

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-11/0006 of 18 September 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti anchor channels (HAC) with channel bolts (HBC)

Anchor channels

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti manufacturing plants

40 pages including 3 annexes which form an integral part of this assessment

EAD 330008-04-0601-v02, Edition March 2024

ETA-11/0006 issued on 24 October 2022

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de | 273203.24 8.06.01-96/21

European Technical Assessment ETA-11/0006

English translation prepared by DIBt

Page 2 of 40 | 18 September 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 40 | 18 September 2024

Specific Part

1 Technical description of the product

The Hilti anchor channel (HAC) with channel bolts (HBC) is a system consisting of V-shaped channel profile of carbon steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Hilti channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1 and C2
- Resistance to steel failure of the connection between anchors and channel	N _{Rk,s,c} see Annex C1 and C2
Resistance to steel failure of channel lips and subsequently pull-out of channel bolt	$N_{Rk,s,l}^{\ 0}$; $s_{l,N}$ see Annex C1 and C2
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C9
- Resistance to steel failure by exceeding the bending strength of the channel	s_{max} see Annex B3 $M_{Rk,s,flex}$ see Annex C1 and C2
Maximum installation torque to avoid damage during installation	$T_{inst,g}$; $T_{inst,s}$ see Annex B5 and B6
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3 and C4
- Resistance to concrete cone failure	$egin{aligned} h_{ef} ext{ see Annex B3} \ k_{cr,N} ext{ ; } k_{ucr,N} ext{ see Annex C3 and C4} \end{aligned}$
Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation	s_{min} ; c_{min} ; h_{min} see Annex B3
Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C3 and C4
- Resistance to blowout failure - bearing area of anchor head	A_h see Annex A4

Page 4 of 40 | 18 September 2024

Essential characteristic	Performance			
Characteristic resistance under shear load				
(static and quasi-static loading)				
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C9			
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M_{Rk,s}^{\ 0}$ see Annex C10			
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C5 and C6			
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C7			
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C7			
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C5 and C6			
- Resistance to steel failure of connection between anchor and channel (longitudinal shear)	$V_{Rk,s,c,x}$ see Annex C5 and C6			
- Resistance to concrete pry-out failure	k_8 see Annex C7			
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C7			
Characteristic resistance under combined tension and shear load (static and quasi-static load)				
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C8			
Characteristic resistance under fatigue tension loading				
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, assessment method A1, A2) 	$\Delta N_{Rk,s,0,n}$ (n = 1 to n = ∞) see Annex C11			
 Fatigue limit resistance to steel failure of the whole system (assessment method B) 	$\Delta N_{Rk,s,0,\infty}$ see Annex C12			
 Fatigue resistance to steel failure of the whole system (linearized function, assessment method C) 	No Performance assessed			
 Fatigue resistance to concrete related failure (exponential function, assessment method A1, A2) 	$\Delta N_{Rk,c,0,n}$; $\Delta N_{Rk,p,0,n}$ (n = 1 to n = ∞) see Annex C12			
- Fatigue limit resistance to concrete related failure (assessment method B)	$\Delta N_{Rk,c,0,\infty}$; $\Delta N_{Rk,p,0,\infty}$ see Annex C12			
 Fatigue resistance to concrete related failure (linearized function, assessment method C) 	No Performance assessed			

Page 5 of 40 | 18 September 2024

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
- Resistance to steel failure under seismic tension loading (seismic performance category C1)	$N_{Rk,s,a.eq}$; $N_{Rk,s,c.eq}$; $N_{Rk,s,l.eq}$; $N_{Rk,s.eq}$; $M_{Rk,s,flex.eq}$ see Annex C13 and C16
Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1)	$V_{Rk,s.eq}$; $V^0_{Rk,s,l,y.eq}$; $V_{Rk,s,c,y.eq}$; $V_{Rk,s,a,y.eq}$ see Annex C14 and C16
- Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1)	$V_{Rk,s,l,x.eq}$; $V_{Rk,s,a,x.eq}$; $V_{Rk,s,c,x.eq}$ see Annex C14 and C15
Characteristic resistance under static and quasi- static tension and/or shear loading	
- Displacements (static and quasi-static load)	$\begin{array}{l} \delta_{N0} \; ; \; \delta_{N^{\infty}} \; \text{see Annex C5} \\ \delta_{V,y,0} \; ; \; \delta_{V,y,^{\infty}} \; ; \; \delta_{V,x,0} \; ; \; \delta_{V,x,^{\infty}} \\ \text{see Annex C8} \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C17 and C18

3.3 Other essential characteristics

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

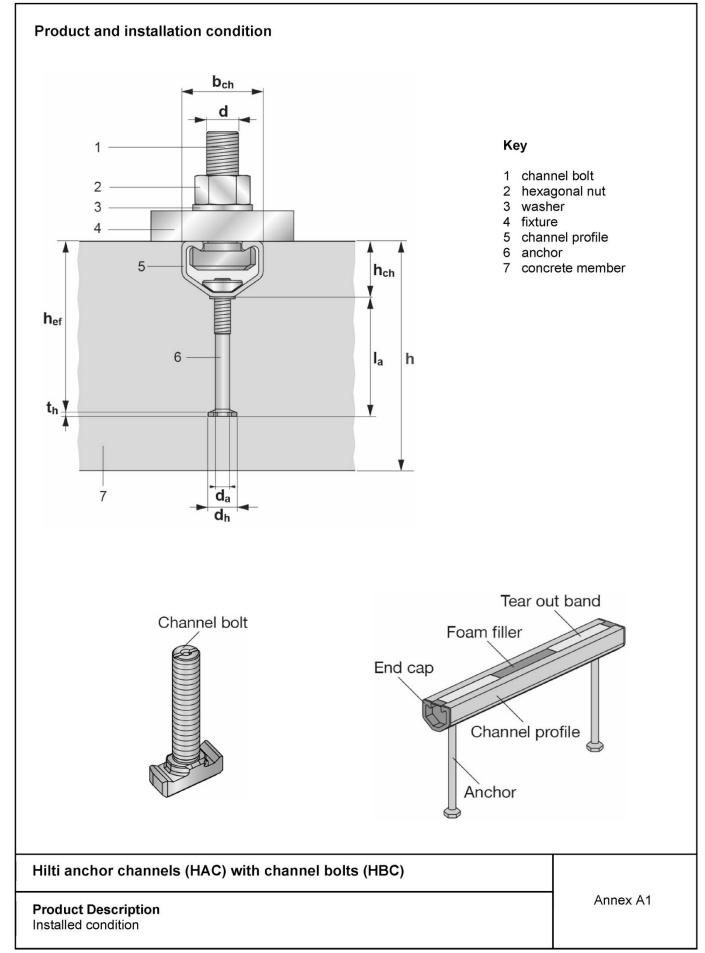
In accordance with EAD No. 330008-04-0601-v02, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 18 September 2024 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock

Head of Section

beglaubigt:

Müller

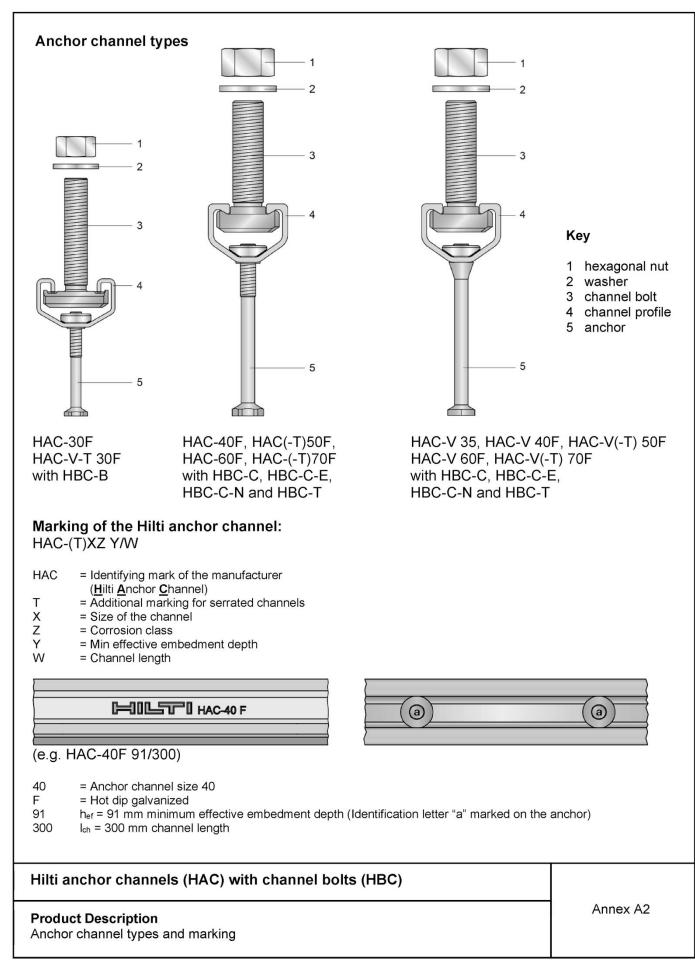


Table 1: Anchor marking (identification letter) and minimum effective embedment depth

Anchor channe	el		HAC-V-T 30	HAC-V 35		1AC-V 40		De (1-)^->B	00 % 0 4 11	200	02 \1 %\	0/(1-)0-041
Minimum effective embedment depth	$h_{\text{ef},\text{min}}$	[mm]	68	91	91	110	71	106	149	183	175	295
Anchor marking			z	а	а	b	С	е	f	n	k	1

Marking of the Hilti channel bolt:

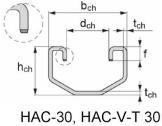
HBC-X-(N) YZ

X

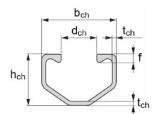
HBC = Identifying mark of the manufacturer

(Hilti Bolt Channel) = Type of channel bolt

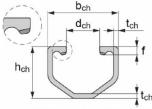
Ν = Additional marking for notching bolt


= Steel grade Z = Corrosion class HBC-C 8.8F

(e.g. HBC-C 8.8F)


= Channel bolt type (see Table 4)

С 8.8 = Steel grade = Hot dip galvanized


Anchor Channels

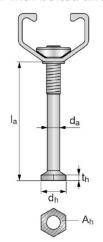
(serrated)

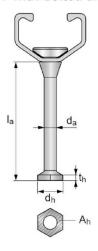
HAC-40, HAC-50, HAC-60, HAC-70, HAC-V 35, HAC-V 40, HAC-V 50, HAC-V 60, HAC-V 70

HAC-T 50, HAC-T 70, HAC-V-T 50, HAC-V-T 70 (serrated)

Table 2: Dimensions of channel profile

Amahanahannal	b _{ch}	h _{ch}	tch	dch	f	ly	
Anchor channel		[mm]					
HAC-30, HAC-V-T 30	41,3	25,6	2,00	22,3	7,5	15349	
HAC-V 35, HAC-40, HAC-V 40	40,9	28,0	2,25	19,5	4,5	21463	
HAC-50, HAC-V 50	41,9	31,0	2,75	19,5	5,3	33125	
HAC-T50, HAC-V-T 50	41,9	31,0	2,75	19,5	5,2	32049	
HAC-60, HAC-V 60	43,4	35,5	3,50	19,5	6,3	57930	
HAC- 70, HAC-V 70	45,4	40,0	4,50	19,5	7,4	95457	
HAC-T70, HAC-V-T70	45,4	40,0	4,50	19,5	7,1	92192	

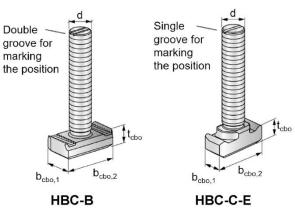

Hilti anchor channels (HAC) with channel bolts (HBC)	
Product Description Anchor channels (HAC)	Annex A3

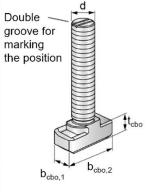

Table 3: Dimensions of anchor (bolted to the channel profile)

Anchor channel	da	d h	t h	min la	Head area An
Anchor channel		[mm ²]			
HAC-30, HAC-V-T 30	5,4	11,5	2,0	44,4	89
HAC-V 35, HAC-40, HAC-V 40	7,2	17,5	3,0	66,0	209
HAC-50, HAC-V 50	9,0	19,5	3,5	78,5	258
HAC-T50, HAC-V-T 50	9,0	19,5	3,5	78,5	258
HAC-60, HAC-V 60	9,0	19,5	4,5	117,0	258
HAC- 70, HAC-V 70	10,9	23,0	5,0	140,0	356
HAC-T70, HAC-V-T70	10,9	23,0	5,0	140,0	356

HAC with bolted anchor

HAC-V with bolted anchor


Hilti anchor channels (HAC) with channel bolts (HBC)	
Product Description Anchor channels (HAC)	Annex A4



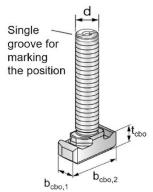
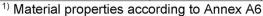
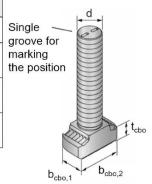

Channel bolts

Table 4: Dimensions of channel bolt

				Dime	nsions	3
Anchor channel	Channel bolt	Steel grade	d	b _{cbo,1}	b _{cbo,2}	tcbo
Chamici	BOIL	grade		[n	[mm]	
HAC- 30	НВС-В	4.6,	10	10.0	24.0	0.0
HAC-V-T 30	пвс-в	A4-50	12	19,0	34,0	9,2
HAC-40			12	14,0		10,4
HAC-50 HAC-V 35	нвс-с-е	4.6, 8.8,			33,0	
HAC-V 40	IIDO O L	A4-50	16	17,0	00,0	13,4
HAC-V 50						
HAC-40			10	14,0		10,4
HAC-50	11000	4.6,	12	14,0		10,4
HAC-60 HAC-70	HBC-C	8.8, A4-50	16	10.5	33,0	11,4
HAC-V 35		24 24 20 00000000	20	18,5		13,9
HAC-V 40 HAC-V 50			12			11 1
HAC-V 60	HBC-C-N	8.8	16	18,5	33,0	11,4
HAC-V 70			20			13,9
HAC-T 50			12			
HAC-T 70	НВС-Т	8.8	16	18,5	35,4	12,0
HAC-V-T 70			20			



HBC-C HBC-C-N


Table 5: Steel grade and corrosion protection

1) Material properties according to Annex A6

Channel Bolt		arbon :eel ¹⁾	Stainless steel ²⁾
Steel grade	4.6	8.8	A4-50
f _{uk} [N/mm ²]	400	800 / 830 ²⁾	500
f _{yk} [N/mm ²]	240 640 / 660 ²⁾		210
Corrosion protection	1	G ³⁾ F ⁴⁾	R

²⁾ Material properties according to EN ISO 898-1:2013

HBC-T

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description

Channel bolts (HBC)

Annex A5

³⁾ Electroplated

⁴⁾ Hot dip galvanized

Table 6: Materials

Component		Carbon steel		Stainless steel
Component	Material properties	Co	ating	Material properties
1	2a	2b	2c	3
Channel Profile	Carbon steel according to EN 10025-2: 2019	Hot dip galvar	nized ≥ 55 μ m ¹⁾ nized ≥ 70 μ m ²⁾ N ISO 1461: 2009	-
Rivet	Carbon steel		nized ≥ 45 µm ⁵⁾ I ISO 1461: 2009	-
Anchor	Carbon steel		nized ≥ 45 µm ⁵⁾ I ISO 1461: 2009	=
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated ≥ 8 µm according to DIN EN ISO 4042: 2018	Hot dip galvanized ≥ 45 µm ⁵⁾ according to EN ISO 1461: 2009	Steel grade 50 according to EN ISO 3506-1: 2020 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Plain washer ³⁾ according to EN ISO 7089: 2000 and EN ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated ≥ 8 µm	Hot dip galvanized ≥ 45 μm ⁵⁾	Hardness class A ≥ 200 HV 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Hexagonal nut according to EN ISO 4032: 2012 or DIN 934: 1987-10 4)	Property class 8 according to EN ISO 898-2: 2012	Electroplated ≥ 8 µm	Hot dip galvanized ≥ 45 μm ⁵⁾	Property class 70 according to EN ISO 3506-2: 2020 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439

 $^{^{1)}}$ For HAC-30F, HAC-V-T 30F, HAC-V 35F, HAC-40F, HAC-V 40F, HAC(-T) 50F and HAC-V(-T) 50F $^{2)}$ For HAC-60F, HAC-V 60F, HAC(-T)70F and HAC-V(-T) 70F

Hilti anchor channels (HAC) with channel bolts (HBC)	
Product Description Materials	Annex A6

³⁾ Not in scope of delivery

⁴⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel

⁵⁾ Hot dip galvanized according to EN ISO 1461: 2009

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis and shear in the direction of the longitudinal axis of the anchor channels HAC and HAC-V and channel bolts HBC-B, HBC-C-N and anchor channels HAC-T and HAC-V-T and channel bolts HBC-T.
- Fatigue cyclic tension loads (anchor channels and channel bolts according to Annex C11)
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and seismic shear in the direction of the longitudinal axis of the channel (seismic performance category C1) (anchor channels and channels bolts according to Annex C13)
- Fire exposure: only for concrete class C20/25 to C50/60 (anchor channels and channel bolts according to Annex C17)

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibers according to EN 206:2013 + A2:2021
- Strength classes C12/15 to C90/105 according to EN 206:2013 + A2:2021
- · Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A6, Table 6, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A6, Table 6, column 2c and 3).
- According to EN 1993-1-4:2006+A1:2015+A2:2020 relating to corrosion resistance class CRC III
 (channel bolts, washers and nuts made of stainless steel number 1.4401, 1.4404, 1.4571, 1.4362 und
 1.4578 according to Annex A6, Table 6, column 3).
- According to EN 1993-1-4:2006+A1:2015+A2:2020 relating to corrosion resistance class CRC IV (channel bolts, washers and nuts made of stainless steel number 1.4439 according to Annex A6, Table 6, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of
 the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as seismic loading (performance category C1) and fire
 exposure the anchor channels are designed in accordance with EN 1992-4: 2018 and EOTA TR 047
 "Design of Anchor Channels", May 2021.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", June 2022.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Specifications	Annex B1

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 8 and 9 are generated
 including end spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the installation instructions given in Annexes B7, B8, B9, B10 and B11.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B8, B9, B10 and B11) rectangular to the channel axis
- Hexagonal nut must be fastened by a calibrated torque wrench or with the controlled impact screwdriver Hilti SIW with adaptive torque module Hilti SI-AT for channel bolts according to Table 7.
- For calibrated torque wrench the required installation torques given in Annex B5 must be applied and must not be exceeded.

Table 7: Method of application of installation torque ¹⁾ for channel bolts HBC-B/-C/-C-N/-T with SI-AT module

Channel bolt type HBC-B			HBC-C			HBC-C-N			нвс-т			
Bolt diameter	M10	M12	M10	M12	M16	M20	M12	M16	M20	M12	M16	M20
Machine torqueing with Hilti SIW ¹⁾ controlled impact screwdriver and SI-AT ¹⁾ adaptive torque module	✓	√	√	√	✓	√	✓	х	х	✓	√	✓

¹⁾ Combination of Hilti SIW + SI-AT module, compatible to this channel bolt type, may be used

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use
Specifications

Annex B2

Table 8: Installation parameters for anchor channel HAC

Anchor channel			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Minimum effective embedment depth	h _{ef,min}		68	91	106	106	149	175	175
Minimum spacing	Smin		50 100						
Maximum spacing	Smax		250						
End spacing	х					25			
Minimum channel length	I _{min}	[mm]	100			18	50		
Minimum edge distance	C _{min}		50 75						
Minimum thickness of concrete member	h _{min}		80	105	125 h _e	125 _f + t _h + c _{no}	168	196	196

¹⁾ c_{nom} according to EN 1992-1-1:2004 + AC: 2010

Table 9: Installation parameters for anchor channel HAC-V

Anchor channel			HAC-V-T 30	HAC-V 35	07 // 04 11	14C-V 40	HAC-V(-T) 50			HAC-V 60		02 (I // OVI)	07(1-1),-040	
Minimum effective embedment depth	h _{ef,min}		68	91	91	110		71		106	149	183	175	295
Minimum spacing	Smin		50 100		100	1	50	100	100					
Maximum spacing	Smax		250											
End spacing	х	[25	5					
Minimum channel length	I _{min}	[mm]	100 150		150	20	00	150		15	50			
Min edge distance	Cmin			50)		50	50	100	50	75	63,5	75	63,5
Minimum thickness of concrete member	h _{min}		80	105	105	125	125 h _{ef}	125 + t _h +	90 C _{nom}	125 1)	168	400	196	400

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Installation parameters for anchor channels (HAC) and channel bolts (HBC)	Annex B3

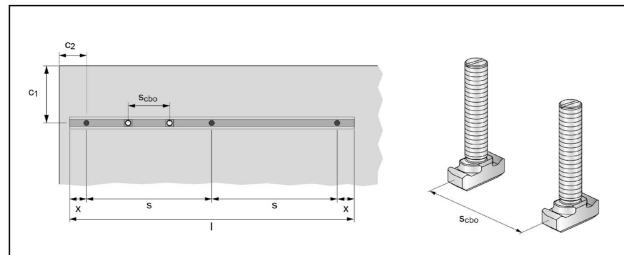


Table 10: Minimum spacing for channel bolts

Channel bolt	M10	M12	M16	M20		
Minimum spacing between channel bolts	Scbo,min	[mm]	50	60	80	100

 s_{cbo} = center to center spacing between channel bolts ($s_{cbo,min}$ = 5d)

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Installation parameters for anchor channels (HAC) and channel bolts (HBC)	Annex B4

Table 11: Required installation torque T_{inst} for calibrated torque wrench for HBC-B

		Installation torque T _{inst} [Nm] 1)							
		General T _{inst,g}	Steel-steel contact T _{inst,s}						
Channel bol	t	HAC-30 HAC-V-T 30	HAC-30 HAC-V-T 30						
M10	4.6, A4-50	15	15						
M12	4.6, A4-50	25	25						

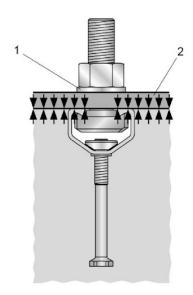
Table 12: Required installation torque T_{inst} for calibrated torque wrench for HBC-C and HBC-C-E

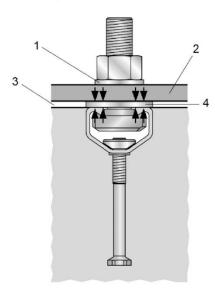
				Install	ation tor	que T _{inst} [N	m] ¹⁾					
			Genera	I T _{inst,g}		Stee	l-steel co	ntact T _{in}	st,s			
Channel bolt		HAC-V35 HAC-40 HAC-V40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-V35 HAC-40 HAC-V40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70			
M10	4.6, A4-50		1	5		15						
IVITO	8.8		1	5		48						
M12	4.6, A4-50		2	5		25						
IVI 12	8.8		2	5		75						
M16	4.6, A4-50		6	0		60						
IVI IO	8.8		6	0			18	5				
M20	4.6, A4-50	70	105	1	20	120						
IVIZU	8.8	70	105	1	20		320	320				

Table 13: Required installation torque T_{inst} for calibrated torque wrench for HBC-C-N

		Installation torque T _{inst} [Nm] 1)										
			Genera	I T _{inst,g}		Stee	l-steel c	ontact Ti	nst,s			
Channel bolt		HAC-V35 HAC-40 HAC-V40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-V35 HAC-40 HAC-V40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70			
M12	8.8		7	5		75						
M16	8.8		185									
M20	8.8	-		320		-		320				

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Installation parameters for channel bolts (HBC)	Annex B5


Table 14: Required installation torque T_{inst} for calibrated torque wrench for HBC-T


		Installation torque T _{inst} [Nm] 1)								
		Gener	al T _{inst,g}	Steel-steel contact T _{inst,s}						
Channel bolt		HAC-T50 HAC-V-T50	HAC-T70 HAC-V-T70	HAC-T50 HAC-V-T50	HAC-T70 HAC-V-T70					
M12	8.8	7	75	7	75					
M16	8.8	1	00	185						
M20	8.8	1	20	320						

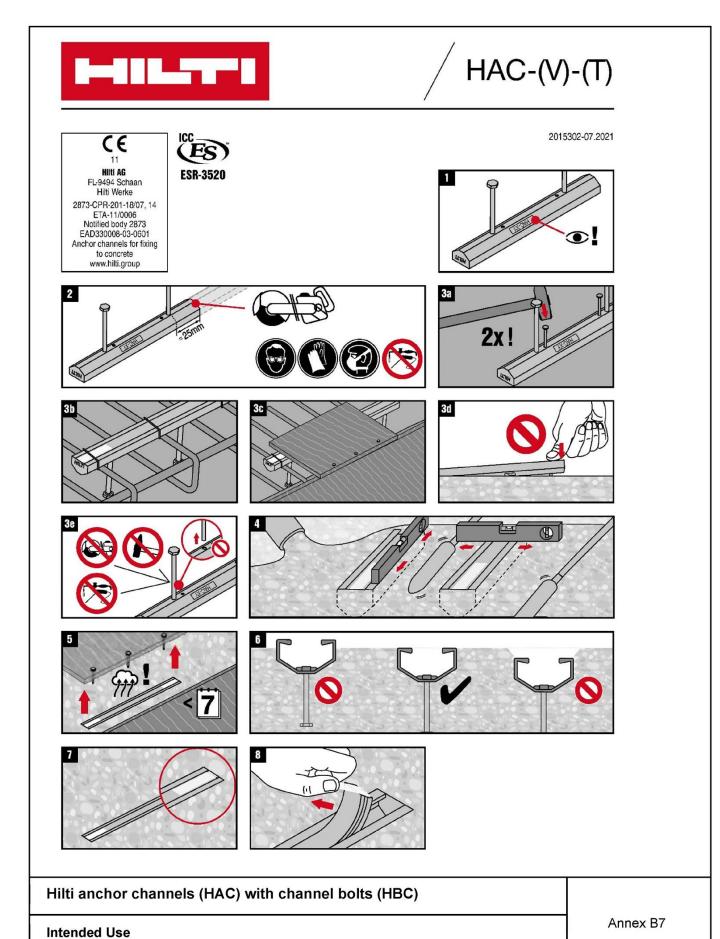
¹⁾ T_{inst} must not be exceeded

<u>General:</u> The fixture is in contact with the channel profile and the concrete surface

<u>Steel-steel contact:</u> Fixture is in contact with the channel profile only. The fixture is fastened to the anchor channel by suitable steel part (e.g. washer).

Key

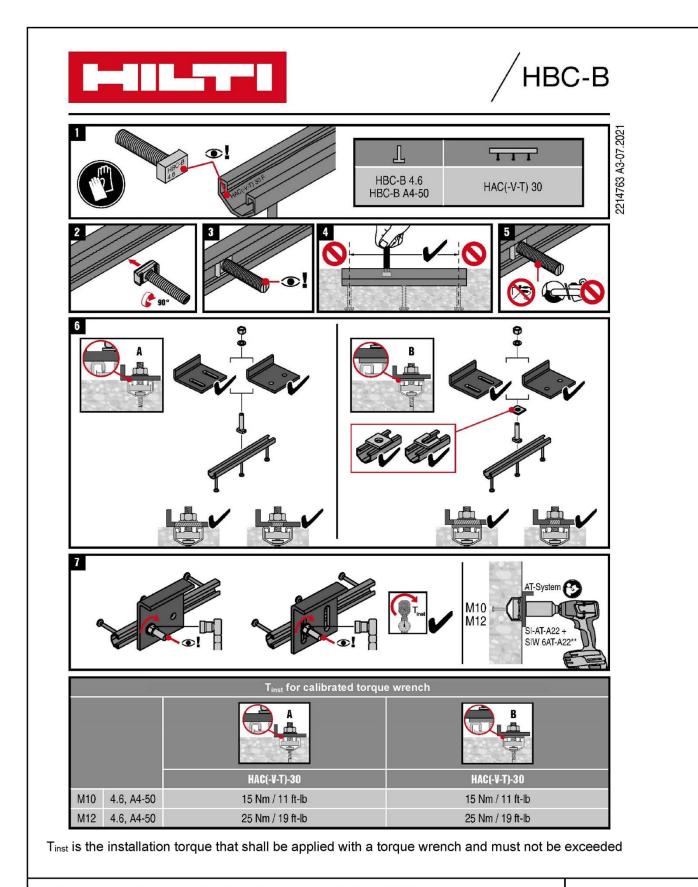
- 1 washer
- 2 fixture
- 3 gap
- 4 suitable steel part


Hilti anchor channels	(HAC) with	channel	bolts	(HBC)

Intended Use

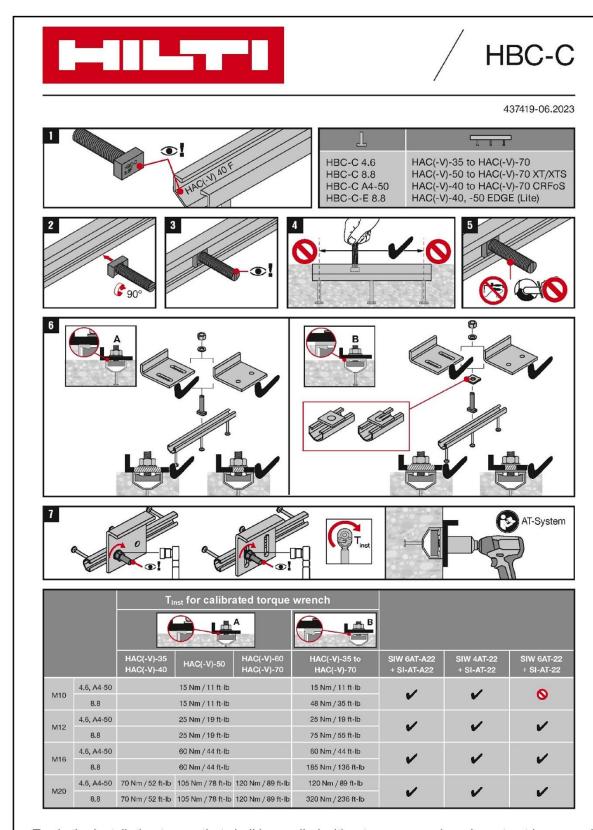
Installation parameters for channel bolts (HBC)

Annex B6



Z114368.24 8.06.01-96/21

Installation instructions for anchor channels (HAC and HAC-T)


Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC-B)

Annex B8

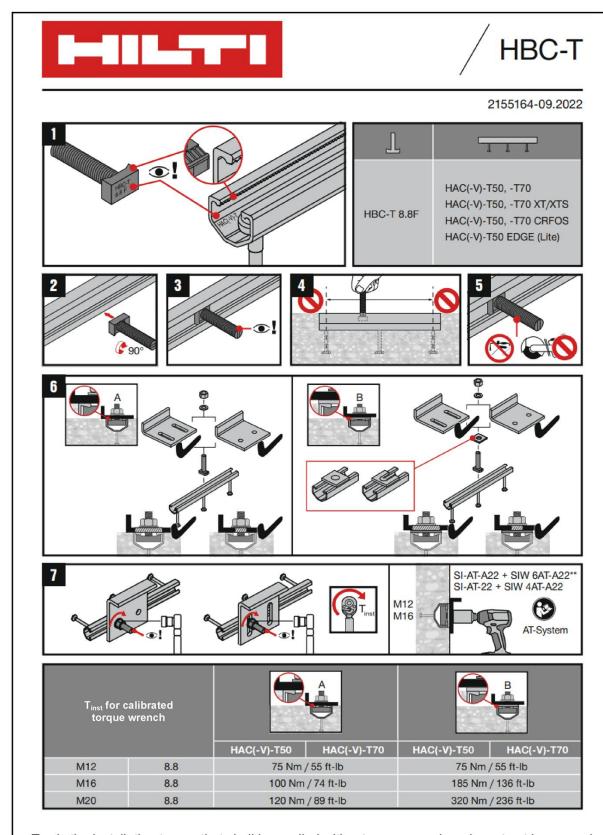
T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC-C and HBC-C-E)

Annex B9



T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded

Hilti anchor channels (HAC) with channel bolts (HBC)		
Intended Use Installation instructions for channel bolts (HBC-C-N)	Annex B10	

T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC-C-N)

Annex B11

Table 15: Characteristic resistances under tension load – steel failure of anchor channel HAC

Anchor channel			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Anchor									
Characteristic resistance	N _{Rk,s,a}	[kN]	18,2	33,1	52,5	52,5	52,5	76,3	76,3
Partial factor γ _{Ms} ¹⁾ [-]			1,8						
Steel failure: Connection between	anchor	and ch	channel						
Characteristic resistance	N _{Rk,s,c}	[kN]	18,2	25,0	35,0	35,0	50,1	71,0	71,0
Partial factor	γ _{Ms,ca} 1)	[-]				1,8			
Steel failure: Local flexure of cha	nnel lips								
Characteristic spacing of channel bolts for N _{Rk,s,I}	SI,N	[mm]	83	82	84	84	87	91	91
Characteristic resistance	N ⁰ Rk,s,I	[kN]	19,9	25,0	35,0	35,0	50,1	71,0	71,0
Partial factor	γMs,I ¹⁾	[-]				1,8			

¹⁾ In absence of other national regulations.

Table 16: Characteristic flexural resistance of HAC channel under tension load

Anchor channel				HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Flexure of channel										
		[Nm]	НВС-В	755	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
			HBC-C	_ 2)	1136	1596	_ 2)	2187	3160	_ 2)
Characteristic flexural resistance of channel	M _{Rk,s,flex}		HBC-C-E	_ 2)	1136	1596	_ 2)	_ 2)	_ 2)	_ 2)
resistance of charmer			HBC-C-N	_ 2)	980	1345	_ 2)	2156	3005	_ 2)
			НВС-Т	_ 2)	_ 2)	_ 2)	1596	_ 2)	_ 2)	2975
Partial factor	γ _{Ms,flex} 1)	1,15								

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC) under tension load – Steel failure	Annex C1

²⁾ No performance assessed

Table 17: Characteristic resistances under tension load - steel failure of anchor channel HAC-V

Anchor channel	HAC-V-T 30	HAC-V 35	HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70		
Steel failure: Anchor										
Characteristic resistance	N _{Rk,s,a}	[kN]	18,2	18,2 31,4 55,0				55,0	75,0	
Partial factor	γMs ¹⁾	[-]	1,8							
Steel failure: Connection be	etween a	nchor	and cha	annel						
Characteristic resistance	N _{Rk,s,c}	[kN]	18,2	31	,4	42	,0	55,0	71,0	75,0
Partial factor	γ _{Ms,ca} 1)	[-]				1,	8			
Steel failure: Local flexure	of chanr	el lips								
Characteristic spacing of channel bolts for N _{Rk,s,l}	S _{I,N}	[mm]	83	8	2	8	4	87	9	1
Characteristic resistance	N ⁰ Rk,s,I	[kN]	19,9	31	,4	41	,0	55,0	71	,0
Partial factor	γMs,I ¹⁾	[-]				1,	8			

¹⁾ In absence of other national regulations

Table 18: Characteristic flexural resistance of HAC-V channel under tension load

	Anchor channel Steel failure: Flexure of channel			HAC-V-T 30	HAC-V 35	HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70
	Characteristic static flexural resistance of		НВС-В	786	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
Characteristic			HBC-C	_ 2)	1318	1318	1853	_ 2)	2538	3668	_ 2)
static flexural			HBC-C-E	_ 2)	1318	1318	1853	_ 2)	_ 2)	_ 2)	_ 2)
channel			HBC-C-N	_ 2)	1137	1137	1551	_ 2)	2503	3488	_ 2)
			НВС-Т	_ 2)	_ 2)	_ 2)	_ 2)	1853	_ 2)	_ 2)	3455
Partial factor			γMs,flex 1)				1,	15	•		

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-V) under tension load – steel failure	Annex C2

²⁾ No performance assessed

Table 19: Characteristic resistances under tension load - concrete failure of anchor channel HAC

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70			
Concrete failure: F	Pull-out										
Characteristic resisting in cracked concrete		N _{Rk,p}	[kN]	8,0	18,8	23,2	23,2	23,2	32,0	32,0	
Characteristic resisting uncracked concrete		INRK,p	[KIN]	11,2	26,3	32,5	32,5	32,5	44,9	44,9	
	C16/20						1,33				
	C20/25						1,67				
	C25/30						2,08				
	C30/37			2,50							
Factor for	C35/45			2,92							
$N_{Rk,p} = N_{Rk,p}(C12/15) \cdot \Psi_c$	C40/50	Ψc	[-]	3,33							
11RK,p(012/10) 16	C45/55			3,75							
	C50/60			4,17							
	C55/67						4,58				
	≥ C60/75			5,00							
Partial factor		γ _{Mp} = γ _{Mc} 1)	[-]				1,5				
Concrete failure: C	concrete cone										
Product	cracked	k _{cr,N}	[-]	7,7	8,0	8,2	8,2	8,6	8,9	8,9	
factor k ₁	uncracked	k ucr,N	[-]	11,0	11,5	11,7	11,7	12,3	12,7	12,7	
Partial factor		γ _{Mc} 1)	[-]				1,5				
Concrete failure: S											
Characteristic edge distance			[mm]	204	273	318	318	444	525	525	
Characteristic spacing			[mm]	408	546	636	636	888	1050	1050	
Partial factor			[-]				1,5				

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC) under tension load – concrete failure	Annex C3

Table 20: Characteristic resistances under tension load - concrete failure of anchor channel HAC-V

Anchor channe	el			HAC-V-T 30	HAC-V 35	04 77 04 11	1AC-0	í í	NAC-V(-1) 50	37.04	00 0-040	05 (F %) OVI	0/(1-)^-044
Concrete failur	e: Pull-out												
Characteristic re cracked concret		N	FIANIT.	8,0	8,0 18,8 18,8 23,2 23,2					32	2,0		
Characteristic resistance in uncracked concrete C12/15		N _{Rk,p}	[kN]	11,2	26,3	26	5,3	32	2,5	32	2,5	44	1,9
	C16/20			1,33									
	C20/25	1						1,6	57				
	C25/30							2,0	8				
	C30/37							2,5	0				
Factor for	C35/45)) (r 1					2,9	2				
$N_{Rk,p} = N_{Rk,p(C12/15)} \cdot \Psi_c$	C40/50	Ψc	[-]					3,3	3				
14(K,p(012/10) 10	C45/55							3,7	'5				
	C50/60							4,1	7				
	C55/67							4,5	8				
	≥ C60/75							5,0	0				
Partial factor		γ _{Mp} = γ _{Mc} 1)	[-]					1,	5				
Concrete failur		one											
Minimum effective embedment dep		h _{ef}	[mm]	68	91	91	110	71	106	149	183	175	295
Product	cracked	k _{cr,N}	[-]	7,7	8,0	8,0	8,3	8,9	8,2	8,6	8,9	8,9	9,6
factor k₁	uncracked	k _{ucr,N} γ _{Mc} 1)	[-]	11,0	11,5	11,5	11,8	12,7	11,7	12,3	12,7	12,6	13,7
Partial factor	[-]					1,	5						
Concrete failur	e: Splitting												
Characteristic ed	dge distance	C _{cr,sp}	[mm]	204	273	273	330	213	318	444	549	525	885
Characteristic sp	pacing	S _{cr,sp}	[mm]	408 546 546 660 426 636 888 1098 1050 1770									
Partial factor		γMsp = γMc ¹⁾	[-]	1,5									

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-V) under shear load – concrete failure	Annex C4

Table 21: Displacements under tension load

Anchor channel		HAC-30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70	
Tension load	N	[kN]	6,6	11,3	11,3	14,3	14,7	18,8	26,6	25,2
Short-term displacement 1)	δηο	[mm]	1,6	1,7	1,7	1,1	1,7	1,1	1,0	1,5
Long-term displacement 1)	δ _{N∞}	[mm]	3,2	3,4	3,4	2,2	3,4	2,2	2,0	3,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 22: Characteristic resistances under shear load - steel failure of anchor channel HAC

Anchor chann	iel		HAC-30	HAC-40	HAC-(T) 50	HAC-60	НАС-(Т) 70
Steel failure: Anchor							
Characteristic static	$V_{Rk,s,a,y}$	[kN]	23,7	39,6	53,6	77,3	114,8
resistance	$V_{Rk,s,a,x}$	[kN]	10,2	18,4	29,0	29,0	41,9
Partial factor	γMs ¹⁾	[-]			1,5		
Steel failure: Connection be	tween an	chor ar	nd channel				
Characteristic static	V _{Rk,s,c,y}	[kN]	23,7	39,6	53,6	77,3	114,8
resistance	V _{Rk,s,c,x}	[kN]	9,1	12,5	17,5	25,1	35,5
Partial factor	γMs,ca ¹⁾	[-]			1,8		
Steel failure: Local flexure of the channel		l lips u	nder shear l	oad perpen	dicular to tl	ne longitudi	nal axis of
Characteristic spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	83	82	84	87	91
Characteristic static resistance	V^0 Rk,s,l,y	[kN]	23,7	34,9	47,5	72,2	95,8
Partial factor	γMs,I ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Displacements under tension load Characteristic resistances of anchor channels (HAC) under shear load – steel failure	Annex C5

Table 23: Characteristic resistances under shear load - steel failure of anchor channel HAC-V

Anchor channel	HAC-V-T 30	HAC-V 35 HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70		
Steel failure: Anchor					1			i	
Characteristic static	$V_{Rk,s,a,y}$	[kN]	26,9	42,5	57,5	57,9	82,9	116,5	114,8
resistance	$V_{Rk,s,a,x}$	[kN]	9,1	15,7	27,5	27,5	25,5	37,5	37,5
Partial factor	γ _{Ms} 1)	[-]			•	1,5			
Steel failure: Connection be	tween and	hor and cl	nannel						
Characteristic static	V _{Rk,s,c,y}	[kN]	26,9	42,5	57,5	57,9	82,9	116,5	114,8
resistance	V _{Rk,s,c,x}	[kN]	9,1	15,7	27,5	27,5	25,5	37,5	37,5
Partial factor	γMs,ca ¹⁾	[-]				1,8			
Steel failure: Local flexure of the channel	of channel	lips under	shear I	oad per	pendic	ılar to tl	he longi	itudinal a	xis of
Characteristic spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	83	82	84	84	87	9	1
Characteristic static resistance	V^0 Rk,s,l,y	[kN]	27,7	37,4	55,0	60,5	82,9	102,9	118,8
Partial factor	γ _{Ms,I} 1)	[-]				1,8			·

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-V) under shear load – steel failure	Annex C6

Table 24: Characteristic resistances under shear load in direction of the longitudinal axis of the channel – steel failure of anchor channel

Anchor chanr	HAC-V-T 30	d chan	plod leu HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70			
	HBC-B M12 4.6			3,5		_ 1)		_ 1)	-	1)	_ 1)
	HBC-C-N M12 8.8				8,5	8,5	8,5		8,5	8,5	
Characteristic	HBC-C-N M16 8.8		[kN]	,	19,7	19,7	19,7		19,7	19,7	
resistance	HBC-C-N M20 8.8	V _{Rk,s,l,x}		4)	_ 1)	_ 1)	24,1		24,1	24,1	
	HBC-T M12 8.8			_ 1)				15,1			15,1
HBC-T M16 8.8 HBC-T M20 8.8					_ 1)	_ 1)	_ 1)	20,1	_ 1)	_ 1)	20,1
								20,1			20,1
Installation facto	Installation factor γ _{inst} [-]				1	,4	'	1,2	1,	,4	1,2

¹⁾ No performance assessed

Table 25: Characteristic resistances under shear load - concrete failure

Ancho	r channel			HAC-30 HAC-V-T 30	HAC-V 35	HAC-40	HAC-V 40	HAC-V(-T) 50	HAC-(T)50 HAC-V(-T) 50	HAC-60	HAC-V 60	HAC-(T)70	HAC-V(-T) 70	
Concrete failure: Pry out fa		lure												
Product factor		k 8	[-]		2,0									
Partial fa	ctor	γ _{Mc} 1)	[-]		1,5									
Concret	e failure: Concrete e	dge failu	re											
	n effective ent depth	h _{ef}	[mm]	68	91	91	110	71	106	149	183	175	295	
Product cracked concrete factor		k _{cr,V}	[-]	7,5	7,5 7,5 7,5		4,5	7,5	7	,5	7	,5		
k ₁₂	unarcal ad agnerate		[-]	10,5	10,5	10	0,5	6,3	10,5	10),5	10),5	
Partial fa	ctor	γMc ¹⁾	[-]					1,5						

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels under shear load	Annex C7

Table 26: Displacements under shear load perpendicular to longitudinal axis of the channel

Anchor channe	HAC-30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70	
Shear load V _y [kN]		8,0	13,9	13,9	18,9	21,0	29,0	38,0	45,6
Short-term displacement $^{1)}$ $\delta_{V,y,0}$ [mm]		1,0	1,0	1,0	1,5	2,7	1,5	1,5	2,4
Long-term displacement 1)	1,5	1,5	1,5	2,3	4,1	2,3	2,3	3,6	

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 27: Displacements under shear load in direction of the longitudinal axis of the channel

Anchor channel				HAC-30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70
Channe	Channel bolt			нвс-в		HBC-C-N			нвс	-C-N	нвс-т
	M12			1,4		3,4			3	4	6,7
Shear load	M16	V_{x}	[kN]	_ 2)		7,8			7,8		8,9
	M20			/	-	2)	9,6	8,9	9,6		8,9
	M12			0,1		0,05		1,4	0,	05	1,4
Short-term displacement 1)	M16	$\delta_{\text{V,x,0}}$	[mm]	_ 2)	0,4		0,4		0	4	1,7
displacement	M20			/	-	2)	0,1	1,7	0	1	1,7
	M12			0,2		0,1		2,1	0	1	2,1
Short-term displacement 1)	M16	δν,χ,∞	[mm]	_ 2)		0,6		2,5	0	6	2,5
displacement	M20		700		_	2)	0,2	2,5	0	2	2,5

¹⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 28: Characteristic resistances under combined tension and shear load

Anchor channel		HAC-30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-T50 HAC-V-T 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70	HAC-T70 HAC-V-T 70	
Steel failure: Local flexure	of ch	annel	lips and	flexur	e of cha	nnel				
Product factor	k 13	[-]	Values according to EN 1992-4: 2018, Section 7.4.3.1							
Steel failure: Anchor and connection between anchor and channel										
Product factor	k ₁₄	[-]	Values according to EN 1992-4: 2018, Section 7.4.3.1							

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Displacements under shear load. Characteristic resistances under combined tension and shear load	Annex C8

²⁾ No performance assessed

Table 29: Characteristic resistances under tension and shear load – steel failure of channel bolts HBC-B, HBC-C, HBC-C-E, HBC-C-N and HBC-T

Channel bolt diameter					M10	M12	M16	M20	
Steel failure									
	НВС-В	4.6			23,2	33,7	- ⁴⁾	- ⁴⁾	
	пвс-в	A4-50 1)			29,0	42,2	- ⁴⁾	_4)	
Ch a ua ata ui ati a	LIDO O	4.6			23,2	33,7	62,8	98,0	
Characteristic resistance	HBC-C HBC-C-E	8.8	N _{Rk,s} ²⁾	[kN]	46,4	67,4	125,6	174,3	
1000010100	110001	A4-50 1)			29,0	42,2	78,5	122,5	
	HBC-C-N	8.8			_ 4)	67,4	125,6	174,3	
	HBC-T	8.8			_ 4)	67,4	125,6	177,4	
		4.6		[-]	2,0				
Partial factor		8.8	γMs ³⁾		1,5				
		A4-50 1)			2,86				
	НВС-В	4.6			13,9	20,2	- ⁴⁾	- ⁴⁾	
	пвс-в	A4-50 1)			17,4	25,3	_ 4)	- ⁴⁾	
0	1100.0	4.6			13,9	20,2	37,7	58,8	
Characteristic resistance	HBC-C HBC-C-E	8.8	V _{Rk,s} ²⁾	[kN]	23,2	33,7	62,8	101,7	
resistance	TIBO-O-L	A4-50 1)			17,4	25,3	47,1	73,5	
	HBC-C-N	8.8			- ⁴⁾	33,7	62,8	101,7	
	HBC-T	8.8			_ 4)	33,7	62,8	101,7	
		4.6				1,	67		
Partial factor		8.8	γ _{Ms} 3)	[-]		1,25		1,5	
		A4-50 1)				2,	38		

¹⁾ Materials according to Table 6, Annex A6
2) In conformity with EN ISO 898-1:2013
3) In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of channel bolts under tension and shear load	Annex C9

⁴⁾ No performance assessed

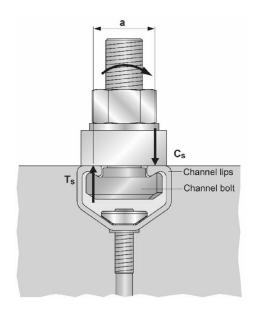


Table 30: Characteristic resistances under shear load with lever arm – steel failure of channel bolts HBC-B, HBC-C, HBC-C-E, HBC-C-N and HBC-T

Channel bolt diameter					M10	M12	M16	M20	
Steel failure									
	НВС-В	4.6			29,9	52,4	_ 3)	_ 3)	
	пвс-в	A4-50 1)			37,4	65,5	_ 3)	_ 3)	
Characteristic	11000	4.6		[Nm]	29,9	52,4	133,2	259,6	
flexure	HBC-C HBC-C-E	8.8	M ⁰ Rk,s ³⁾		59,8	104,8	266,4	538,7	
resistance	HBC-C-E	A4-50 1)			37,4	65,5	166,5	324,5	
	HBC-C-N	8.8			_ 3)	104,8	266,4	538,7	
	HBC-T	8.8			_ 3)	104,8	266,4	538,7	
		4.6			1,67				
Partial factor		8.8	γ _{Ms} ²⁾	[-]	1,25				
		A4-50 1)		2624 57	2,38				
	НВС-В	4.6, A4-50			25	27	_ 3)	_ 3)	
Internal lever arm	HBC-C HBC-C-E	4.6, 8.8, A4-50	a	[mm]	24	26	28	30	
	HBC-C-N	8.8	_		_ 3))	26	28	30	
	HBC-T	8.8			_ 3)	26	28	30	

¹⁾ Materials according to Table 6, Annex A6

³⁾ No performance assessed

The characteristic flexure resistance according to Table 30 is limited as follows:

 $M^{0}_{Rk,s} \le 0,5 \cdot N_{Rk,s,l} \cdot a$ (N_{Rk,s,l} according to Table 15 and 17)

and

 $M^{0}_{Rk,s} \le 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 29)

a = internal lever arm according Table 30

 T_s = tension force acting on the channel lips

C_s = compression force acting on the channel lips

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of channel bolts under shear load with lever arm	Annex C10

²⁾ In absence of other national regulations

Table 31: Combination of anchor channels and channel bolts under fatigue tension load (Design method I or II for test method A1, A2 and B according to EOTA TR050, June 2022)

Anchor channel	Channel bolt type	Diameter	Steel grade	Corrosion protection				
HAC-30	HBC-B	M10						
HAC-V-T 30	пьс-ь	M12	4.6					
HAC-V 35		M12	4.0					
HAC-40		M16	4.6 8.8					
HAC-V 40		M20	0.0	G ¹⁾				
HAC-50		M16	4.6	F ²⁾				
HAC-V 50	HBC-C	M20	8.8	,				
HAC-60		M16 4.6						
HAC-V 60		M20	8.8					
HAC-70		M20	4.6					
HAC-V 70		IVIZU	8.8					

¹⁾ Electroplated

Table 32: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload (N_{Ed} = 0, Design method I according to EOTA TR050, June 2022)

Anchor channel		HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70
Steel failure	n	$\Delta N_{Rk,s,0,n}$ [kN]					
	≤ 10 ⁶	1,76	1,57	1,57	2,66	3,54	6,44
	≤ 3·10 ⁶						
Characteristic resistances	≤ 10 ⁷	$\leq 10^{7}$ $\leq 3.10^{7}$ $\leq 6.10^{7}$ $1,60$	1,50		2,60		
under fatigue tension load without static preload	≤ 3·10 ⁷			1,50		3,50	6,40
William State project	≤ 6·10 ⁷						
	> 6·10 ⁷						

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load according to assessment method A1, A2 and B	Annex C11

²⁾ Hot-dip galvanized

Table 33: Reduction factor $\eta_{c,fat}$ with n load cycles without static preload (N_{Ed} = 0, Design method I or II for assessment method A1, A2 and B according to EOTA TR050, June 2022)

Anchor channel		HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70
Pull-out failure Concrete cone failure	n	η _{c,fat} [-]					
Reduction factor for	≤ 10 ⁶	0,600					
$\Delta N_{Rk,p,0;n} = \eta_{c,fat} \cdot N_{Rk,p}$	≤ 3·10 ⁶	0,571					
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$	≤ 10 ⁷		0,542				
with N _{Rk,p} according to Annex C3 and C4 and	≤ 3·10 ⁷	0,516					
N _{Rk,c} calculated according to EN 1992-4: 2018	≤ 6·10 ⁷			0.5	00		
and EOTA TR 047, Mai 2021	> 6·10 ^{7 1)}			0,5	000		

¹⁾ for $\Delta N_{Rk,p;0;\infty}$, $\Delta N_{Rk,c;0;\infty}$

Table 34: Characteristic resistances under fatigue tension load with $n \rightarrow \infty$ load cycles without static preload (N_{Ed} = 0, Design method II for assessment method B according to EOTA TR050, June 2022)

Anchor channel		HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70
Steel failure							
ΔN _{Rk,s;0;∞}	[kN]	1,6	1,5	1,5	2,6	3,5	6,4
Concrete cone and pull-out failure							
ηc,fat	[-]	0,5					

For the reduction of the characteristic resistances given in Tables 33 and 34 in the transition zone from the static resistance to the fatigue limit resistance the partial safety factors are calculated as follows:

$$\gamma_{M,fat,n} = \gamma_{M,fat} + (\gamma_{M} - \gamma_{M,fat}) \cdot (\Delta N_{Rk,n} - \Delta N_{Rk,\infty}) / (N_{Rk} - \Delta N_{Rk,\infty})$$

In absence of other national regulations, the following partial factors γ_M and $\gamma_{M,fat}$ are recommended for design method I according to EOTA TR 050, June 2022:

γ_M according Annex C1

$$\gamma_{M,fat} = 1,35$$

In absence of other national regulations, the following partial factor $\gamma_{M,fat}$ is recommended for design method II (Table 34) according to EOTA TR 050, June 2022:

$$\gamma_{M,fat} = 1,35$$

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load according to assessment method A1, A2 and B	Annex C12

Table 35: Combination of anchor channels and channel bolts under seismic load (performance category C1)

Anchor channel	Channel bolt type	Diameter	Steel grade	Corrosion protection
HAC-V-T 30	HBC-B	M12	4.6	
HAC-V 35		M12		
HAC-V 40		M16		
HAC-V 50	HBC-C-N	M12		2 1)
HAC-V 60		M16	4.6	G ¹⁾ F ²⁾
HAC-V-T 70		M20	8.8	. *
		M12		
HAC-V-T 50 HAC-V-T 70	НВС-Т	M16		
11/10-1-170		M20		

¹⁾ Electroplated

Table 36: Characteristic resistances under seismic tension load - steel failure of anchor channel HAC-V

Anchor channel				HAC-V 35	HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70
Steel failure: Anchor										
Characteristic resistance	N _{Rk,s,a,eq}	[kN]	l] 18,2 31,4 31,4 55,0 55,0 75,0			5,0				
Partial factor	γMs,eq 1)	[-]	1,8							
Steel failure: Connection b		hor and	chann	el						
Characteristic resistance	N _{Rk,s,c,eq}	[kN]	18,2	31,4	31,4	40,0	42,0	40,0	71,0	75,0
Partial factor	γMs,ca,eq 1)	[-]				1,	8			
Steel failure: Local flexure of channel lips										
Characteristic resistance	N ⁰ Rk,s,l,eq	[kN]	19,9	31,4	31,4	40,0	41,0	40,0	71	,0
Partial factor	γMs,I,eq ¹⁾	[-]				1,	,8			

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channel under seismic tension load (performance category C1)	Annex C13

²⁾ Hot-dip galvanized

Table 37: Characteristic flexural resistance of HAC-V channel under seismic tension load

Anchor channel					HAC-V 35	HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70
Steel failure: Flexure of channel											
Characteristic	НВС-В			786	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
flexural	HBC-C			_ 2)	1318	1318	1853	_ 2)	2538	3668	_ 2)
resistance of	НВС-С-Е	$M_{Rk,s,flex,eq}$	[Nm]	_ 2)	1318	1318	1853	_ 2)	_ 2)	_ 2)	_ 2)
channel	HBC-C-N			_ 2)	1137	1137	1551	_ 2)	2503	3488	_ 2)
000 00 000 000 000 000 000 000 000 000	НВС-Т			_ 2)	_ 2)	_ 2)	_ 2)	1853	_ 2)	_ 2)	3455
Partial factor γ _{Ms,flex,eq} 1) [-]							1	,15			

¹⁾ In absence of other national regulations

Table 38: Characteristic resistances under seismic shear load - steel failure of anchor channel HAC-V

Anchor channel				HAC-V 35 HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70
Steel failure: Anchor							2		
Characteristic resistance	$V_{Rk,s,a,y,eq}$	[kN]	26,9	42,5	57,5	57,9	57,5	116,5	114,8
Characteristic resistance	$V_{Rk,s,a,x,eq}$	[kN]	9,1	15,7	27,5	27,5	25,5	37,5	37,5
Partial factor	γMs,eq 1)	[-]	1,5						
Steel failure: Connection b		or and	channe						
Characteristic resistance	V _{Rk,s,c,y,eq}	[kN]	26,9	42,5	57,5	57,9	57,5	116,5	114,8
Characteristic resistance	V _{Rk,s,c,x,eq}	[kN]	9,1	15,7	27,5	27,5	25,5	37,5	37,5
Partial factor	γMs,ca,eq 1)	[-]	1,8						
Steel failure: Local flexure of channel lips under shear load perpendicular to the longitudinal axis									
of the channel									
Characteristic resistance	V^0 Rk,s,l,y,eq	[kN]	27,7	37,4	55,0	60,5	55,0	102,9	118,8
Partial factor	γMs,I,eq ¹⁾	[-]	1,8						

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channel under seismic tension and seismic shear load (performance category C1)	Annex C14

²⁾ No performance assessed

Table 39: Characteristic resistances under seismic shear load in direction of the longitudinal axis of the channel – steel failure of anchor channel HAC-V

Anchor channel					HAC-V 35 HAC-V 40	HAC-V 50	HAC-V-T 50	HAC-V 60	HAC-V 70	HAC-V-T 70	
Steel failure: Co	nnection bet	ween chan	nel lips	and ch	annel bolt				**		
	HBC-B M12 4.6			3,5	_ 1)	_ 1)		_ 1)			
	HBC-C-N M12 8.8			8,5	8,5	_ 1)	8,5	8,5	_ 1)		
	HBC-C-N M16 8.8				19,7	19,7	19,7] - '/	19,7	19,7	- 4
Characteristic resistance	HBC-C-N M20 8.8	$V_{Rk,s,l,x,eq}$	[kN]		_ 1)	24,1		24,1	24,1		
roolotanoo	HBC-T M12 8.8			_ 1)			15,1			15,1	
	HBC-T M16 8.8			_ 1)	_ 1)	20,1	_ 1)	_ 1)	20,1		
	HBC-T M20 8.8						20,1			20,1	
Installation factor		γinst,eq	[-]		1,4		1,2	1	,4	1,2	

¹⁾ No performance assessed

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channel under seismic shear load in direction of the longitudinal axis of the channel (performance category C1)	Annex C15

Table 40: Characteristic resistances under seismic tension and seismic shear load steel failure of channel bolts HBC-B, HBC-C-N and HBC-T

Channel bolt dia	meter		M12	M16	M20						
Steel failure											
01	НВС-В	4.6			33,7	_ 3)	_ 3)				
Characteristic resistance	HBC-C-N	8.8	N _{Rk,s,eq} 1)	N _{Rk,s,eq} 1)	$N_{Rk,s,eq}$ 1)	N _{Rk,s,eq} 1)	N _{Rk,s,eq} 1)	[kN]	67,4	125,6	174,3
resistance	HBC-T 8.8 67,4				67,4	125,6	177,4				
Partial		4.6	2000 og 3)	r 1	2,0		_ 3)				
factor		8.8	γMs,eq ³⁾	[-]		1,5					
0	НВС-В	4.6			20,2	_ 3)	_ 3)				
Characteristic resistance	HBC-C-N	8.8	V _{Rk,s,eq} 1)	[kN]	33,7	62,8	101,7				
resistance	HBC-T	8.8			33,7	62,8	101,7				
Partial		4.6	200 og ²⁾	F-1	1,67		_ 3)				
factor		8.8	γMs,eq ²⁾	[-]	1,2	5	1,5				

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of channel bolts under seismic tension and seismic shear load (performance category C1)	Annex C16

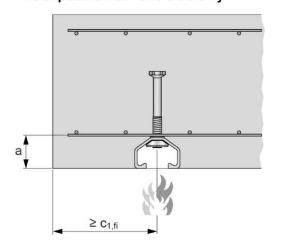
¹⁾ In conformity with EN ISO 898-1:2013 ²⁾ In absence of other national regulations

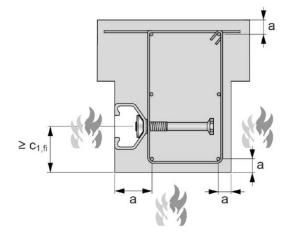
³⁾ No performance assessed

Table 41: Characteristic resistance under fire exposure – steel failure

Channel bolt					M10	M12	M16	M20
Steel failure: Anc	hor, connection	nnel, local	flexure of o	hannel lip	•			
	114.0.00	R60			1,3	1,8		
	HAC-30 HAC-V-T 30	R90			0,9	1,1	- 2)	_ 2)
	11/10-1-100	R120			0,7	0,8		
		R60			1,7	2,4	2,4	2,4
	HAC-V 35	R90			1,3	1,8	1,8	1,8
		R120			1,0	1,5	1,5	1,5
	HAC-40 HAC-V 40	R60			1,7	2,4	2,4	2,4
		R90	N _{Rk,s,fi} = V _{Rk,s,y,fi}		1,3	1,8	1,8	1,8
Characteristic resistance under		R120		[kN]	1,0	1,5	1,5	1,5
fire exposure	1140 50	R60		[[[1,7	2,4	4,0	4,0
, -,	HAC-50 HAC-V 50	R90			1,3	1,8	2,4	2,4
	11/10-4 00	R120			1,0	1,5	1,6	1,6
	114.0.00	R60			1,7	2,4	4,0	4,7
	HAC-60 HAC-V 60	R90			1,3	1,8	2,4	3,0
	11/10-4 00	R120			1,0	1,5	1,6	2,1
Γ,	1140 70	R60			1,7	2,4	4,0	4,7
	HAC-70 HAC-V 70	R90			1,3	1,8	2,4	3,0
	11/40-4 70	R120			1,0	1,5	1,6	2,1
Partial safety facto	r		γMs,fi 1)	[-]		1	,0	

¹⁾ In absence of other national regulations2) No performance assessed


Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels and channel bolts under fire exposure	Annex C17


Table 42: Minimum axis distance

Anchor channel				HAC- 30 HAC-V-T 30	HAC-V 35	HAC-40 HAC-V 40	HAC-50 HAC-V 50	HAC-60 HAC-V 60	HAC-70 HAC-V 70
Minimum axis distance	R60	а	[mm]	35	35	35	50	50	50
	R90			45	45	45			
	R120			60	60	60	60	65	70

Fire exposure from one side only

Fire exposure from more than one side

Hilti anchor c	hannels (HAC	() with channel	bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure

Annex C18