,N}$; $k_{ucr,N}$ see Annex C3
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A7 c_{min} ; h_{min} see Annex B3
- Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C3
- Resistance to blowout failure - bearing area of anchor head	A _h see Annex A6

Page 4 of 34 | 30 May 2024

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C6
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M_{Rk,s}^{0}$ see Annex C6
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V_{Rk,s,l,y}^{0}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C4
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C5
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C5
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C5
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C5
- Resistance to concrete pry-out failure	k_8 see Annex C4
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C4
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C7
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, assessment method A1, A2) 	No Performance assessed
 Fatigue limit resistance to steel failure of the whole system (assessment method B) 	No Performance assessed
 Fatigue resistance to steel failure of the whole system (linearized function, assessment method C) 	$\Delta N_{Rk,s,lo,n}$; $N_{lok,s,n}$ ($n = 10^4$ to $n = \infty$) see Annex C8
 Fatigue resistance to concrete related failure (exponential function, assessment method A1, A2) 	No Performance assessed
 Fatigue limit resistance to concrete related failure (assessment method B) 	No Performance assessed
 Fatigue resistance to concrete related failure (linearized function, assessment method C) 	$\Delta N_{Rk,c,E,n}$; $\Delta N_{Rk,p,E,n}$ (<i>n</i> = 10 ⁴ to <i>n</i> = ∞) see Annex C9

Page 5 of 34 | 30 May 2024

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
 Resistance to steel failure under seismic tension loading (seismic performance category C1) 	$N_{Rk,s,a,eq}$; $N_{Rk,s,c,eq}$; $N_{Rk,s,l,eq}$; $N_{Rk,s,eq}$; $M_{Rk,s,flex,eq}$ see Annex C10
 Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1) 	$V_{Rk,s,eq}$; $V^0_{Rk,s,l,y,eq}$; $V_{Rk,s,c,y,eq}$; $V_{Rk,s,a,y,eq}$ see Annex C11
 Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1) 	$V_{Rk,s,l,x,eq}$; $V_{Rk,s,a,x,eq}$; $V_{Rk,s,c,x,eq}$ see Annex C11
Characteristic resistance under static and quasi-static tension and/or shear loading	
- Displacements (static and quasi-static load)	$\begin{array}{l} \delta_{\text{N0}} \text{ ; } \delta_{\text{N}^{\infty}} \text{ see Annex C7} \\ \delta_{\text{V},\text{y},0} \text{ ; } \delta_{\text{V},\text{y},\infty} \text{ ; } \delta_{\text{V},\text{x},0} \text{ ; } \delta_{\text{V},\text{x},\infty} \\ \text{see Annex C7} \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C12 and C13		

3.3 Aspects of durability linked with the Basic Works Requirements

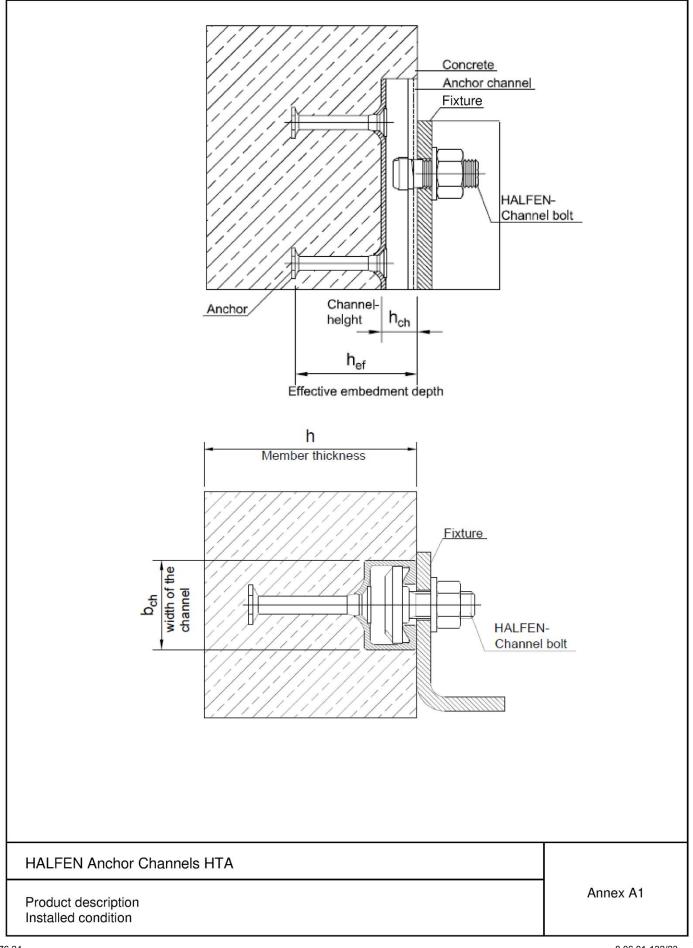
Essential characteristic	Performance		
Durability	See Annex B1		

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 30 May 2024 by Deutsches Institut für Bautechnik

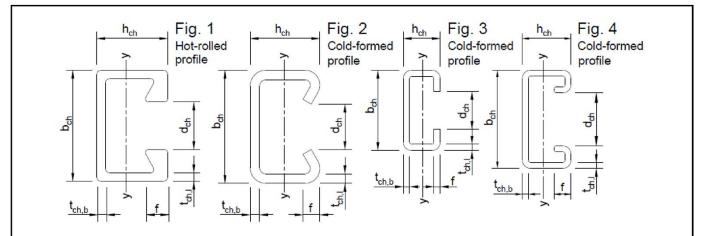
Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller Page 6 of European Technical Assessment ETA-09/0339 of 30 May 2024

English translation prepared by DIBt

Anchor cl	nannel		Anchor	channel	
	0				
hot-rolled			cold-loll	ned profile	
	Anchor (als as weld- on as I - profile round ancho 1 Channel e. HTA 40/22 1 Channel e HTA 40/25 3 HALFEN- special scre e.g. HS M12 4 Washer 5 Hexagonal	anchor, or as or) g. .g. .g. .g. .g. .g. .g.			
Marking of the H e.g.: HTA-CE 40	ALFEN anchor cha	nnel	Marking of the H/ e.g.: HALFEN A4		nel bolts
HTA-CE 40/22 A4 A4 A Stamped on back of channel	b) Printed on chan web	nel	HALFEN A4-70		
H or HALFEN	Identifying mark of p	roducer	H, HALFEN	Identifying ma	ark of the producer
TA	Type of anchor chan		A4	Material	
40/22	Size		70	Strength grad	e
A4	Material		Material of channel		
If $h_{ef} > h_{ef,min}$	Emdbedment depth		<u>Steel</u>		
Material of chan			No marking		
<u>Steel</u>		I	Stainless steel	corrosion	resistance class
No marking for	hot-dip galvanized		A2	CRC II	
SV	pre-galvanized	°	A4	CRC III	
Stainless steel	corrosion resistance	°	D4	CRC III	
A2	CRC II	Central and Contral and	FA/D6	CRC IV	
A4	CRC III		HCR/A8	CRC V	
D4	CRC III	I	Strength grade of		holts:
D4 D6	CRC IV	I	Steel		
HCR/A8	CRC V		4.6, 8.8	Strength o	rade 4.6, 8.8
		I	Stainless steel	Guengurg	naus 4.0, 0.0
Close to the anch	or a nail hole is positio		50, 70	Strength g	rade 50, 70
HALFEN Ancho	r Channels HTA				Anney A2

Product description Marking and materials

		Inte	nded use				
		1	2				
<u>o</u>	atio	Dry internal conditions	Internal conditions with usual humidity				
Item no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions wi usual humidity. For examples see use conditions in Annex B1				
		Ma	iterials ⁶⁾				
1	Channel profile	Carbon steel 1.0038 (A), 1.0044 (A), 1.0045 (A) 1.0976 (D) hot-dip galv. ≥ 55 μm acc. to (N) 1.0242+Z (U), 1.0529+Z (U) hot-dip galv. ≥ 15 μm (pre-galvanized)	Carbon steel 1.0038 (A), 1.0044 (A), 1.0045(A) 1.0976 (D) hot-dip galv. ≥ 55 µm acc. to (N) Stainless steel ⁵) 1.4301 (G), 1.4307 (G), 1.4567 (G) 1.4541 (G)				
2	Anchor	Carbon steel 1.0038 (A), 1.0214 (B), 1.0213 (B) 1.1132 (E), 1.1122 (E), 1.5525 (I) 1.5535 (I), 1.5523 (H), 1.0045 (A) hot-dip galv. ≥ 55 µm acc. to (N)	Carbon steel 1.0038 (A), 1.0214 (B), 1.0213 (B) 1.1132 (E), 1.1122 (E), 1.5525 (I) 1.5535 (I), 1.5523 (H), 1.0045 (A) hot-dip galv. ≥ 55 µm acc. to (N) Stainless steel ⁵⁾ 1.4301 (G), 1.4307 (G)				
			1.4567 (G), 1.4541 (G)				
~	HALFEN	Carbon steel strength grade 4.6 / 8.8 (J) hot-dip galv. \geq 50 µm acc. to (P) ¹⁾	Carbon steel strength grade 4.6 / 8.8 (J) hot-dip galv. \geq 50 µm acc. to (P) ¹				
3	channel bolts		Stainless steel ⁵⁾ strength grade 50 / 70 (K) 1.4301 (G), 1.4307 (G) 1.4567 (G), 1.4541 (G)				
4	Washer ³⁾ (R) and (S) production class A, 200 HV	Carbon steel EN 10025-1:2017 electroplated ≥ 5 µm acc. to (O)	Carbon steel EN 10025-1:2017 hot-dip galv. \geq 50 µm acc. to (P) ¹⁾ Stainless steel ⁵⁾ steel grade A2, A3 (K)				
5	Hexagonal nuts (T)	Carbon steel strength grade 5/8 (L) electroplated ≥ 5 µm acc. to (O)	Carbon steel strength grade 5/8 (L) hot-dip galv. \geq 50 µm acc. to (P) ¹⁾ Stainless steel ⁵⁾ strength grade 70 / 80 (M) steel grade A2, A3 (M)				


HALFEN Anchor Channels HTA

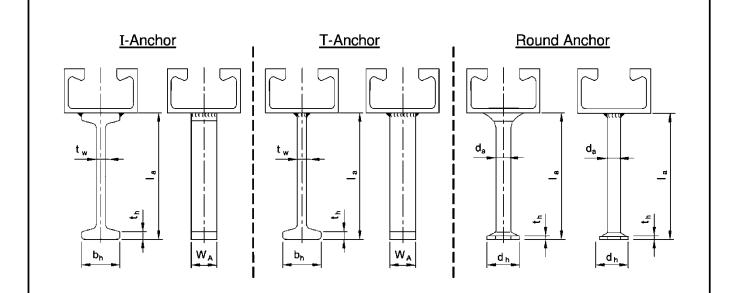
Product description Materials and intended use

Deutsches Institut für Bautechnik

Table A1 (continued): Materials and intended use								
			Intended use					
	u	3	4	5				
ltem no.	Specification	according	g EN 1993-1-4:2006+A1:2015	, Tab. A.2				
-	Sp	For CRC III	For CRC IV	For CRC V				
			Materials ⁷⁾					
1	Channel profile	Stainless steel 1.4401 (G), 1.4404 (G) 1.4571 (G), Stainless steel D4 1.4062 (F), 1.4162 (F), 1.4362 (G)	Stainless steel 1.4462 ²⁾ (G)	Stainless steel 1.4529 (G), 1.4547 (G), 1.4410 (G)				
0	Anchor	Stainless steel 1.4462 ²⁾ (G)	Stainless steel 1.4529 (G), 1.4547 (G), 1.4410 (G)					
		Carbon steel ⁴⁾ 1.0038 (A)						
3	Stainless steel strength grade 50 / 70 (K)		Stainless steel strength grade 50 / 70 (K) 1.4462 ²⁾ (G)	Stainless steel strength grade 50 / 70 (K) 1.4529 (G), 1.4547 (G), 1.4410 (G)				
4	Washer ³⁾ (R) and (S) production class A, 200 HV	Stainless steel steel grade A4, A5 (K)	Stainless steel 1.4462 ²⁾ (G)	Stainless steel 1.4529 (G), 1.4547 (G), 1.4410 (G)				
5	Hexagonal nuts (T)	Stainless steel strength grade 70 / 80 (M) steel grade A4, A5 (M)	Stainless steel strength grade 70 / 80 (M) 1.4462 ²⁾ (G)	Stainless steel strength grade 70 / 80 (M) 1.4529 (G), 1.4547 (G), 1.4410 (G)				
A - El	N 10025-2:2004 F	- EN 10088-2:2014	K - EN ISO 3506-1:2020 P -	EN ISO 10684:2004+AC:2009				
B - El	N 10263-2:2017	- EN 10088-3:2014	L - EN ISO 898-2:2022 R -	EN ISO 7089:2000				
	F	I - EN 10269:2013	M - EN ISO 3506-2:2020 S -	EN ISO 7093-1:2000				
D - E	N 10149-2:2013 I	- EN 10263-4:2017	N - EN ISO 1461:2022 T -	EN ISO 4032:2023				
E - El	N 10263-3:2017 J	- EN ISO 898-1:2013+AC:2013						
²⁾ 1.4 [,] ³⁾ not ⁴⁾ only	462 not applicable f included in scope o y for weld-on anchor		 ⁵⁾ stainless steel anchors only in steel channel profiles, channel ⁶⁾ expected working life at least 5 ⁷⁾ expected working life at least 5 	bolts, washers and nuts 50 years				
HAL	FEN Anchor Ch	annels HTA						
	uct description rials and intendec	use		Annex A4				

Table A2: Profile dimensions (steel and stainless steel)

	e			Dimens	ions			al	
Anchor channel	Figure	bch	h _{ch}	t _{ch,b}	t _{ch,I}	d _{ch}	f	Material	ly
	Ē	[mm]					Ň	≝ [mm⁴]	
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25		4.060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8.547
41/22	4	41,30	20,70	2,50	2,50	22,30	7,20		12.600
40/25	2	40,00	25,00	2,75	2,75	18,00	5,60		20.570
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39		41.827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90	el l	72.079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90	Steel	293.579
40/22 / 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00		20.029
50/30 / 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85		52.896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50		93.262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187.464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349.721
28/15	3	28,00	15,25	2,25	2,25	12,00	2,25		4.060
38/17	3	38,00	17,50	3,00	3,00	18,00	3,00		8.547
41/22	4	41,30	20,70	2,50	2,50	22,30	7,20		12.600
40/25	2	39,50	25,00	2,50	2,50	18,00	5,40		19.097
49/30	2	50,00	30,00	3,00	3,00	22,00	7,39	steel	41.827
54/33	2	54,00	33,00	4,50	4,50	22,00	7,90		72.079
72/49	2	72,00	49,00	6,00	6,00	33,00	9,90	Stainless	293.579
40/22 / 40/22P	1	39,50	23,00	2,60	2,40	18,00	6,00	itair	20.029
50/30 / 50/30P	1	49,00	30,00	3,20	2,75	22,50	7,85	0	52.896
52/34	1	52,50	33,50	4,10	4,00	22,50	10,50		93.262
55/42	1	54,50	42,00	5,00	5,00	26,00	12,90		187.464
72/48	1	72,00	48,50	4,50	5,00	33,00	15,50		349.721


HALFEN Anchor Channels HTA

Product description Profile dimensions

Page 11 of European Technical Assessment ETA-09/0339 of 30 May 2024

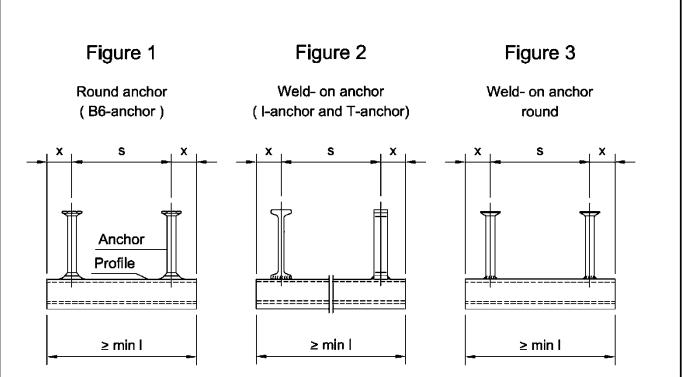
English translation prepared by DIBt

Table A3: Dimensions of anchors (I-Anchor, T-Anchor or Round Anchor)

Anchor		I-Anchor und T-Anchor							ind An	chor	
channe	min l _a	tw	b _h	th	WA 4)	A h ⁴⁾	min l _a	da	dh	t _h	Ah
1			[mr	n]		[mm²]		[mi	m]		[mm ²]
28/15	62	5	18	3,3	10 - 20	130	32	6	12	1,3	85
38/17 ³⁾	62	5	18	3,3	10 (14) - 20	130 (182)	60,4	8	16	1,9	151
41/22	69	5	18	3,5	10 (14) - 20	130 (182)	63,3	8	16	1,9	151
40/25	62	5	18	3,3	12 (14) - 24	156 (182)	60,9	8	16	1,9	151
40/22	62	5	18	3,3	12 - 24	156	60,9	8	16	1,9	151
40/22P	128	6	17	5	18 - 30	198	70,2	10	20	2,2	236
49/30	69	5	18	3,5	18 (20) - 30	234 (260)	69,2	10	20	2,2	236
50/30	69	5	18	3,5	18 - 30	234	69,2	10	20	2,2	236
50/30P	128	6	17	5	25 - 35	275	78,7	12	25	2,7	378
54/33	128	6	17	5	30 - 40	330	126	12	25	2,7	378
52/34	128	6	17	5	30 - 40	330	125,5	12	25	2,7	378
55/42 ¹⁾	140	7,1	20	6	35 - 45	452	136,2	14	28	3,2	462
72/49	140	7,1	20	6	40 - 50	516			_ 2)		
72/48	140	7,1	20	6	40 - 50	516			_ ²⁾		

¹⁾ HTA 55/42 in stainless steel only with weld-on anchors.

²⁾ Product not available.


³⁾ HTA 38/17 in stainless steel D4 only with round anchors.

⁴⁾ values in brackets for anchor channels in stainless steel

HALFEN Anchor Channels HTA

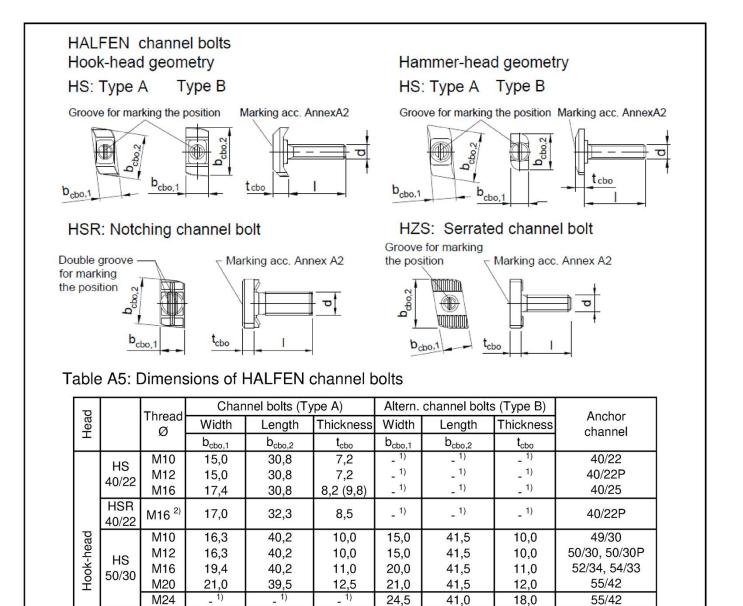
Product description Dimensions of anchors

Table A4: Anchor positioning

	Anchor s	spacing s	End spa	cing x ¹⁾	Min. Channel length Imin		
Anchor			Round	Welded	Round	Welded	
channel	Smin	Smax	anchor	anchor	anchor	anchor	
			Fig. 1	Fig. 2 and 3	Fig. 1	Fig. 2 and 3	
			[mm]			
28/15	50	200	25	25	100	100	
38/17	50	200	25	25	100	100	
41/22							
40/25							
40/22							
40/22P	100 (50)	250	25 ²⁾	25 ²⁾	100	150	
49/30							
50/30							
50/30P							
52/34	100 (80)	250	35	25 ²⁾	150	150	
54/33	100 (80)	200		20-/	150	150	
55/42	100 (80)	300	35	25 ²⁾	150	150	
72/48	400 (00) 400 3)		_ 3)	05 2)	_ 3)	150	
72/49	100 (80)	400	- 0/	25 ²⁾	_ 0)	150	

() valid for round anchor acc. Fig. 1.

¹⁾ For channels with I = 6070 mm the end spacing x is always 35 mm.


²⁾ End spacing may be increased up to 35 mm.

3) Product not available.

HALFEN Anchor Channels HTA

Product description Anchor positioning, channel length

M16³⁾ 34,7 () Value applies for strength grade 8.8 ^{I)} Product not available HALFEN Anchor Channels HTA

_ 1)

_ 1)

_ 1)

1)

10,6

10,6

10,9

10,8

10,8

10,8

13,6-14,1

13,6-14,1

16,0

20,5

20,5

M20

M24

M27

M30

M6

M8

M10

M12

M10

M12

M10

M12

M16

M12³⁾

HS

72/48

HS

28/15

HS

30

HS

38/17

HZS

41/22

Hammer-head

1)

_ 1)

_ 1)

1)

21,1

21,1 (20,7)

20,2

20.1

20,2

20,2

29,0

29,0

29,0

34,7

1)

_ 1)

_ 1)

4,0

4,5

5,0

6,5

7,0

7,0

6,0

6,0

8,5

7,5 (5,5)

7,5

1)

23,0

25.0

28,0

31,0

10,1

10,1

10,1

10,1

1)

_ 1)

13 (12)

13 (12)

16,0

1)

_ 1)

58,0

58,0

58,0

58,0

22,7 (22,2)

22,7 (22,2)

22,7 (22,2)

22,7 (22,2)

1)

1)

30,5

30,5

30,5

1)

_ 1)

2) strength grade 8.8 only

14,0

16,0

18,0

20,0

4,0

4,0

5,0 (4,0)

5,5

1)

6,0

7,0 (6,0)

7,0

1)

_ 1)

³⁾ strength grade 8.8 and 50

1)

72/48

72/49

28/15

38/17

41/22

Product description HALFEN channel bolts, dimensions

Table A6: Strength grade

	Ste	el ¹⁾	Stainles	s steel 1)
Strength grade	4.6	8.8	50	70
f _{uk} [N/mm²]	400	800	500	700
f _{yk} [N/mm²]	240	640	210	450
Finish	electroplated	, hot-dip galv.		-

¹⁾ Materials according Annex A2 and Annex A3-A4, Tab. A1

HALFEN Anchor Channels HTA

Product description HALFEN channel bolts, strength grade

Specifications for intended use

Working Life:

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least

- 50 years
- (anchor channels and channel bolts according to Annex A3-A4, Table A1, column 1-5)100 years
- (anchor channels and channel bolts according to Annex A4, Table A1, column 3-5)

Anchor channels and channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel
- Static and quasi-static shear in the direction of the longitudinal axis of the channel (anchor channel and channel bolt according to Annex C5)
- Fatigue cyclic tension loads (anchor channels and channel bolts according to Annex C8)
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and seismic shear in the direction of the longitudinal axis of the channel (seismic performance category C1) (anchor channel and channel bolt according to Annex C10)
- Fire exposure for concrete class C20/25 to C50/60 (anchor channels and channel bolts according to Annex C12)

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres according to EN 206:2013 + A2:2021.
- Strength classes C12/15 to C90/105 according to EN 206:2013 + A2:2021.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A3-A4, Table A1, column 1 - 5)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A3-A4, Table A1, column 2 5)
- According to EN 1993-1-4:2006 + A1:2015 + A2:2020 relating to corrosion resistance class CRC III (anchor channels and channel bolts according to Annex A4, Table A1, column 3 - 5)
- According to EN 1993-1-4:2006 + A1:2015 + A2:2020 relating to corrosion resistance class CRC IV (anchor channels and channel bolts according to Annex A4, Table A1, column 4 - 5)
- According to EN 1993-1-4:2006 + A1:2015 + A2:2020 relating to corrosion resistance class CRC V (anchor channels and channel bolts according to Annex A4, Table A1, column 5)

HALFEN Anchor Channels HTA

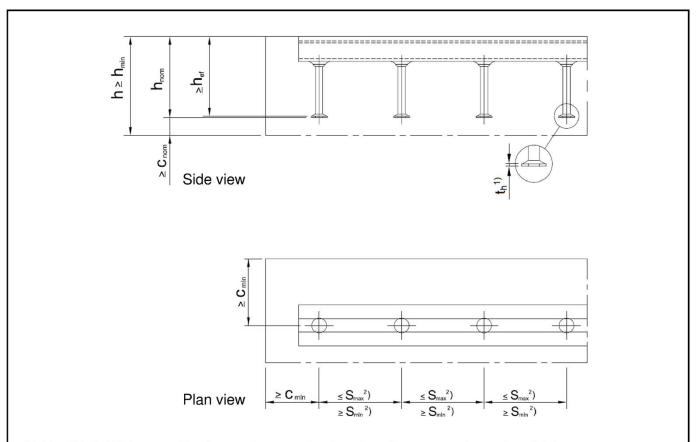
Intended use Specifications

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as seismic loading (seismic performanche category C1) and fire exposure the anchor channels are designed in accordance with EN 1992-4:2018 and EOTA TR 047 "Design of Anchor Channels", May 2021 or.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", June 2022.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A7, Table A4 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instruction given in Annexes B6 and B7.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the anchor channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor channels are protected from penetration of concrete into the internal space of the channel profiles.
- Washer may be chosen according to Annex A3-A4 and provided separately by the user.
- Orientating the channel bolt (groove mark according to Annex B7) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.


HALFEN Anchor Channels HTA

Intended use Specifications

Page 17 of European Technical Assessment ETA-09/0339 of 30 May 2024

English translation prepared by DIBt

Table B1-1: Minimum effective anchorage depth, edge distance and member thickness

Anchor channel	<i>u</i>		28/15	38/17	41/22	40/25	49/30	54/33	72/49
Min. effective anchorage depth – round anchor		h _{ef,min}	45	76	82	84	94	155	_ 4)
Min. effective anchorage depth – I- & T-anchor	- mu	h _{ef,min}	74	76	82	84	96	156	183
Min. edge distance	_[Cmin	40	50	50	50	75	100	150
Min momber thickness] [b.		-	а	ictual hef +	- th + Cnom	3)	
Min. member thickness		h _{min}	55	90	90	90	105	170	195

Table B1-2: Minimum effective anchorage depth, edge distance and member thickness

			-	20 0000					
Anchor channel			40/22	40/22P	50/30	50/30P	52/34	55/42	72/48
Min. effective anchorage depth – round anchor		h _{ef,min}	82	91	94	106	155	175	_ 4)
Min. effective anchorage depth – I- & T-anchor	[mm	h _{ef,min}	82	146	95	153	156	176	182
Min. edge distance	<u>ے</u>	Cmin	50	50	75	75	100	100	150
Min. member thickness		b.			actua	l h _{ef} + t _h +	Cnom ³⁾		
with. member thickness		h _{min}	90	105	105	120	170	190	195

 $^{1)}$ t_h = Anchor head thickness

³⁾ c_{nom} acc. EN 1992-1-1:2004 + AC:2010

- ²⁾ s_{min}, s_{max} acc. Annex A7, Table A4 ⁴⁾ Product not available

HALFEN Anchor Channels HTA

Intended use Installation parameters of anchor channels

		NH im		Instal	lation torque T	inst ⁴⁾	
		Min.	General 2)			el contact 3)	
	HALFEN Channel	spacing	T _{inst,g}		Ti	nst,s	
Anchor channel	bolts Ø	s _{min,cbo} of the channel bolts	Steel 4.6; 8.8 Stainless steel 50; 70 ¹⁾	Steel 4.6	Stainless steel 50 ¹⁾	Steel 8.8	Stainless Steel 70 ¹⁾
	[mm]	[mm]			[Nm]		
	6	30	3	3	3	_ 5)	_ 5)
0045	8	40	8	8	8	20	15
28/15	10	50	13	15	15	40	30
	12	60	15	25	25	70 ⁷⁾	50
	10	50	15	15	15	40	30
38/17	12	60	25	25	25	70	50
	16	80	40	65	60	180	130
44/00	12	60	20	_ 5)	20	55	_ 5)
41/22	16	80	40	_ 5)	50	140	_ 5)
40/25	10	50	15	15	15	40	30
40/22	12	60	25	25	25	70	50
40/22P	16	80	45	65	60	180	130
40/22P	16 ⁶⁾	80	150	_ 5)	_ 5)	180	_ 5)
40/00	10	50	15	15	15	40	30
49/30 50/20	12	60	25	25	25	70	50
50/30	16	80	60	65	60	180	130
50/30P	20	100	75	130	120	360	250
	10	50	15	15	15	40	30
52/34	12	60	25	25	25	70	50
54/33	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	10	50	15	15	15	40	30
	12	60	25	25	25	70	50
55/42	16	80	60	65	60	180	130
	20	100	120	130	120	360	250
	24	120	200	230	200	620	440
	20	100	120	130	120	360	250
72/48	24	120	200	230	200	620	440
72/49	27	135	300	340	300	900	650
	30	150	380	460	400	1200	850

²⁾ Acc. to Annex B5, Fig.1

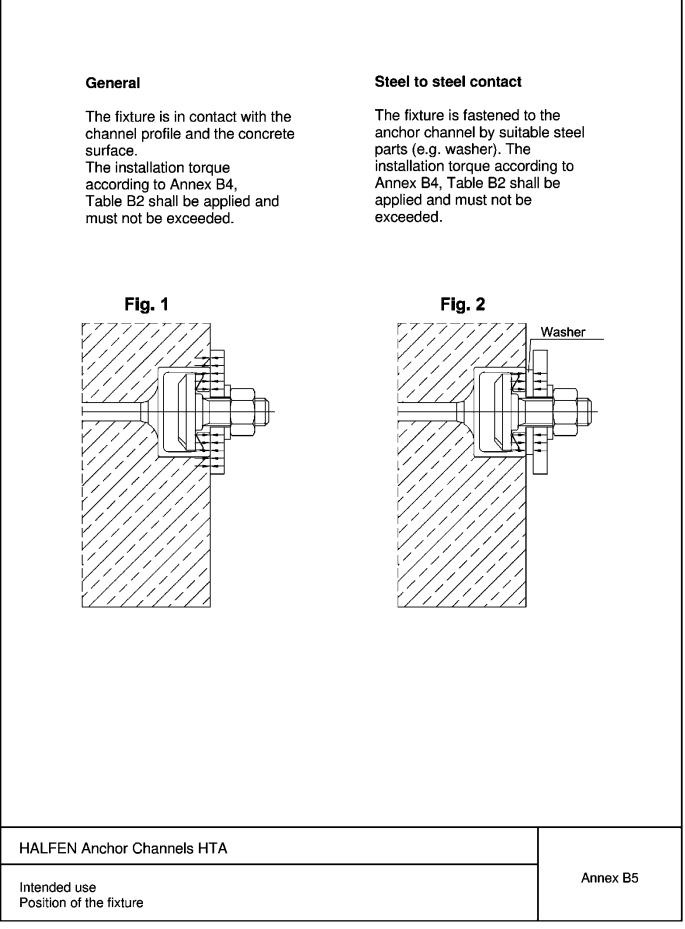
³⁾ Acc. to Annex B5, Fig. 2

⁴) T_{inst} must not be exceeded

5) Product not available

⁶⁾ valid for channel bolt type HSR

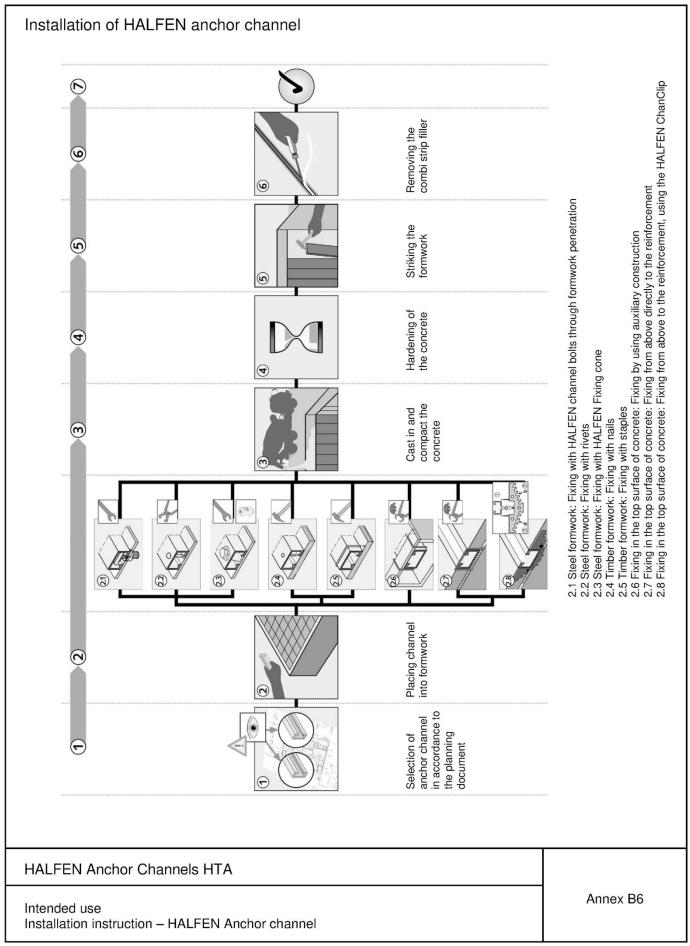
⁷⁾ 55 Nm for HS 30

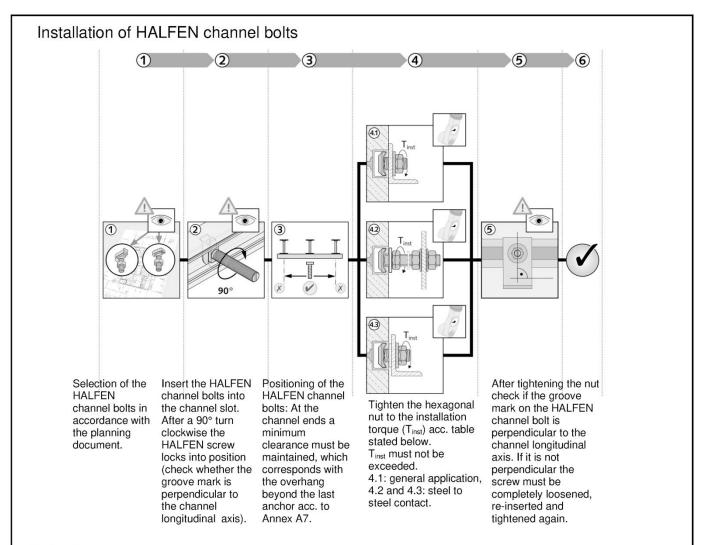

HALFEN Anchor Channels HTA

Intended use Installation parameters

Page 19 of European Technical Assessment ETA-09/0339 of 30 May 2024

English translation prepared by DIBt




Page 20 of European Technical Assessment ETA-09/0339 of 30 May 2024

English translation prepared by DIBt

Table B3: Installation torque

Pos. of	Materia	al	Ancherchennel					T _{inst} [Nm] ¹⁾				
fixture acc. Annex B5	strength g	rade	Anchor channel	M6	M8	M10	M12	M16	M20	M24	M27	M30
			28/15	3	8	13	15	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
			38/17	- 2)	- 2)	15	25	40	_ 2)	_ 2)	_ 2)	_ 2)
			41/22	- 2)	_ 2)	_ 2)	20	40	_ 2)	- 2)	_ 2)	_ 2)
	Steel 4.6	8.8	40/22, 40/22P, 40/25	_ 2)	_ 2)	15	25	45	_ 2)	- ²⁾	_ 2)	_ 2)
General	and Stainless	stool	40/22P + HSR	_ 2)	_ 2)	_ 2)	_ 2)	150	_ 2)	_ 2)	_ 2)	_ 2)
	50 / 70		49/30, 50/30, 50/30P	_ 2)	_ 2)	15	25	60	75	_ 2)	_ 2)	_ 2)
			54/33, 53/34	_ 2)	_ 2)	15	25	60	120	_ 2)	_ 2)	_ 2)
			55/42	_ 2)	_ 2)	15	25	60	120	200	_ 2)	_ 2)
			72/49, 72/48	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	120	200	300	380
	Chaol	4.6		3	8	15	25	65	130	230	340	460
Steel to	Steel	8.8	All profiles	_ 2)	20	40	70 (55)	180 (140)	360	620	900	1200
steel contact	Stainl.	50	All profiles	3	8	15	25 (20)	60 (50)	120	200	300	400
	Steel			_ 2)	15	30	50	130	250	440	650	850
1) Tinst must	not be exce	eded	²⁾ Product no	ot avail	able	³⁾ v	alues in t	orackets for	r HZS 4	1/22		

HALFEN Anchor Channels HTA

Intended use

Installation instruction - HALFEN channel bolts

Anchor chann	nel		steel	28/15	38/17	41/22 / 40/25	40/22 / 40/22P	49/30	50/30 / 50/30P	54/33	52/34	55/42	72/49 72/48			
Steel failure:	Anchor															
Characteristic			carbon	9	18	18 / 20	20 / 31	31	31 / 56	56	56	80	102			
resistance	N _{Rk,s,a}	[kN]	stainless ³⁾	12,7	22,6	22,6	20/31	35,3	31 / 56	56,5	56	_ 2)	102			
resistance			stainless D4	15,3	27,2	22,6	_ 2)	35,3	_ 2)	56,5	_ 2)	_ 2)	_ 2)			
Partial factor	₿Ms	1)	1,8													
Steel failure:	Connec	tion cl	nannel/ancho	r												
Characteristic			carbon	9	18	18 / 20	20 / 29	31	31 / 39	55	55	80	100			
resistance	$N_{Rk,s,c}$	[kN]	stainless ³⁾	12,7	22,6	22,6	20 / 29	,	31 / 39	56,5	55	_ 2)	100			
resistance			stainless D4	15,3	27,2	22,6	_ 2)	35,3	_ 2)	56,5	_ 2)	_ 2)	_ 2)			
Partial factor	∦ Ms,c	a ¹⁾					1,8									
Steel failure:	Local fle	exure	of the channe	llips									ſ			
Spacing of channel bolts for N ⁰ _{Rk,s,I}	SI,N	[mm]	all materials	56	76	83 / 80	79	100	98	107	105	109	144			
			carbon	9	18	20	38	31	43	55	72	110	100 / 120			
Characteristic resistance	N ⁰ Rk,s,I	[kN]	stainless 3)	12,7	22,6	26 / 22,6	38	35,3	43	56,5	72	_ 2)	100 / 120			
			stainless D4	16,1	35,4	26 / 22,6	_ 2)	35,3	_ 2)	56,5	_ 2)	_ 2)	_ 2)			
Partial factor	∦ Ms,I	1)					1,8									
 In absence of No performance No list (see all states) 	ce assess	sed	gulations erials except D4	1 000 /	Appoy A											

Table C2: Characteristic flexural resistance of channel

Anchor cha	nnel		steel	28/15	38/17	41/22 40/25		49/30	50/30 50/30P	54/33	52/34	55/42	72/49	72/48
Char. flexure	$M_{\rm Rk,s,flex}$	[Nm]	carbon, stainless ³⁾	317	580	733 / 1071	1389	1673	2803	2984	3373	6447	8617	8593
resistance of channel	M _{Rk}	N]	stainless D4	432	836	749 / 1262	_ 2)	2528	_ 2)	2984	_ 2)	_ 2)	_ 2)	_ 2)
Partial factor	∦ Ms,							1,15				1		
			tional regulations teel materials exc				ce asses:	sed						
HALFEN A	nchc	or Ch	annels HTA											
Performance Characterist		sistar	nces under tensi	Annex C1 under tension load – steel failure anchor channel										

Page 23 of European Technical Assessment ETA-09/0339 of 30 May 2024

English translation prepared by DIBt

											1	
	M30		224,4	448,8	280,5	392,7						
ţ	M27		183,6	367,2	229,5	321,3						
lod lan	M24		141,2	282,4	176,5	247,1						
EN char	M20		98,0	196,0	122,5	171,5						
f HALFI	M16 ³⁾		62,8	125,6 (96,3)	78,5 (64,0)	109,9	2,00	1,50	2,86	1,87		
ailure o	M12 ³⁾		33,7	67,4 ⁴⁾ (48,5)	42,2 (40,3)	59,0						
- steel f	M10		23,2	46,4	29,0	40,6						
on load	M8		14,6	29,3	18,3	25,6						
er tensi	M6		8,0	16,1	10,1	14,1						
ces und			4.6	8.8	50 1)	70 1)	4.6	8.8	50 ¹⁾	70 1)		
esistan			1		[KN]						d A3 ations	
cteristic r	bolts Ø			:	NRK,s			ć	X Ms ²⁾		nnex A2 an ational regul HZS 41/22	
Table C3: Characteristic resistances under tension load – steel failure of HALFEN channel bolts	HALFEN Channel bolts Ø	Steel failure		Characteristic	resistance				Partial factor		¹⁾ Materials according Annex A2 and A3 ²⁾ In absence of other national regulations ³⁾ values in brackets for HZS 41/22 ⁴⁾ 50,7 kN for HS 30	
LFEN Ar	ichor (Chan	nels I	HTA								Annov 00
formances aracteristic		tances	s unde	er tensio	n load –	steel	failure	e char	nel bo	olts		Annex C2

Anchor channel				28/15	38/17	41/22 40/22 40/25	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48			
Concrete failure:							Ľ	[r	1					
Characteristic resistance in	Round anchors	N _{Rk,p}	[kN]	7,6	13,6	13,6	21,2	21,2	34,0	34,0	41,6	_ 2)			
cracked concrete C12/15	I-anchors 3)	anone and a		11,7	11,7	14,0	17,8	21,0	24,7	29,7	40,6	46,4			
Characteristic resistance in	Round anchors	N _{Rk,p}	[kN]	10,6	19,0	19,0	29,7	29,7	47,6	47,6	58,2	_ 2)			
uncracked concrete C12/15	I-anchors 3)	і чнк,р	[k	16,4	16,4	19,6	24,9	29,4	34,6	41,6	56,8	65,0			
	C20/25			1,67											
	C25/30	r.						2,08							
	C30/37							2,50							
Increasing factor	C35/45							2,92							
for	C40/50	Ψ_{c}	Ŀ					3,33							
Nrk,p = Nrk,p,(C12/15) · Ψc	C45/55							3,75							
	C50/60							4,17							
	C55/67							4,58							
	≥C60/75							5,00							
Partial factor	0	ү мр= ү №	lc ¹⁾	1,5											
Concrete failure:	Concrete	1.0		7.0	70	70	0.0	0.1	0.0	07	0.0	0.0			
Product factor k ₁		Kcr,N Kucr,1		7,2	7,8 11,2	7,9 11,2	8,0 11,5	8,1 11,5	8,2 11,7	8,7 12,4	8,9 12,6	8,9 12,7			
Charact.edge spa	cina	Ccr,N		111	171	176	195	199	216	260	269	270			
	cing		[mm]		171	170				200	203	270			
Charact.spacing		Scr,N	100000	-				2,0 Ccr,N							
Partial factor Concrete failure:	Splitting	∦ Mc ¹)					1,5							
Charact.edge spa		Ccr,sp	[mm]	135	228	246 / 252	273	282	318	465	525	546			
Charact.spacing		<u> </u>					2,0 C _{cr,sp})	1						
Partial factor		Scr,sp ¥Msp	1)					1,5							
¹⁾ In absence of othe ³⁾ Value valid for mir Annex A6, Table A3	nimum I-anch	gulations or size;	s for o				issessed tic resista		be calcula	ted usin	g A _h from	ı			

HALFEN Anchor Channels HTA

Performances Characteristic resistances under tension load – concrete failure

Anchor chai	nnel		steel	28/15	38/17	41/22 40/25	40/22 / 40/22P	49/30	50/30 / 50/30P	54/33	52/34	55/42	72/49 72/48
Steel failure	Anchor						10/221						/
			carbon	9	18	29,7 / 20	35	31	52 / 59	55	78	110	100 / 146
Characteristi resistance	V _{Rk,s,a,y}	[kN]	stainless 4)	12,7	22,6	22,6	35	35,3	52 / 59	56,5	78	_ 3)	100 / 146
			stainless D4	18	30	22,6 / 30,8	_ 3)	58,9	_ 3)	56,5	_ 3)	_ 3)	_ 3)
Partial factor	۷Ms	1)					1	,8					
Steel failure	Connec	tion cł	nannel / anch	or									
			carbon	9	18	29,7 / 20	35	31	52 / 59	55	78	110	100 / 146
Characteristi resistance	V _{Rk,s,c,y}	[kN]	stainless 4)	12,7	22,6	22,6	35	35,3	52 / 59	56,5	78	_ 3)	100 / 146
			stainless D4	18	30	22,6 / 30,8	_ 3)	58,9	_ 3)	56,5	_ 3)	_ 3)	_ 3)
Partial factor	Partial factor XMs,ca ¹⁾ 1,8												
Steel failure	: Local fle	lexure of channel lips											
Spacing of channel bolts for V _{Rk,s,I}	SI,V	[mm]	all materials	56	76	83 / 80	79	100	98	107	105	109	144
			carbon	9	18	29,7 / 20	35	31	52 / 59	55	78	110	100 / 146
Characteristi resistance	V ⁰ Rk,s,l,y	[kN]	stainless 4)	12,7	22,6	22,6	35	35,3	52 / 59	56,5	78	_ 3)	100 / 146
			stainless D4	18	30	22,6 / 30,8	_ 3)	58,9	_ 3)	56,5	_ 3)	_ 3)	_ 3)
Partial factor	∦ Ms,						1	,8					
Concrete fai	lure: Pry-	out											
Product facto	r	k ₈ ²⁾	all materials	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Partial factor		% Mc ¹⁾					1	,5					
Concrete fai		crete	edge			5402 55-00 V							
Product-	racked oncrete	k _{cr,V}	all materials	4,5	7,5	6,5 / 7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
	ctor k ₁₂ uncracked concrete k _{ucr} ,			6,3	10,5	9,1 / 10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
Partial factor		X Mc ¹⁾					1	,5					
 In absence of ²⁾ Without support ³⁾ No performation ⁴⁾ Valid for all statements 	plementary	ional re reinfor sed	cement. In case				nforceme	nt the f	actor k ₈ s	hould be	e multip	lied with	n 0,75.

HALFEN Anchor Channels HTA

Performances

Char. resistances under shear load - steel failure anchor channel, concrete failure

Anchor channel											
Steel failure: Anchor											
Characteristic resistance	V _{Rk,s,a,x}	[kN]	carbon	18,6							
Partial factor	¥Ms ¹ ∫)		1,8							
Steel failure: Connection cl	hannel / anc	hor									
Characteristic resistance	V _{Rk,s,c,x}	[kN]	carbon	17,4							
Partial factor	∦ Ms,ca	1)		1,8							
Steel failure: Connection be	etween char	nnel lips	and cha	nnel bolt							
Characteristic resistance	V _{Rk,s,l,x}	[kN]	carbon	13,5							
Installation factor	∦ inst ¹)		1,2							

¹⁾ In absence of other national regulations

HALFEN Anchor Channels HTA

Performances Char. resistances under shear load – steel failure anchor channel

Page 27 of European Technical Assessment ETA-09/0339 of 30 May 2024

English translation prepared by DIBt

	HALFEN Channel bolts Ø			MG	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
		I	4.6	4,8	8,8	13,9	20,2	37,7	58,8	84,7	110,2	134,6
Characteristic	:		8.8	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
resistance	V _{Rk,s}	[KN]	50 ¹⁾	6,0	11,0	17,4	25,3	47,1	73,5	105,9	137,7	168,3
			(1 10	8,4	15,4	24,4	35,4	62,9	102,9	148,3	192,8	235,6
			4.6	6,3	15,0	29,9	52,4	133,2	259,6	449,0	665,8	899,6
Characteristic			8.8	12,2	30,0	59,8	104,8 ³⁾	266,44)	519,3 ⁵⁾	898,0	1331,5	1799,2
flexure resistance	M ⁰ Rk,s	E E Z	50 1)	7,6	18,7	37,4	65,5	166,5	324,5	561,3	832,2	1124,5
			70 1)	10,7	26,2	52,3	91,7 ³⁾	233,14)	454,4	785,8	1165,1	1574,3
			4.6					1,67				
	c		8.8					1,25				
Partial factor	X Ms ²⁾	<u> </u>	50 1)					2,38				
			(1 02					1,56				
¹⁾ Materials according Annex A2 and A3 ²⁾ In absence of other national regulations	Annex A2 national re	and A3 gulations		3) For F 4) For H 5) For H	$^{3)}$ For HTA 28/15 $M^0_{\rm Rk,s}$ is limited to 84 Nm. $^{4)}$ For HTA 38/17 $M^0_{\rm Rk,s}$ is limited to 231 Nm. $^{5)}$ For HTA 49/30 $M^0_{\rm Rk,s}$ is limited to 509 Nm.	J ⁰ _{Rk,s} is lim J ⁰ _{Rk,s} is lim J ⁰ _{Rk,s} is lim	ited to 84 N ited to 231 ited to 509	щ т Ш Ш				

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under shear load - steel failure channel bolts

Table C7: Displacements under tension load

Anchor channel			28/15	38/17 41/22	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Tension load	NEk	[kN]	3,6	7,1	7,9	11,5	12,3	15,5	21,8	31,7	39,7
Short-term displacement	δ _{N0}	[mm]	0,3	0,3 0,6	0,4	0,4	0,4	0,5	0,5	0,5	0,5
Long-term displacement	δ _{N∞}	[mm]	0,6	0,6 1,3	0,8	0,8	0,8	1,0	1,0	1,0	1,0

Table C8: Displacements under shear load

Anchor channel			28/15	38/17 41/22	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Shear load in y-direction ¹⁾	Vy	[kN]	3,6	7,1 11,8	7,9 13,9	13,9	12,3 20,6	23,4	21,8 31,0	43,7	39,7 57,9
Short-term displacements	δν,y,0	[mm]	0,6	0,6 1,1	0,6	0,6	0,6	0,6	1,2	1,2	1,2
Long-term displacements	δ _{V,y,∞}	[mm]	0,9	0,9 1,7	0,9	0,9	0,9	0,9	1,8	1,8	1,8
Shear load in x-direction ²⁾	Vx	[kN]	_ 3)	_ 3)	_ 3)	4,5	_ 3)	_ 3)	_ 3)	_ 3)	_ 3)
Short-term displacements	δ _{V,x,0}	[mm]	_ 3)	_ 3)	_ 3)	0,2	_ 3)	_ 3)	_ 3)	_ 3)	_ 3)
Long-term displacements	δ _{V,x,∞}	[mm]	_ 3)	_ 3)	_ 3)	0,3	_ 3)	_ 3)	_ 3)	_ 3)	_ 3)

¹⁾ y-direction (perpendicular to longitudinal axis of channel)

²⁾ x-direction (in direction of the longitudinal channel axis)

³⁾ No performance assessed

Table C9: Characteristic resistances under combined tension and shear load

Anchor channel		28/15	38/17 41/22	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure: Local	failure by	flexure	of chan	nel lips	and failu	re by fle	exure of c	hannel		
Product factor		Valu	es acco	rding to El	N 1992-4	4:2018, se	ection 7.4	4.3.1		
Steel failure: Failur	re of ancho	or and c	onnecti	on betw	een anch	or and	channel			
Product factor	k 14		Valu	es acco	rding to E	N 1992-4	4:2018, se	ection 7.4	4.3.1	

HALFEN Anchor Channels HTA

Performances

Displacements and char. resistances under combined tension and shear load

For design method I or II for assessment method C acc. to EOTA TR 050, June 2022

Table C10: Combinations of anchor channels and channel bolts under fatigue tension load

Anchor of	channel			Channel b	olts	-	
Profile	Anchor	d₁ [m m]	Material	Channel bolt	Thread Ø [mm]	Grade	Material
			Steel		M12	8.8	
40/22	B6	8	hot-dip galv.	HS 40/22	M16	4.6	
			not-up gaiv.		NI TO	8.8	
			Staal hat die aalv		M12	8.8 / A4-70	Steel
40/22P	B6	10	Steel hot-dip galv.; stainless steel	HS 40/22	M16	4.6	electro-
			Stairness Steer		IVI I O	8.8 / A4-70	plated, hot-
50/30	B6	10	Steel	HS 50/30	M16	4.6	dip galv.;
50/30	DO	10	hot-dip galv.	ПЗ 50/30	M20	8.8	stainless
50/30P	B6	12	Steel	HS 50/30	M16	4.6	steel
30/30F	DO	12	hot-dip galv.	ПЗ 50/30	M20	8.8	
52/34	B6	12	Steel hot-dip galv.;	HS 50/30	M16	8.8 / A4-70	
52/34	DO	12	stainless steel	HS 30/30	M20	0.07 A4-70	

Design Method I acc. EOTA TR 050, June 2022

Table C11: Characteristic resistances under fatigue tension load after n load cycles without static preload ($N_{Ed} = 0$) – Steel failure

Anchor channel		40/22	40/	22P	50/30	52	/34
		40/22	40//	227	50/30P	52	34
	Load cycles		ΔN	Rk,s;lo;n W	ith N _{lok,s,r}	n = 0	
	n			[k	(N]		
		carbon	carbon	stainless	carbon	carbon	stainless
Charactaristic	≤ 10 ⁴	11,7	12	2,8	16,5	22	2,2
Characteristic resistances under	≤ 10 ⁵	6,7	7	,7	9,8	13	3,2
fatigue tension load	≤ 10 ⁶	3,8	4,7		5,8	7	,9
without static	≤ 2·10 ⁶	3,2	4,0		4,9	6	,7
preload	≤ 5·10 ⁶	2,6	3	,3		5	,5
	≤ 7·10 ⁶	2,4			1.0		
	≤ 10 ⁸	1,2	3,3	3,0	4,0	5,5	5,1
	> 10 ⁸	-					

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under fatigue tension load acc. assessment method C

For design method I or II for assessment method C acc. to EOTA TR 050, June 2022

Table C12: Characteristic resistances under fatigue tension load after n load cycles with lower load share NElok – Concrete cone and pull-out failure

	Load				η k,c,f	_{at} = η _{κ,p,}	fat [-]			
	cycles n					Slok =				
		0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
	≤ 10 ⁴	0,725	0,668	0,600	0,527	0,450	0,370	0,288	0,205	0,120
	2 [.] 10⁴	0,704	0,650	0,585	0,514	0,439	0,360	0,279	0,197	0,114
Reduction factor for	5 [.] 10⁴	0,677	0,627	0,566	0,497	0,424	0,347	0,268	0,188	0,106
	1· 10⁵	0,656	0,610	0,551	0,484	0,412	0,337	0,260	0,181	0,100
$\Delta N_{Rk,c,E,n} = \mathbf{\eta}_{k,c,fat} N_{Rk,c}^{-1)}$	2· 10⁵	0,636	0,592	0,536	0,471	0,401	0,328	0,251	0,174	0,094
$\Delta N_{Rk,p,E,n} = \eta_{k,p,fat} \cdot N_{Rk,p}^{2)}$	5 [,] 10 ⁵	0,608	0,569	0,516	0,454	0,386	0,315	0,240	0,164	0,087
$S_{lok} = 2,25 \cdot N_{Elok} / N_{Rk,c(p)} \le 0,8^{-3}$	1· 10 ⁶	0,588	0,551	0,501	0,441	0,375	0,305	0,232	0,157	0,081
Olok = 2,20 TVElok TVHK,c(p) $= 0,0$	2 [,] 10 ⁶	0,567	0,534	0,486	0,428	0,364	0,295	0,223	0,150	0,075
	5 [.] 10 ⁶	0,539	0,511	0,466	0,411	0,349	0,282	0,212	0,140	0,067
	1· 10 ⁷	0,519	0,493	0,451	0,398	0,337	0,272	0,204	0,133	0,061
	2· 10 ⁷	0,498	0,476	0,436	0,385	0,326	0,262	0,195	0,126	0,055
	5· 10 ⁷	0,471	0,453	0,416	0,367	0,311	0,250	0,184	0,116	0,047
	10 ⁸	0,450	0,435	0,401	0,354	0,300	0,240	0,176	0,109	0,041

¹⁾ N_{Rk,c} static resistance according to Annex C3 and EN 1992-4:2018 or EOTA TR 047, May 2021

²⁾ N_{Rk,p} static resistance according to Annex C3

³⁾ N_{Elok} characteristic value of the static pre-load decisive for concrete cone or pull-out failure

In absence of other national regulations the following partial factors $\gamma_{M,fat}$ are recommended for design method I and II according to EOTA TR 050, June 2022 for assessment method C.

 $\begin{array}{l} \gamma_{Ms,fat} = 1,35 \text{ (steel)} \\ \gamma_{Mc,fat} = \gamma_{Mp,fat} = 1,5 \text{ (concrete)} \end{array}$

HALFEN Anchor Channels HTA

Performances Characteristic resistances under fatigue tension load acc. to assessment method C

For seismic performance category C1

Table C13: Combinations of anchor channels and channel bolts under seismic load

Anchor	channel		Cha	annel bolt	
Profile	Material	Channel bolt	Thread Ø	Grade	Material
40/22P	hot-dip galvanized	HSR 40/22	16	8.8	Steel electro-plated, hot-dip galvanized

Table C14: Characteristic resistances under seismic tension load - steel failure

Anchor channel			steel	40/22P
Steel failure: Anchor				
Characteristic resistance	N _{Rk,s,a,eq}	[kN]	carbon	31
Partial factor	∦ Ms,a	1)		1,8
Steel failure: Connection channel/a	Inchor	<u>.</u>		8
Characteristic resistance	N _{Rk,s,c,eq}	[kN]	carbon	29
Partial factor	¥Ms,ca	1)		1,8
Steel failure: Local flexure of the cl	nannel lips	\$		
Spacing of channel bolts for $N^{0}_{Rk,s,l,eq}$	SI,N	[mm]	carbon	79
Characteristic resistance	N ⁰ Rk,s,l,eq	[kN]	carbon	38
Partial factor	¥Ms,I ¹)		1,8

¹⁾ In absence of other national regulations

Table C15: Characteristic flexural resistances under seismic tension load

Anchor channel			steel	40/22P
Steel failure: Flexure of channel				
Characteristic flexural resistance of channel	MRk,s,flex,eq	[Nm]	carbon	1389
Partial factor	X Ms,flex	1)	-	,15

¹⁾ In absence of other national regulations

Table C16: Characteristic resistances under seismic tension load – steel failure of HALFEN HSR channel bolt

HALFEN HSR channel bolt			M16
Steel failure			
Characteristic resistance	N _{Rk,s,eq}	[Nm]	125,6
Partial factor	∦ Ms ¹)	1,5

¹⁾ In absence of other national regulations

HALFEN Anchor Channels HTA

Performances

Char. resistances under seismic tension load (seismic performance category C1)

Table C17: Characteristic resistances under seismic shear load - steel failure Anchor channel steel 40/22P Steel failure: Anchor 35 Characteristic resistance V_{Rk,s,a,y,eq} [kN] carbon Characteristic resistance [kN] 18,6 V_{Rk,s,a,x,eq} carbon 1,8 Partial factor XMs,a¹⁾ Steel failure: Connection channel/anchor 35 Characteristic resistance V_{Rk,s,c,y,eq} [kN] carbon Characteristic resistance [kN] 17,4 V_{Rk,s,c,x,eq} carbon Partial factor ¥Ms,ca¹⁾ 1,8 Steel failure: Local flexure of channel lips under shear load perpendicular to the longitudinal axis of the channel Spacing of channel bolts for VRk,s,l,eq [mm] carbon 79 SI.V Characteristic resistance V⁰Rk,s,l,y,eq [kN] carbon 35 **Y**Ms,I¹⁾ Partial factor 1,8 Steel failure: Connection between channel lips and channel bolt under shear in the direction of the longitudinal channel axis Characteristic resistance carbon V_{Rk,s,l,x,eq} [kN] 13,5 Installation factor γinst ¹⁾ 1,2 1) In absence of other national regulations

Table C18: Characteristic resistance unter seismic shear load – steel failure of HALFEN channel bolt HSR

HALFEN channel bolt HSR			M16
Steel failure			
Characterist. resistance	V _{Rk,s,eq}	[kN]	62,8
Partial factor	¥м	, 1) 5	1,25

¹⁾ In absence of other national regulations

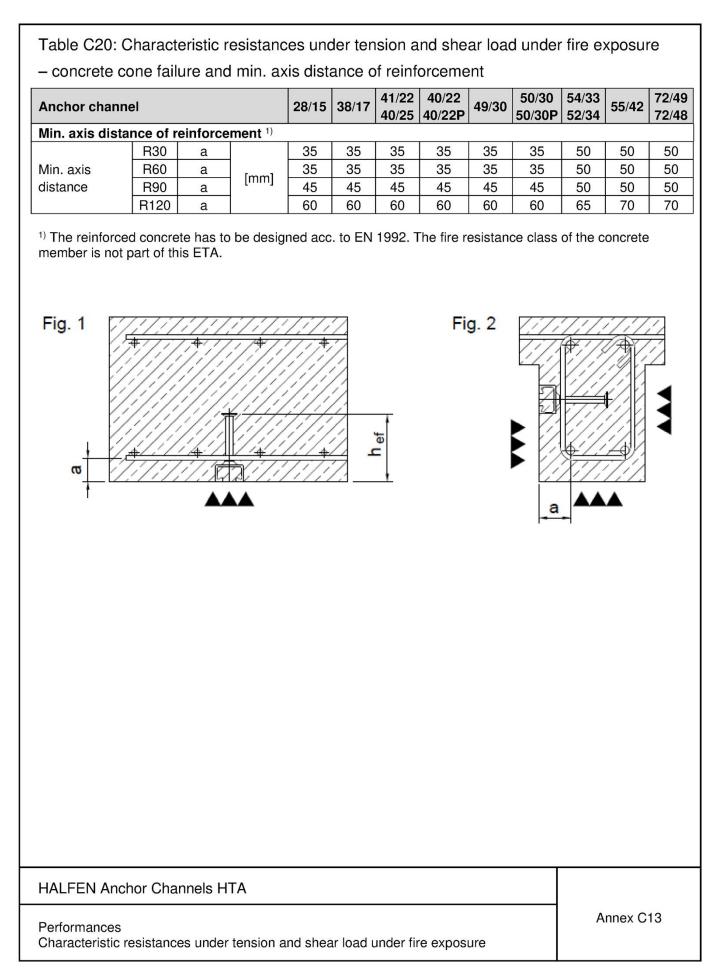
HALFEN Anchor Channels HTA

Performances Char. resistances under seismic shear load (seismic performance category C1)

	Table C19: Characteristic resistances under tension and shear load under fire exposure														
– steel failure															
	Anchor channel					28/15	38/17	41/22	40/25	40/22 40/22P	49/30	50/30 50/30P	54/33 52/34	55/42	72/49 72/48
Anchor channel 28/15 38/17 41/22 40/25 40/22 49/30 50/30 54/33 55/42 72/49 Steel failure: Anchor, Connection channel / anchor, Local flexure of channel lips, channel bolts 72/48 72/48															
			M8			1,0	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
			M10			1,0	1,7	_ 2)	1,9	1,9	1,9	1,9	1,9	_ 2)	_ 2)

	NRk,s,fi	[KN]	0		5	()				V		
M10			1,0	1,7	_ 2)	1,9	1,9	1,9	1,9	1,9	_ 2)	_ 2)
M12			1,9	1,7	2,4	1,9	2,5	2,5	2,5	2,5	_ 2)	_ 2)
M16			_ 2)	3,2	2,3	3,6	6,0	4,0	6,0	6,0	6,3	6,3
M20			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	4,0	9,5	8,9 10,1	10,3	10,3
M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	14,8	14,8
M8			0,8	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
M10			0,8	1,5	_ 2)	1,5	1,5	1,5	1,5	1,5	_ 2)	_ 2)
M12			1,3	1,5	1,7	1,5	2,5	2,5	2,5	2,5	_ 2)	_ 2)
M16			_ 2)	2,4	1,8	3,6	4,5	3,5	4,5	4,5	4,8	4,8
M20			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	3,5	7,1	6,5 7.5	7,6	7,6
M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	11,1	11,1
M8			0,6	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
M10			0,6	1,0	_ 2)	1,1	1,1	1,1	1,1	1,1	_ 2)	_ 2)
M12			0,7	1,0	1,1	1,1	1,6	1,6	1,6	1,6	_ 2)	_ 2)
M16			_ 2)	1,4	1,2	2,0	2,9	2,5	3,0	3,0	3,3	3,3
M20			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	2,5	4,8	4,2 4,8	4,9	4,9
M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	7,3	7,3
M8			0,5	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
M10			0,5	0,8	_ 2)	0,8	0,8	0,8	0,8	0,8	_ 2)	_ 2)
M12			0,5	0,8	0,7	0,8	1,1	1,2	1,2	1,2	_ 2)	_ 2)
M16			_ 2)	1,0	1,0	1,2	1,6	2,1	2,3	2,3	2,6	2,6
M20			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	2,1	3,6	3,0 3,5	3,6	3,6
M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	5,4	5,4
Partial factor			1,0									
	M12 M16 M20 M24 M8 M10 M12 M16 M20 M12 M16 M20 M24 M8 M10 M24 M8 M10 M12 M16 M20 M16 M20 M24 M8 M10 M24 M8 M10 M12 M24 M8 M10 M12 M16 M20 M16 M20 M24	M12 M16 M20 M24 M8 M10 M12 M16 M20 M10 M12 M16 M20 M12 M16 M20 M24 M8 M10 M12 M16 M20 M16 M20 M16 M20 M16 M20 M24 M8 M10 M12 M16 M20 M12 M16 M20 M16 M20 M24	M12 M16 M20 M24 M8 M10 M12 M16 M20 M10 M12 M16 M20 M12 M16 M20 M24 M8 M10 M12 M16 M20 M16 M20 M16 M20 M16 M20 M24 M8 M10 M24 M8 M10 M12 M16 M20 M16 M20 M16 M20 M16 M20 M24	M12 1,9 M16 - 2) M20 - 2) M24 - 2) M24 0,8 M10 0,8 M12 1,3 M16 - 2) M24 - 2) M24 - 2) M20 NRk,s,fi M20 - 2) M24 - 2) M20 - 2) M24 - 2) M26 - 2) M27 - 2) M8 0,6 M10 0,6 M12 - 2) M20 - 2) M24 - 2) M24 - 2) M26 - 2) M16 - 2) M12 0,5 M16 - 2) M24 - 2) M20 - 2) M21 - 2) M22 - 2) M24 - 2) M24 - 2) M24 - 2)	M12 1,9 1,7 M16 -2) 3,2 M20 -2) -2) M24 -2) -2) M24 0,8 -2) M10 0,8 1,5 M12 0,8 1,5 M12 -2) 2,4 M20 -2) -2) M24 -2) -2) M10 -2) -2) M24 -2) -2) M24 -2) -2) M8 -2) -2) M10 -2) -2) M10 -2) -2) M12 -2) -2) M10 -2) 1,0 M16 -2) -2) M24 -2) -2) M10 0,5 0,8 M12 0,5 0,8 M12 0,5 0,8 M12 0,5 0,8 M12 -2) -2) M24 -2) -2) M24 -2) -2	M12 1,9 1,7 2,4 M16 1,9 1,7 2,4 M16 -2) 3,2 2,3 M24	M12 1,9 1,7 2,4 1,9 M16	M12 1,9 1,7 2,4 1,9 2,5 M16 2,3 3,6 6,0 M20 M24 M24 M8 M10 M10 NRk,s,fi M10 NRk,s,fi M20 NRk,s,fi M21 NRk,s,fi M20 NRk,s,fi M10 NR M112 NR M12	M12 1,9 1,7 2,4 1,9 2,5 2,5 M16 -2) 3,2 2,3 3,6 6,0 4,0 M20 -2) -2) -2) -2) -2) -2) 4,0 M24 -2)	M12 1,9 1,7 2,4 1,9 2,5 2,5 2,5 M16 2,3 3,6 6,0 4,0 6,0 M20	M12 1,9 1,7 2,4 1,9 2,5 2,5 2,5 2,5 M16 N 0 -2) 3,2 2,3 3,6 6,0 4,0 6,0 6,0 M20 N -2)	M12 M13 1,9 1,7 2,4 1,9 2,5 2,5 2,5 2,5 2,5 M16 -2' 3,2 2,3 3,6 6,0 4,0 6,0 6,0 6,3 M20 -2' -2' -2' -2' -2' -2' -2' 1.9 1,3 10,3 N24 M8 0.8 -2' -2' -2' -2' -2' -2' 1.2' -2' 1.4,8 M8 0.8 -2' -2' 1.5 1.5 1.5 1.5 1.5 -2'

¹⁾ In absence of other national regulations


²⁾ No performance assessed

HALFEN Anchor Channels HTA

Performances

Characteristic resistances under tension and shear load under fire exposure

