

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0336 of 18 July 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Anchor channels (HAC-C) with channel bolts (HBC)
Product family to which the construction product belongs	Anchor channels
Manufacturer	Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Manufacturing Plants
This European Technical Assessment contains	41 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330008-04-0601, Edition 03/2024
This version replaces	ETA-17/0336 issued on 9 November 2020

Page 2 of 41 | 18 July 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The anchor channels (HAC-C) with channel bolts (HBC) are a system consisting of C-shaped channel profile of carbon steel or stainless steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts (HBC) with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1 and C2
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1 and C2
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1 and C2
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C14
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex B3 and B4 $M_{Rk,s,flex}$ see Annex C3
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B5
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C4 to C6
- Resistance to concrete cone failure	h_{ef} see Annex B3 and B4 $k_{cr,N}$; $k_{ucr,N}$ see Annex C4 to C6
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex B3 and B4 c_{min} ; h_{min} see Annex B3 and B4
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C4 to C6
 Resistance to blowout failure - bearing area of anchor head 	A _h see Annex A4

Page 4 of 41 | 18 July 2024

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C15
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M_{Rk,s}^{0}$ see Annex C16
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel or steel failure of anchor (shear load in transverse direction) 	$V_{Rk,s,l,y}^{0}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C8 and C9
 Resistance to steel failure of connection between channel lips and channel bolt (longitudinal shear) 	$V_{Rk,s,l,x}$ see Annex C10
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C10
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C8 and C9
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C8 and C9
- Resistance to concrete pry-out failure	k_8 see Annex C11
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C11
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C13
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, assessment method A1, A2) 	$\Delta N_{Rk,s,0,n} (n = 1 \text{ to } n = \infty)$ see Annex C17
 Fatigue limit resistance to steel failure of the whole system (assessment method B) 	$\Delta N_{Rk,s,0,\infty}$ see Annex C18
 Fatigue resistance to steel failure of the whole system (linearized function, assessment method C) 	No performance assessed
 Fatigue resistance to concrete related failure (exponential function, assessment method A1, A2) 	$\Delta N_{Rk,c,0,n} \Delta N_{Rk,p,0,n} (n = 1 \text{ to } n = \infty)$ see Annex C18
 Fatigue limit resistance to concrete related failure (assessment method B) 	$\Delta N_{Rk,c,0,\infty} \Delta N_{Rk,p,0,\infty}$ see Annex C 18
- Fatigue resistance to concrete related failure (linearized function, assessment method C)	No performance assessed

Page 5 of 41 | 18 July 2024

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
- Resistance to steel failure under seismic tension loading (seismic performance category C1)	No performance assessed
 Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1) 	No performance assessed
- Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1)	No performance assessed
Characteristic resistance under static and quasi-static tension and/or shear loading	
- Displacements	δ _{N0} ; δ _{N∞} see Annex C7
	$\delta_{V,y,0}$; $\delta_{V,y,\infty}$; $\delta_{V,x,0}$; $\delta_{V,x,\infty}$ see Annex C12

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C19 and C20

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

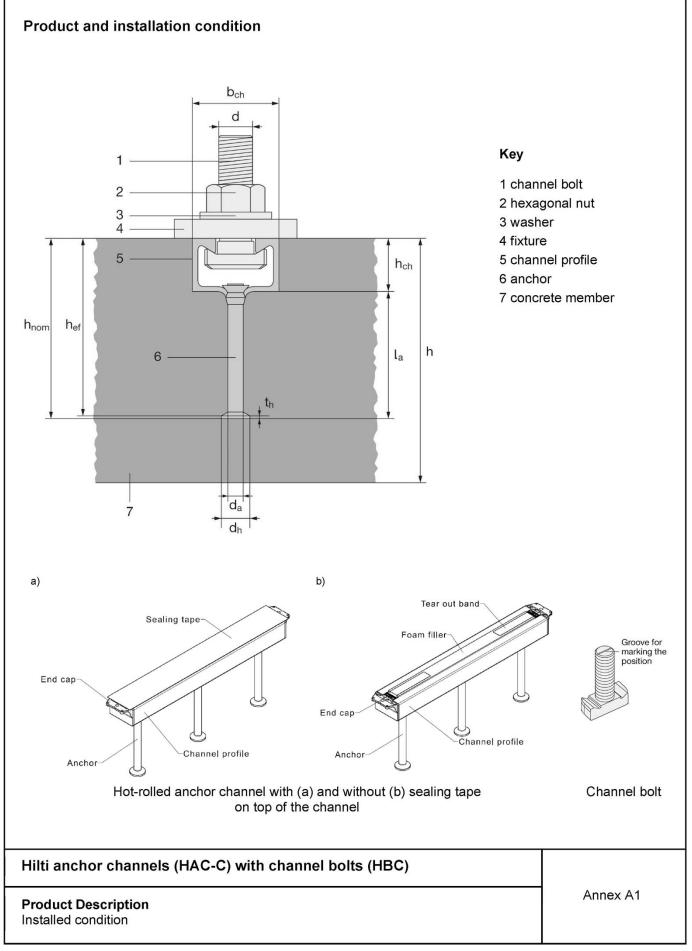
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

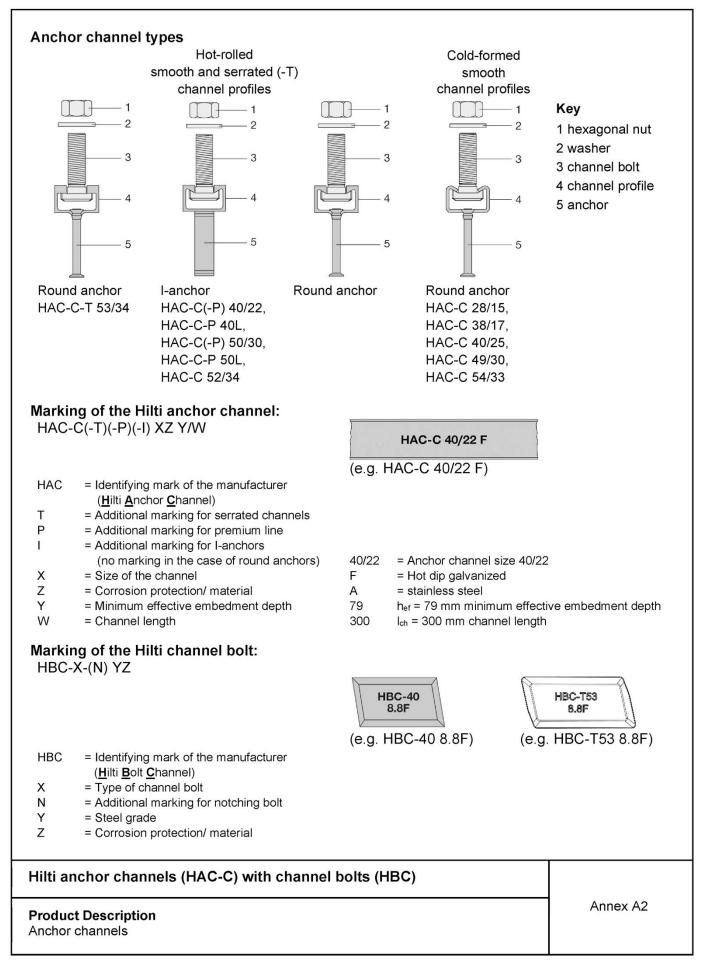
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 18 July 2024 by Deutsches Institut für Bautechnik.

LBD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Müller


Page 6 of European Technical Assessment ETA-17/0336 of 18 July 2024

Page 7 of European Technical Assessment ETA-17/0336 of 18 July 2024

HAC-C 49/30	50,0	30,0	3,25	22,0	7,4
HAC-C 54/33	53,5	33,0	5,0	21,5	8,0

17,25

25,0

3,0

2,75

18,0

18,0

1) For hot-rolled serrated channels (HAC-C-T) height of channel lips is including height of the teeth.

38,0

40,0

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Product Description Anchor channels

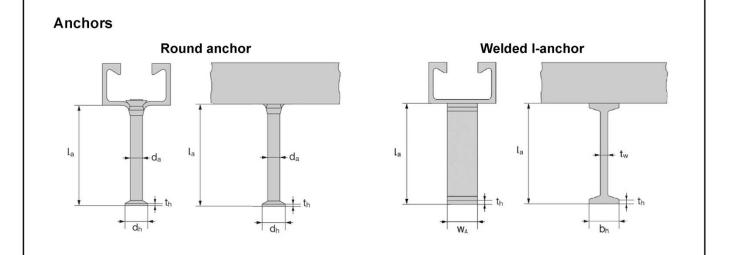
HAC-C 38/17

HAC-C 40/25

Annex A3

3,0

5,6


8224

20122 43105 74706

Page 9 of European Technical Assessment ETA-17/0336 of 18 July 2024

English translation prepared by DIBt

Table 2: Dimensions of anchor (welded I-anchor or round anchor)

		Rou	ind and	chor				Welded I	-anchor		
Anchor channel	min l _a	da	dh	th	Ah	min l _a	t _w	bh	t _h	WA	Ah
		[mr	n]		[mm²]			[mm]			[mm ²]
HAC-C (hot-rolled	serrated)									
HAC-C 53/34	119,5	12,0	26,0	2,5	417,8			1)		
HAC-C(-P) (hot-rolled)											
HAC-C 40/22	58,0	8,0	16,0	2,0	151	62,0	5,0	20,0	5,0	20,0	300
HAC-C-P 40/22	70,0	10,0	21,5	2,2	285	125,0	6,0	25,0	5,0	20,0	380
HAC-C-P 40L	83,2	10,0	21,5	2,2	285						
HAC-C 50/30	66,0	10,0	20,0	2,2	236	69,0	5,0	20,0	5,0	25,0	375
HAC-C-P 50/30	78,0	11,0	26,0	2,5	436	125,0	6,0	25,0	5,0	25,0	475
HAC-C-P 50L	118,3	11,0	26,0	2,5	436						
HAC-C 52/34	123,5	11,0	24,3	2,5	369	125,0	6,0	25,0	5,0	40,0	760
HAC-C (cold-forme	ed)							~			
HAC-C 28/15	31,0	6,0	12,0	1,3	85			_1)		
HAC-C 38/17	60,8	8,0	16,0	2,0	151			_1)		
HAC-C 40/25	56,0	8,0	16,0	2,0	151			_1)		
HAC-C 49/30	66,0	10,0	20,0	2,2	236			_1)		
HAC-C 54/33	124,5	11,0	24,3	2,5	369			_1)		

¹⁾ Product not available

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Product Description Anchors Annex A4

				Dime	nsions			Groove for							
Anchor channel	Channel bolt	Steel grade	d	b _{cbo,1}	bcbo,2	t _{cbo}	Groove for marking the	marking the position							
		y		[n	nm]		position 🔪 d	b /							
HAC-C-T 53/34	HBC-T	8.8,	16	21,0	42,0	13,8									
	53/34	A4-70	20	21,0	42,0	13,8									
HAC-C 49/30			12	17,0	42,0	14,5									
HAC-C(-P) 50/30	HBC-	8.8,	16	17,0	42,0	15,5									
HAC-C-P 50L HAC-C 52/34 HAC-C 54/33	50/30	A4-70	20	21,0	42,0	15,5	t _{cbo}	t _{cbo}							
HAC-C-P 50/30	HBC-	8.8,	16	21,0	42,0	15,5	b _{cbo,1} b _{cbo,2}	b _{cbo,1} b _{cbo}							
HAC-C-P 50L HAC-C 52/34	50/30-N		A4-70	20	21,0	42,0	15,5	HBC-T 53/34	HBC-40/22; HBC-50/30						
HAC-C(-P) 40/22			10	14,0	33,0	10,5	Double	Groove for							
HAC-C-P 40L	HBC- 40/22	Desta Martine States 1.1	The second se		14,0	33,0	11,5	groove for marking	marking the position						
HAC-C 40/25		/ 70	16	17,0	33,0	11,5	the 🔪 d								
HAC-C-P 40/22 HAC-C-P 40L	HBC- 40/22-N	8.8, A4-70	16	17,0	33,0	11,5	position								
			10	13,0	30,5	6,0									
	ЦРС	0 0	12	13,0	30,5	7,0									
HAC-C 38/17	38/17	HBC- 38/17							8.8, A4-70	16	16,0	30,5	7,0	t _{cbo} t b _{cbo,1} b _{cbo,2}	t _{cbo} , b _{cbo,2}
			8	10,1	22,2	5,0	HBC-40/22-N,	HBC-28/15;							
HAC-C 28/15	HBC-	8.8,	10	10,1	22,2	5,0	HBC-50/30-N	HBC-38/17							
	28/15	A4-70	12	11,0	22,2	6,0									

¹⁾ Material properties according to Annex A6

Table 4: Steel grade and corrosion protection

Channel Bolt	Carbon steel ¹⁾	Stainless steel ²⁾
Steel grade	8.8	A4-70
f _{uk} [N/mm ²]	800 / 830 ²⁾	700
f _{yk} [N/mm ²]	640 / 660 ²⁾	450
Corrosion protection	G ³⁾ F ⁴⁾	R

¹⁾ Material properties according to Annex A6

²⁾ Material properties according to EN ISO 898-1:2013

³⁾ Electroplated

4) Hot dip galvanized

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Product Description Channel bolts (HBC)

Annex A5

Commonant		Carbon steel		Stainless steel
Component	Material properties	Coat	ting	Material properties
1	2a	2b	2c	3
Channel Profile	1.0038, 1.0044, 1.0045 according to EN 10025-1: 2004 1.0976, 1.0979 according to EN 10149-1: 2013	Hot dip-ga	1.4362, 1.4401 1.4404, 1.4571, 1.4578	
Anchor	1.0038, 1.0213, 1.0214 according to EN 10025-1: 2004 1.5523, 1.5535 according to EN 10263-1:2017	accord EN ISO 14	according to EN 10088-1:2023 2)	
Channel bolt	Steel grade 8.8 according to EN ISO 898-1: 2013 AC: 2013	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 µm according to EN ISO 10684: 2004+ AC: 2009	Grade 70 according to EN ISO 3506-1:2020
Plain washer ¹⁾ according to EN ISO 7089: 2000 and EN ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 µm according to EN ISO 10684: 2004+ AC: 2009	1.4401, 1.4404 1.4571, 1.4578 according to EN 10088-1:2023
Hexagonal nut according to EN ISO 4032: 2012 or DIN 934: 1987-10	nal nut ng to 4032: 2012 or 1: 1987-10 Property class 8 according to EN ISO 898-2:2022 EN ISO 898-2:2022 Hot dip Electroplated according to EN ISO 4042: 1999 Hot dip galvanized 50 μm according to EN ISO 106 2004+		galvanized ≥ 50 μm according to EN ISO 10684:	Property class 50, 70 or 80 according to EN ISO 3506-1:2020

¹⁾ In scope of delivery only for notching channel bolts

²⁾ Anchors made of carbon steel according column 2a may also be used if they are welded and their concrete cover is more than 50mm and tempering colors are removed

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Product Description Materials Annex A6

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension and, shear perpendicular to the longitudinal axis of the channel
- Static and quasi-static shear perpendicular to the longitudinal axis (anchor channels HAC-C-P 40/22 and HAC-C-P 40L with notching channel bolts HBC-40/22-N and anchor channels HAC-C-P 50/30, HAC-C-P 50L, HAC-C 52/34 with notching channel bolts HBC-50/30-N and serrated anchor channels HAC-C-T 53/34 with serrated channel bolts HBC-T 53/34)
- Fatigue cyclic tension loads (anchor channels and channel bolts according to Annex C17)
- Fire exposure: for concrete class C20/25 to C50/60 (anchor channels and channel bolts according to Annex C19)

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibers according to EN 206: 2013 + A2:2021.
- Strength classes C12/15 to C90/105 according to EN 206: 2013 + A2: 2021.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A6, Table 5, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A6, Table 5, column 2c and 3).
- According to EN 1993-1-4:2006+A2:2015 relating to corrosion resistance class CRC III (channel bolts, washers and nuts made of stainless-steel number 1.4401, 1.4404, 1.4571, 1.4362 und 1.4578 according to Annex A6, Table 5, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of
 the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading and fire exposure the anchor channels are designed in accordance with EN 1992-4: 2018 and EOTA TR 047 "Design of Anchor Channels", May 2021.
- For fatigue loading the anchor channels are designed in accordance with TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", June 2022.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Intended Use Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 6 and 7 as well as Annex B4, Table 8 are generated including end-spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the installation instructions given in Annexes B6, B7, B8, B9 and B10.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B8, B9 and B10) rectangular to the channel axis.
- The required installation torques given in Annex B5 must be applied and must not be exceeded.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Intended Use Specifications

Anchor channel		annel HAC-C-T 53/34			
Minimum effective embedment depth	h _{ef,min}		155		
Minimum spacing	Smin		80		
Maximum spacing	Smax		250		
End spacing	x		35		
Minimum channel length	I _{min}	[mm]	150		
Minimum edge distance	Cmin		75		
Minimum thickness of concrete member	h _{min}		178 h _{ef} + t _h + c _{nom} ¹⁾		

¹⁾ c_{nom} according to EN 1992-1-1:2004 + AC: 2010

Table 7: Installation parameters for HAC-C(-P) (hot-rolled) anchor channels

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Minimum effective embedment depth	h ef,min		79	91	106	94	106	148	155
Minimum spacing	Smin		100	50	50	100	50 ²⁾	50	100
Maximum spacing	Smax					250			
End spacing	х				25	3)			35 ⁴⁾
Minimum channel length	I _{min}	[mm]	150	100	100	150	100	100	170 ⁵⁾
Minimum edge distance	Cmin			50			75		75
Minimum thickness of concrete member	h _{min}		100	100	120 h _{ef}	105 + t _h + c _{nor}	120 n ¹⁾	162	165

¹⁾ c_{nom} according to EN 1992-1-1:2004 + AC: 2010

 $^{2)}$ s_{min} = 100 mm when used in combination with notched bolts

³⁾ the end spacing may be increased from 25 mm to 35 mm

 $^{4)}$ x = 25 mm for welded l-anchors

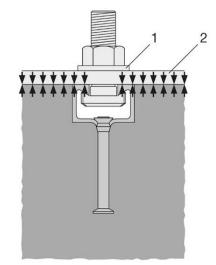
⁵⁾ I_{min} = 150 mm for welded I-anchors

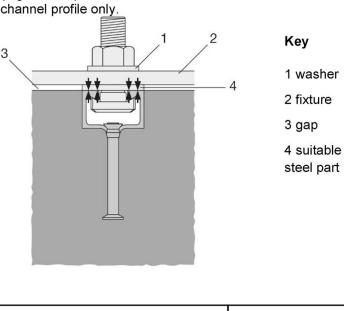
Hilti anchor channels (HAC-C) with channel bolts (HBC)

Intended Use

Installation parameters for anchor channels (HAC-C) and channel bolts (HBC)

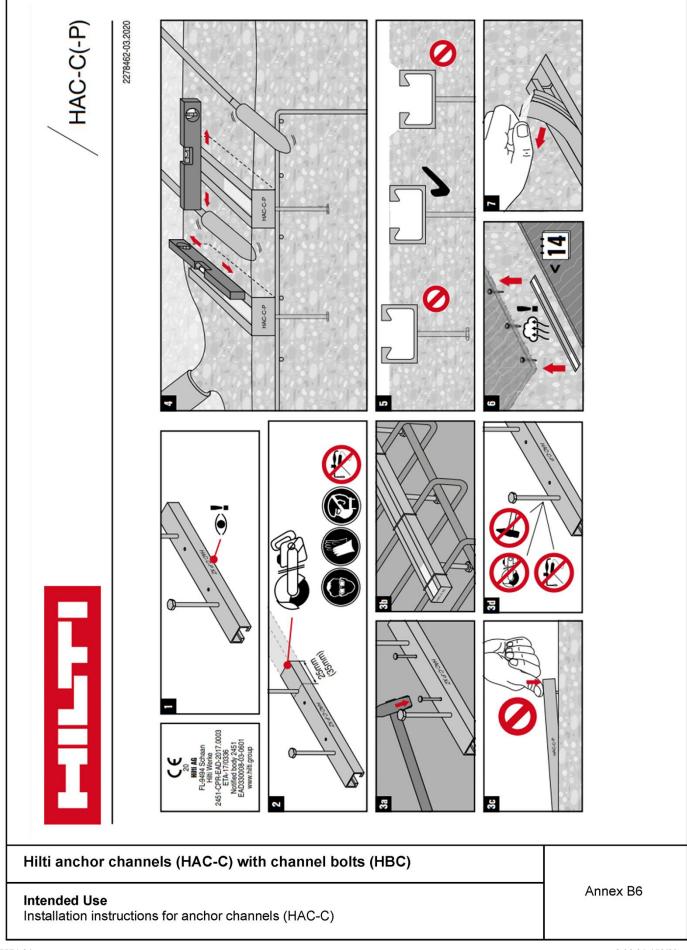

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Minimum effective embedment depth	h _{ef,min}		45	76	79	94	155
Minimum spacing	Smin		50		1	00	-
Maximum spacing	Smax		20	00		250	
End spacing	x	[25 ²⁾		
Vinimum channel length	I _{min}	[mm]	100		1	50	1
Minimum edge distance	C _{min}		40		50	75	100
Minimum thickness of concrete member	h _{min}	-	70	1	$\frac{00}{h_{ef} + t_h + c_{nom}}^1$)	180
Scbo				•			
	-		s		Scho)
	-			• × ×	Scho M12	M16	M20
Table 9: Minimum	spacing Scbo,min	for cha	nnel bolts M8 40	► M10 50	M12 60	M16 80	M20 100




		Insta	Illation torque Tinst [Nm] ¹⁾		
Channel b	olt	General T _{inst,g} [Nm]		el contact [Nm]		
		8.8, A4-70	8.8	A4-70		
HBC-T 53/34	M16	100	100	100		
160-1 53/34	M20	120	120	120		
	M12	25	45	50		
HBC 50/30	M16	60	100	130		
	M20	75	360	250		
IBC 50/30-N	M16	60	185	_2)		
	M20	75	320	_2)		
	M10	15	_2)	22		
HBC 40/22	M12	25	45	50		
	M16	30	100	90		
IBC 40/22-N	M16	30	185	_2)		
	M10	15	_2)	22		
HBC 38/17	M12	25	45	50		
	M16	40	100	90		
	M8	7	20	15		
HBC 28/15	M10	10	40	30		
	M12	13	60	50		

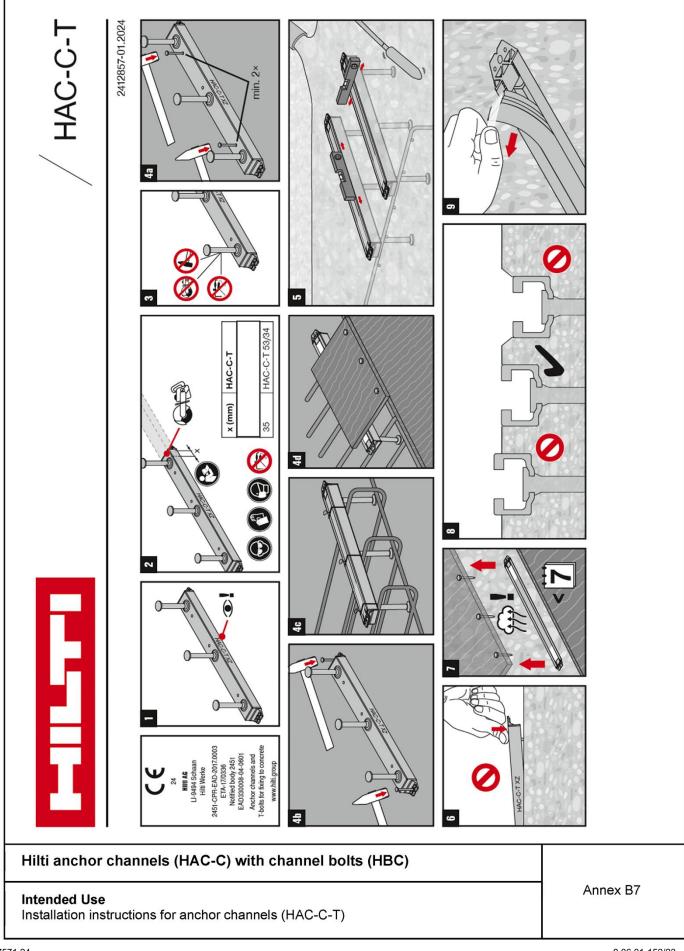
- 1) T_{inst} must not be exceeded
- 2) Product not available

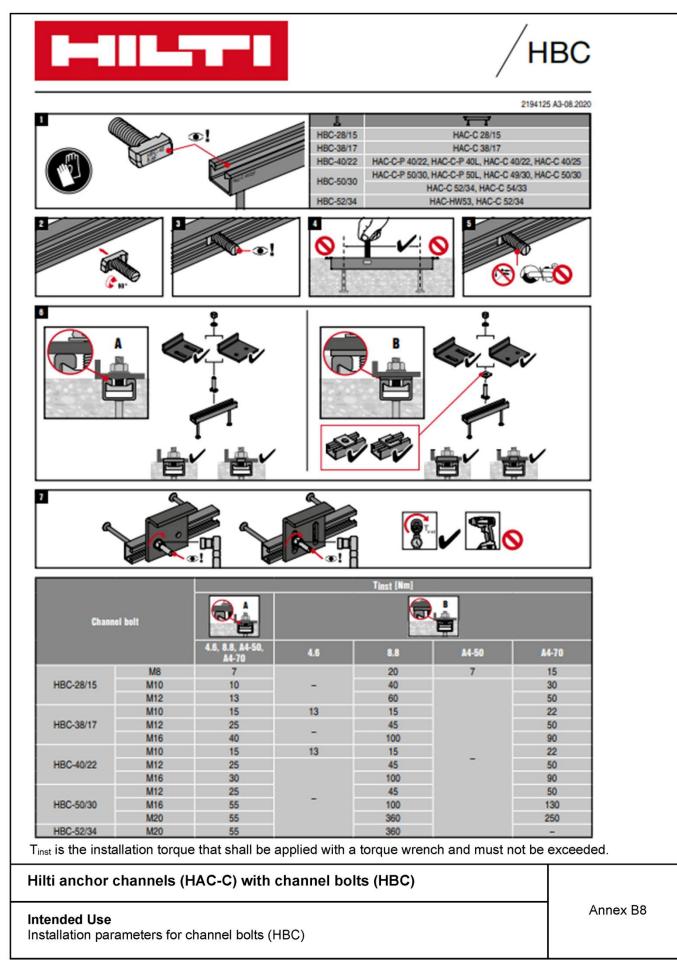
<u>General:</u> The fixture is in contact with the channel profile and the concrete surface



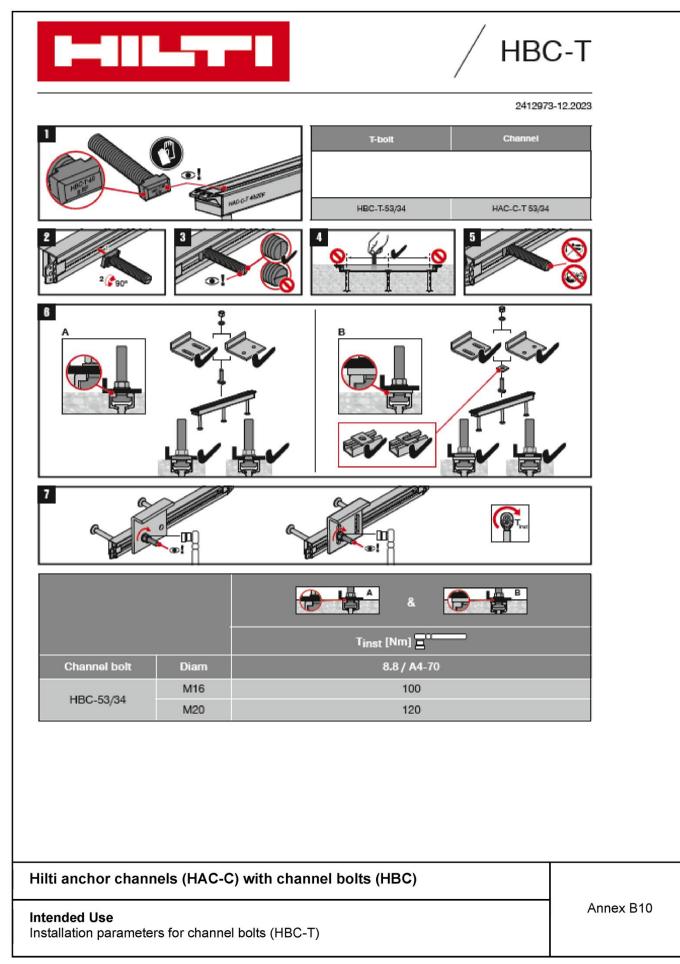
Anchor channels (HAC-C) with channel bolts (HBC)

Intended Use Installation parameters for channel bolts (HBC)


Page 17 of European Technical Assessment ETA-17/0336 of 18 July 2024


Page 18 of European Technical Assessment ETA-17/0336 of 18 July 2024

Page 19 of European Technical Assessment ETA-17/0336 of 18 July 2024


			/ HBC-N
			2257118 A1-08.2020
0		HAC-	HAC-C-P 40/22, HAC-C-P 40L C 50/30, HAC-C-P 50/30, -C-P 50L, HAC-C 52/34
Currow Contraction	3		
Anchor Channel	Channel Bolt	I Time 8.8	[Nm] 8.8
IAC-C-P 40/22 IAC-C-P 40L IAC-C 40/22	Channel Bolt HBC-40/22-N M16		[Nm]
Anchor Channel HAC-C-P 40/22 HAC-C-P 40/22 HAC-C-P 40L HAC-C 40/22 HAC-C-P 50/30 HAC-C-P 50L HAC-C 50/30 HAC-C 52/34		8.8 160	[Nm]

Intended Use

Installation parameters for channel bolts (HBC-N)

Page 21 of European Technical Assessment ETA-17/0336 of 18 July 2024

Table 11: Characteristic resistances under tension load – steel failure of HAC-C-T (serrated hot-rolled) anchor channels

Anchor channel				HAC-C-T 53/34
Steel failure: Ancho	or	6		
Characteristic	Carbon steel	N _a .	[kN]	73,5
resistance	Stainless steel	N _{Rk,s,a}		73,5
Dertial factor	artial factor Carbon steel		r 1	1.0
Parliar lactor	Stainless steel	γMs ¹⁾	[-]	1,8
Steel failure: Conne	ection between a	nchor and	d chan	nel
Characteristic	Carbon steel	N	[LN]	70 5
resistance	Stainless steel	N _{Rk,s,c}	[kN]	73,5
Partial factor		γMs,ca ¹⁾	[-]	1,8
Steel failure: Local	flexure of channe			
Characteristic spacir bolts for N _{Rk,s,I}	ig of channel	S I,N	[mm]	107
Characteristic	Carbon steel	N ⁰ Rk,s,I	[kN]	85,0
resistance	Stainless steel	IN RK,S,I		63,0
Partial factor		$\gamma_{ m Ms,I}$ $^{1)}$	[-]	1,8

¹⁾ In absence of other national regulations.

Table 12: Characteristic resistances under tension load – steel failure of HAC-C(-P) (hot-rolled) anchor channels

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Ancho	or								
Characteristic resistance	N _{Rk,s,a}	[kN]	20,0	40,0	40,0	31,0	57,0	57,0	55,0
Partial factor	γMs ¹⁾	[-]				1,8			
Steel failure: Conne	ction be	etween	anchor	and chann	el				
Characteristic resistance	N _{Rk,s,c}	[kN]	20,0	39,6	39,6	31,0	50,6	50,6	55
Partial factor	γMs,ca ¹⁾	[-]				1,8			
Steel failure: Local			nnel lips						
Characteristic spacing of the channel bolts for N _{Rk,s,I}	Si,N	[mm]	79	79	79	98	98	98	105
Characteristic resistance	N ⁰ Rk,s,i	[kN]	47,9	47,9	47,9	50,5	50,5	50,5	65,0
Partial factor	γ _{Ms,I} 1)	[-]				1,8			

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels (HAC-C) under tension load – steel failure

Table 13: Characteristic resistances under tension load – steel failure of HAC-C (cold-formed) anchor channels

				ç		8	10
Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: Failure	of ancl	nor					
Characteristic resistance	N _{Rk,s,a}	[kN]	9	18	20	31	55
Partial safety factor	γMs ¹⁾	[-]			1,8		
Steel failure: Failure	e of con	nectio	n between and	chor and chan	nel		
Characteristic resistance	N _{Rk,s,c}	[kN]	9	18	20	31	55
Partial safety factor	γMs,ca ¹⁾	[-]			1,8		
Steel failure: Local	failure b	y flexu	ire of channel	lips			
Characteristic spacing of the channel bolts for N _{Rk,s,I}	SI,N	[mm]	56	76	80	100	107
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9	18	20	31	55
Partial safety factor	γMs,I ¹⁾	[-]			1,8		

1) In absence of other national regulations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels (HAC-C) under tension load – steel failure

Table 14: Characteristic flexural resistance of HAC-C-T (serrated hot-rolled) channels under tension load

Anchor chann	el			HAC-C-T 53/34
Steel failure: I	lexure of e	channel		
Characteristic flexural	carbon steel	arbon teel Main for	[Nima]	4870,1
resistance of channel	stainless steel	IVIRk,s,flex	[Nm]	4625,6
Partial factor		γMs,flex ¹⁾	[-]	1,15

¹⁾ In absence of other national regulations.

Table 15: Characteristic flexural resistance of HAC-C(-P) (hot-rolled) channels under tension load

Anchor channe	el			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: F	ailure by fl	exure of	chann	el			•			
Characteristic flexural resistance of channel	carbon steel stainless steel	MRk,s,flex	[Nm]	1013	1704	1704	2084	3448	3448	3435
Partial factor		γMs,flex ¹⁾	[-]				1,15		•	-

¹⁾ In absence of other national regulations.

Table 16: Characteristic flexural resistance of HAC-C (cold-formed) channels under tension load

Anchor chann	el			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: F	lexure of o	channel						
Characteristic flexuralcarbon steelresistancestainless of channelMRk,s,flex		[Nim]	316	538	979	1669	2929	
		IVIRk,s,flex	[Nm]	510	527	979	1702	2832
Partial factor		γMs,flex ¹⁾	[-]			1,15		<u>.</u>

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Annex C3

Performance Characteristic resistances of anchor channels (HAC-C) under tension load – steel failure

Anchor cha	annel			HAC-C-T 53/34
Type of and	chor			R
Concrete fa	ailure: Pull-	out		
resistance i	n cracked			37,6
resistance i uncracked	eristic ce in cracked <u> <u> <u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> ce in cracked <u> <u> </u> </u></u></u></u>	N _{Rk,p}	[kN]	52,6
				1,33
	C20/25			1,67
	C25/30			2,08
Factor for	C30/37			2,50
Characteristic esistance in concrete C12 Characteristic esistance in incracked concrete C12 (factor for URK,p = (Cartial factor Concrete fai Partial factor Concrete fai Characteristic Characteristic	C35/45	ψc	[-]	2,92
	C40/50	ψο		3,33
	C45/55			3,75
	C50/60			4,17
	C55/67			4,58
	of anchor ete failure: Pull-or eteristic ince in cracked te C12/15 eteristic ince in ked te C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 2/15)* C40/50 C45/55 C50/60 C55/67 ≥C60/75 factor ete failure: Conc ete failure: Conc ete failure: Splitt eteristic edge ee eteristic spacing			5,00
Partial facto	r	γ _{Mp} = γ _{Mc} ¹⁾	[-]	1,5
Concrete fa	ailure: Cond	crete c	one	
	concrete	k cr,N	[-]	8,7
Characteristic resistance in concrete C12 Characteristic resistance in uncracked concrete C12 $C_{actor for}$ $R_{k,p} = 0$ $R_{k,p(C12/15)}$ $C_{actor k_1}$ $C_{actor k_1}$	concrete	k ucr,N	[-]	12,4
uncracked concrete C12 Concrete C12 Factor for $N_{Rk,p} =$ $N_{Rk,p(C12/15)}$ Y_c Partial factor Concrete fail Product Factor k1 Concrete fail Partial factor Concrete fail Concrete fail Concrete fail Concrete fail Characteristic Characteristic Characteristic		γMc ¹⁾	[-]	1,5
		ting		
Characteristic resistance in o concrete C12/ Characteristic resistance in uncracked concrete C12/ Factor for $N_{Rk,p} = 0$ Ψ_c Partial factor Concrete fail Product factor k1 u Partial factor Concrete fail Characteristic distance Characteristic Partial factor		C _{cr,sp}	[mm]	465
Characteris	tic spacing	Scr,sp	[mm]	930
Partial facto	r	γ _{Msp} = γ _{Mc} ¹⁾	[-]	1,5
¹⁾ In abser	nce of other	nationa	al regu	ations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Annex C4

Characteristic resistances of anchor channels (HAC-C-T) under tension load – concrete failure

Anchor cha	annel				C-C /22		-C-P /22		C-P		C-C /30		-C-P /30		C-C-P		C-C /34
Type of and	chor				R	1	R	1	R		R		R		R		R
Concrete fa	ailure: Pull-	out															
Characteris resistance i concrete C1	n cracked			27,0	13,6	34,2	25,6	_1)	25,6	33,8	21,2	42,8	39,2	_1)	39,2	68,4	33
Characteris resistance i uncracked	tic n	N _{Rk,p}	[kN]	37,8	19,0	47,9	35,8	_1)	35,8	47,3	29,7	59,9	54,9	_1)	54,9	95,8	46
oncrete C12/15 C16/20										4	22						
	C20/25			1,33													
	2										67						
	C25/30			2,08													
Factor for	C30/37			2,50													
N _{Rk,p} =	C35/45		[_]	2,92													
NRk,p(C12/15)	C40/50	Ψο	[-]	3,33													
Ψc	C45/55]		3,75													
	C50/60	1		4,17													
	C55/67		4,58														
	<u>>C60/75</u>					5,00											
Partial facto			[-]	1,5													
Concrete fa	ailure: Cond																
Product	cracked concrete	k cr,N	[-]	7,9 8,0 8,2 8,1 8,2					,2	8	,6	8	,7				
factor k₁	uncracked concrete	k ucr,N	[-]	11	,2	11	1,5	11	1,7	11	,6	11	٦,	12	2,3	12	2,4
Partial facto	r	γMc ²⁾	[-]							[-	·]						
Concrete fa	ailure: Split	ting															
Characteris [.] edge distan		C _{cr,sp}	[mm]	23	37	2	73	3	18	28	32	3	18	4	44	46	65
Characteris	tic spacing	Scr,sp	[mm]	47	74	54	46	6	36	56	64	63	36	8	88	93	30
Partial facto	r	γ _{Mp} = γ _{Mc} ²⁾	[-]			5a				1	,5			1			
¹⁾ Product no ²⁾ In absence	ot available e of other na	ational	regula	tions													
- 	or channels	s (HA	C-C) \	vith	chan	nel l	oolts	(HB	C)								

concrete failure

Page 27 of European Technical Assessment ETA-17/0336 of 18 July 2024

English translation prepared by DIBt

nnel			HAC-C	HAC-C	HAC-C	HAC-C	HAC-C			
			28/15	38/17	40/25	49/30	54/33			
			ĸ	ĸ	ĸ	ĸ	R			
	out				1	1				
c cracked 2/15			7,6	13,6	13,6	21,2	33,2			
c oncrete	N _{Rk,p}	[kN]	10,7	19,0	19,0	29,7	46,5			
C16/20				L	1,33	•	1			
C20/25					1,67					
Factor for C30/37										
			2,92							
	ψ_{c}	[-] -	3,33							
			4,58							
					20					
	γ _{Mp} = γ _{Mc} ¹⁾	[-]	1,5							
ilure: Conc		ne								
cracked concrete	k cr,N	[-]	7,2	7,8	7,9	8,1	8,7			
uncracked concrete	k ucr,N	[-]	10,3	11,2	11,2	11,6	12,4			
•	γ Mc ¹⁾	[-]	[-]							
	ting	î î				1				
e	Ccr,sp	[mm]	135	228	237	282	465			
c spacing	Scr,sp	[mm]	270	456	474	564	930			
	γ _{Msp} = γ _{Mc} ¹⁾	[-]			1,5					
	c cracked 2/15 c oncrete C16/20 C20/25 C25/30 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75 ilure: Conc cracked concrete uncracked concrete uncracked concrete uncracked concrete uncracked concrete	ilure: Pull-out c cracked 2/15 c boncrete C16/20 C20/25 C25/30 C35/45 C40/50 C45/55 C55/67 \geq C60/75 $\gamma_{Mp} = \gamma_{Mc}^{(1)}$ ilure: Concrete co cracked concrete uncracked kucr,N $\gamma_{Mc}^{(1)}$ ilure: Splitting c e c spacing $\gamma_{Msp} = \gamma_{Mc}^{(1)}$	ilure: Pull-outccracked $2/15$ NRk,p[KN]cNRk,p[KN]cNRk,p[KN]concrete V^{c} [-]C16/20 V_{c} [-]C20/25 V_{c} [-]C35/45 V_{c} [-]C40/50 V_{c} [-]C45/55 V_{c} [-]C55/67 $\gamma_{Mp} = \gamma_{Mc} = 1$ [-]SIlure: Concrete conecrackedkcr,Ncrackedkucr,N[-]uncrackedkucr,N[-]uncrackedkucr,N[-]uncrackedkucr,N[-]ilure: Splitting C c $C_{cr,sp}$ [mm]c spacing $S_{cr,sp}$ [mm] $\gamma_{Ms} = \gamma_{Mc} = 1$ [-]	Ilure: Pull-out 7,6 c $N_{Rk,p}$ $[KN]$ 7,6 c $N_{Rk,p}$ $[KN]$ 10,7 concrete $V'c$ $[-1]$ 10,7 C16/20 $V'c$ $[-1]$ $[-1]$ C20/25 $V'c$ $[-1]$ $[-1]$ C35/45 $V'c$ $[-1]$ $[-1]$ C40/50 $V'c$ $[-1]$ $[-1]$ C40/50 $V'c$ $[-1]$ $[-1]$ C55/67 $V'c$ $[-1]$ $[-1]$ SOC60/75 $\gamma_{Mp} = 1$ $[-1]$ $[-1]$ SILURE: Concrete cone $Cracked$ $k_{cr,N}$ $[-1]$ $7,2$ Incracked $k_{ucr,N}$ $[-1]$ $10,3$ γ_{Mc}^{11} $[-1]$ SILURE: Splitting C Ccr,sp $[mm]$ 135 C c cor,sp $[mm]$ 270 $\gamma_{Msp} = 1$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ $[-1]$ <td>ilure: Pull-out c $C_{cracked}_{2/15}$ $R_{K,p}$ $[KN]$ $7,6$ $13,6$ c $N_{Rk,p}$ $[KN]$ $10,7$ $19,0$ c $N_{Rk,p}$ $[KN]$ $10,7$ $19,0$ C16/20 $20/25$ $20/25$ $20/25$ $20/25$ $20/25$ C20/25 $20/25/30$ $\sqrt{\psi_c}$ $\left[-1 \right]$ $20/25/30$ $20/25/30$ C30/37 $20/25/30$ $\sqrt{\psi_c}$ $\left[-1 \right]$ $20/25/30$ $20/25/30$ $20/25/30$ $20/25/30$ C30/37 $20/25/30$ $\sqrt{\psi_c}$ $\left[-1 \right]$ $20/25/30$ $20/25$</td> <td>Ilure: Pull-out 7,6 13,6 13,6 c NRk,p [kN] 7,6 13,6 13,6 c NRk,p [kN] 10,7 19,0 19,0 C16/20 1,33 1,33 1,33 1,36 C20/25 2,08 1,67 2,08 C30/37 2,50 2,08 2,08 C35/45 2,92 2,08 C40/50 Ψ_c [-] 3,33 C45/55 3,75 3,75 C50/60 4,17 5,00 $\gamma_{Mp} = , \gamma_{Mc} = 1$ [-] 1,5 Ilure: Concrete cone 5,00 4,58 C60/75 5,00 1,5 Nucracked concrete ker,N [-] 7,2 7,8 7,9 uncracked concrete cone kucr,N [-] 10,3 11,2 11,2 uncracked concrete kucr,N [-] 10,3 11,2 11,2 uncracked concrete kucr,N [-] 10,3 11,2 11,2 uncracked concrete Splitting - [-] [-]</td> <td>Hure: Pull-out Image: Concrete cracked 2/15 Image: Concrete cracked 2/15 Image: Concrete cracked cracked concrete cracked concrete cracked concrete cracked concrete cracked concrete ker, N Image: Concrete concrete concrete cracked concrete ker, N Image: Concrete concrete concrete concrete ker, N Image: Concrete concrete concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrente ker, N Image: Concrente ker, N</td>	ilure: Pull-out c $C_{cracked}_{2/15}$ $R_{K,p}$ $[KN]$ $7,6$ $13,6$ c $N_{Rk,p}$ $[KN]$ $10,7$ $19,0$ c $N_{Rk,p}$ $[KN]$ $10,7$ $19,0$ C16/20 $20/25$ $20/25$ $20/25$ $20/25$ $20/25$ C20/25 $20/25/30$ $\sqrt{\psi_c}$ $\left[-1 \right]$ $20/25/30$ $20/25/30$ C30/37 $20/25/30$ $\sqrt{\psi_c}$ $\left[-1 \right]$ $20/25/30$ $20/25/30$ $20/25/30$ $20/25/30$ C30/37 $20/25/30$ $\sqrt{\psi_c}$ $\left[-1 \right]$ $20/25/30$ $20/25$	Ilure: Pull-out 7,6 13,6 13,6 c NRk,p [kN] 7,6 13,6 13,6 c NRk,p [kN] 10,7 19,0 19,0 C16/20 1,33 1,33 1,33 1,36 C20/25 2,08 1,67 2,08 C30/37 2,50 2,08 2,08 C35/45 2,92 2,08 C40/50 Ψ_c [-] 3,33 C45/55 3,75 3,75 C50/60 4,17 5,00 $\gamma_{Mp} = , \gamma_{Mc} = 1$ [-] 1,5 Ilure: Concrete cone 5,00 4,58 C60/75 5,00 1,5 Nucracked concrete ker,N [-] 7,2 7,8 7,9 uncracked concrete cone kucr,N [-] 10,3 11,2 11,2 uncracked concrete kucr,N [-] 10,3 11,2 11,2 uncracked concrete kucr,N [-] 10,3 11,2 11,2 uncracked concrete Splitting - [-] [-]	Hure: Pull-out Image: Concrete cracked 2/15 Image: Concrete cracked 2/15 Image: Concrete cracked cracked concrete cracked concrete cracked concrete cracked concrete cracked concrete ker, N Image: Concrete concrete concrete cracked concrete ker, N Image: Concrete concrete concrete concrete ker, N Image: Concrete concrete concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrete concrete ker, N Image: Concrete concrete concrete ker, N Image: Concrente ker, N Image: Concrente ker, N			

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels (HAC-C) under tension load – concrete failure

Anchor channe	I			HAC-C-T 53/34
Tonsian load	Carbon steel	N	[LNI]	36,0
Tension load	Stainless steel	Ν	[kN]	29,3
Short-term	Carbon steel	•	[mana]	1,2
displacement ¹⁾	Stainless steel	δ_{N0}	[mm]	1,1
Long-term	Carbon steel	•	[mama]	2,4
displacement 1)	Stainless steel	δ _{N∞}	[mm]	2,1

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 21: Displacements of HAC-C(-P) (hot-rolled) anchor channels under tension load

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Tension load	N	[kN]	13,9	15,3	15,3	14,3	25,8	25,8	25,8
Short-term displacement ¹⁾	δ _{N0}	[mm]	2,3	1,1	1,1	2,2	1,4	1,4	1,4
Long-term displacement ¹⁾	δ _{N∞}	[mm]	4,6	2,2	2,2	4,4	2,8	2,8	2,8

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Table 22: Displacements of HAC-C (cold-formed) anchor channels under tension load

Anchor channel	Anchor channel			HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Tension load	N	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement ¹⁾	δ _{N0}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement ¹⁾	δ _{N∞}	[mm]	1,2	2,6	2,8	2,8	3,2

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Annex C7

Performance Displacements under tension load

Anchor channe	9			HAC-C-T 53/34
Steel failure: A	nchor			
Characteristic	Carbon steel		[LN]	120.0
resistance	Stainless steel	- V _{Rk,s,a,y}	[kN]	120,0
Characteristic	Carbon steel		[LN]	44.1
resistance	Stainless steel	- V _{Rk,s,a,x}	[kN]	44,1
Dortial factor	artial factor Carbon steel Stainless steel		1 1	1.5
Partial factor			[-]	1,5
Steel failure: C	onnection betweer	n anchor a	and cha	annel
Characteristic	Carbon steel		[kN]	120.0
resistance	Stainless steel	- V _{Rk,s,c,y}		120,0
Characteristic	Carbon steel		[kN]	45 F
resistance	Stainless steel	- V _{Rk,s,c,x}		45,5
Partial factor		γMs ¹⁾	[-]	1,8
Steel failure: Lo of the channel	ocal flexure of cha	nnel lips u	under s	hear load perpendicular to the longitudinal axis
Characteristic sp bolts for V _{Rk,s,l}	bacing of channel	SI,V	[mm]	107,0
Characteristic	Carbon steel	10	FLAIT	120.0
resistance	Stainless steel	V ⁰ Rk,s,l,y	[kN]	120,0
Partial factor		γMs,I ¹⁾	[-]	1,8

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Annex C8

Performance

Characteristic resistances of anchor channels (HAC-C-T) under shear load – steel failure

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-0 52/34
Steel failure: Anch	or								
Characteristic resistance	V _{Rk,s,a,y}	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Characteristic resistance	V _{Rk,s,a,x}	[kN]	_2)	24,0	24,0	_2)	34,2	34,2	33,1
Partial factor	γ Ms ¹⁾	[-]				1,5			
Steel failure: Conn	ection be	etween	anchor	and channe	el				5
Characteristic resistance	V _{Rk,s,c,y}	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Characteristic resistance	V _{Rk,s,c,x}	[kN]	_2)	23,8	23,8	_2)	30,4	30,4	28,1
Partial factor	γMs,ca ¹⁾	[-]				1,8			
Steel failure: Local	flexure	of char	nnel lips	under shea	ar load perp	endicula	r to the lon	gitudinal	axis
of the channel Characteristic spacing of channel bolts for V _{Rk,s,l}	SI,∨	[mm]	80	80	80	99	99	99	105
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	55,0	55,0	55,0	91,7	91,7	91,7	71,5
Sense Sense and the	1)	F 1				1,8			
Partial factor ¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels	assessed	-	ces unde			ilure of H			
¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact	er nationa assessed	al regul	ces unde HAC	-C H	AC-C	ilure of H HAC-C	HAC	-C H	IAC-C 54/33
 ¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels 	er nationa assessed eristic re	al regul	ces unde	-C H		ilure of H		-C H	IAC-C 54/33
 ¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel 	er nationa assessed eristic re	al regul	ces unde HAC	-C H/ 5 3	AC-C	ilure of H HAC-C	HAC	-C H 30 {	
 ¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance 	er nationa assessed eristic re or	al regul	ces unde HAC 28/1	-C H/ 5 3	AC-C 8/17	HAC-C 40/25	HAC 49/3	-C H 30 {	54/33
 ¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic 	er nationa assessed eristic re or V _{Rk,s,a,y} γ _{Ms} ¹⁾	sistan [kN]	Ces unde HAC 28/1 9,0	-C H/ 5 3	AC-C 8/17 18,0	HAC-C 40/25 20,0	HAC 49/3	-C H 30 {	54/33
 ¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance Partial factor 	er nationa assessed eristic re or V _{Rk,s,a,y} γ _{Ms} ¹⁾	sistan [kN]	Ces unde HAC 28/1 9,0	-C H/ 5 3 and channe	AC-C 8/17 18,0	HAC-C 40/25 20,0	HAC 49/3	-C H i0 1	54/33
¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance Partial factor Steel failure: Conn Characteristic resistance Partial factor	er nationa assessed eristic re or $V_{Rk,s,a,y}$ $\gamma_{Ms}^{(1)}$ ection be $V_{Rk,s,c,y}$ $\gamma_{Ms,ca}^{(1)}$	[kN] [kN] [kN] [-]	Ces unde HAC 28/1 9,0 anchor 9,0	-C H/ 5 3 and channe	AC-C 8/17 18,0 el 18,0	HAC-C 40/25 20,0 1,5 20,0 1,8	HAC 49/3 31,0	-C H i0 4 D	5 4/33 55,0 55,0
¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance Partial factor Steel failure: Conn Characteristic resistance Partial factor Steel failure: Local of the channel	er nationa assessed eristic re or $V_{Rk,s,a,y}$ $\gamma_{Ms}^{(1)}$ ection be $V_{Rk,s,c,y}$ $\gamma_{Ms,ca}^{(1)}$	[kN] [kN] [kN] [-]	Ces unde HAC 28/1 9,0 anchor 9,0	-C H/ 5 3 and channe	AC-C 8/17 18,0 el 18,0	HAC-C 40/25 20,0 1,5 20,0 1,8	HAC 49/3 31,0	-C H i0 4 D	5 4/33 55,0 55,0
¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance Partial factor Steel failure: Conn Characteristic resistance Partial factor Steel failure: Local of the channel Characteristic spacing of channel bolts for V _{Rk,s,I}	er nationa assessed eristic re or $V_{Rk,s,a,y}$ $\gamma_{Ms}^{(1)}$ ection be $V_{Rk,s,c,y}$ $\gamma_{Ms,ca}^{(1)}$	[kN] [kN] [kN] [-]	Ces unde HAC 28/1 9,0 anchor 9,0	-C H/ 5 3 and channe under shea	AC-C 8/17 18,0 el 18,0	HAC-C 40/25 20,0 1,5 20,0 1,8	HAC 49/3 31,0	-C H i0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4/33 55,0 55,0
¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance Partial factor Steel failure: Conn Characteristic resistance Partial factor Steel failure: Local of the channel Characteristic spacing of channel	er nationa assessed eristic re or $V_{Rk,s,a,y}$ $\gamma_{Ms}^{(1)}$ ection be $V_{Rk,s,c,y}$ $\gamma_{Ms,ca}^{(1)}$ flexure of	[kN] [kN] [kN] [-] [kN] [-] of char	ces unde HAC 28/1 9,0 anchor 9,0	-C H/ 5 3 and channe under shea	AC-C 8/17 18,0 el 18,0 ar load perp	HAC-C 40/25 20,0 1,5 20,0 1,5 20,0 1,8 pendicula	HAC 49/3 31,0 31,0	-C H i0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	54/33 55,0 55,0 axis
¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance Partial factor Steel failure: Conn Characteristic resistance Partial factor Steel failure: Local of the channel Characteristic spacing of channel bolts for V _{Rk,s,I} Characteristic	er nationa assessed eristic re or $V_{Rk,s,a,y}$ $\gamma_{Ms}^{(1)}$ ection be $V_{Rk,s,c,y}$ $\gamma_{Ms,ca}^{(1)}$ flexure of $S_{I,V}$	[KN] [-] [KN] [-] [KN] [-] of char	ces unde HAC 28/1 9,0 anchor 9,0 nnel lips 56	-C H/ 5 3 and channe under shea	AC-C 8/17 18,0 el 18,0 ar load perp 76	HAC-C 40/25 20,0 1,5 20,0 1,8 Dendicula 80	HAC 49/3 31,0 31,0 r to the lon 100	-C H i0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	54/33 55,0 55,0 axis 107
¹⁾ In absence of oth ²⁾ No performance a Table 25: Charact anchor channels Anchor channel Steel failure: Anch Characteristic resistance Partial factor Steel failure: Conn Characteristic resistance Partial factor Steel failure: Local of the channel Characteristic spacing of channel bolts for V _{Rk,s,l} Characteristic resistance	er nationa assessed eristic re or $V_{Rk,s,a,y}$ $\gamma_{Ms}^{(1)}$ ection be $V_{Rk,s,c,y}$ $\gamma_{Ms,ca}^{(1)}$ flexure o $S_{I,V}$ $V^0_{Rk,s,l,y}$ $\gamma_{Ms,l}^{(1)}$	[kN] [-] [kN] [-] [kN] [-] [kN] [kN] [-]	Ces unde HAC 28/1 9,0 anchor 9,0 nnel lips 56 9,0	-C H/ 5 3 and channe under shea	AC-C 8/17 18,0 el 18,0 ar load perp 76	Ailure of H HAC-C 40/25 20,0 1,5 20,0 1,8 Dendicula 80 20,0	HAC 49/3 31,0 31,0 r to the lon 100	-C H i0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	54/33 55,0 55,0 axis 107

Table 26: Characteristic resistances under shear load in direction of the longitudinal axis of the channel – steel failure of HAC-C-T (serrated hot-rolled) anchor channels

Anchor chann	el			HAC-C-T 53/34			
Steel failure: Connection between channel lips and channel bolt							
	HBC-T	Carbon steel			53,0		
Characteristic	53/34 M16	Stainless steel		TLNI	51,0		
resistance	HBC-T	Carbon steel	V _{Rk,s,l,x}	[kN]	65,0		
	53/34 M20	Stainless steel			51,0		
Installation facto	~~	Carbon steel			1,4		
Installation facto	J	Stainless steel	Yinst	[-]	1,0		

¹⁾ Product not available

Table 27: Characteristic resistances under shear load in direction of the longitudinal axis of the channel – steel failure HAC-C(-P) (hot-rolled) anchor channels

Anchor chann	el		HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34	
Steel failure: Connection between channel lips and channel bolt										
	HBC-40/22-N M16 8.8F				12,5	12,5			_ 1)	
Characteristic resistance	HBC-50/30-N M16 8.8F	V _{Rk,sl,x}	[kN]	_ 2)	2)		_ 2)	8,3	8,3	8,3
	HBC-50/30-N M20 8.8F				_ 2)			8,3	8,3	8,3
Installation fact		1	,4			1,0				

¹⁾ Product not available

²⁾ No performance assessed

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels (HAC-C) under shear load – steel failure

Table 28: Characteristic resistances under shear load – concrete failure of HAC-C-T (serrated hot-
rolled) anchor channels

Anchor cl	hannel			HAC-C-T 53/34				
Concrete failure: Pry out failure								
Product fa	ctor	k ₈	[-]	2,0				
Partial fac	tor	γ _{Mc} ¹⁾	[-]	1,5				
Concrete	failure: Conc	rete ed	ge fai	ure				
Product	cracked concrete	k cr,∨	[-]	7,5				
factor k ₁₂	uncracked concrete	k ucr,V	[-]	10,5				
Partial fac	tor	γ_{Mc} ¹⁾	[-]	1,5				

¹⁾ In absence of other national regulations

Table 29: Characteristic resistances under shear load – concrete failure of HAC-C(-P) (hot-rolled) anchor channels

Anchor c	hannel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34	
Concrete	failure: Pry o	out									
Product factor k ₈ [-] 2,0											
Partial fac	tor	γ _{Mc} ¹⁾	[-]	1,5							
Concrete	failure: Cond	crete ed	ge								
	cracked concrete	k cr,∨	[-]				7,5				
factor k12	uncracked concrete	k ucr,V	[-]	10,5							
Partial fac	tor	γ _{Mc} ¹⁾	[-]	1,5							

1) In absence of other national regulations

Table 30: Characteristic resistances under shear load – concrete failure of HAC-C (cold-formed) anchor channels

Anchor c	hannel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25		AC-C 9/30	HAC-C 54/33	
Concrete	failure: Pry ou	ut			~					
Product fa	ictor	k ₈	[-]	1,0		2,	0			
Partial fac	tor	γMc ¹⁾	[-]			1,5				
Concrete failure: Concrete edge										
Product	cracked concrete	k cr,∨	[-]	6,9	6,9	7,5				
factor k ₁₂	uncracked concrete	kucr,∨	[-]	9,6	9,6	10,5				
Partial fac	tor	γ Mc $^{1)}$	[-]			1,5				
In absen	ce of other nati	onal re	gulatio	ons						
lilti anch	ilti anchor channels (HAC) with channel bolts (HBC)									
haracteris	rformance aracteristic resistances of anchor channels (HAC-C) under shear load –									

Anchor channel			HAC-C-T 53/34			
Bolt diameter			M16	M20		
Carbon steel						
Shear load	Vy	[kN]	69,0			
Short-term displacement ¹⁾	δ _{V0,y}	[mm]	2,	8		
Long-term displacement 1)	δ∨∞,γ	[mm]	4,2			
Shear load	V _x	[kN]	33,1	40,6		
Short-term displacement ¹⁾	δ _{V0,x}	[mm]	1,4	1,5		
Long-term displacement 1)	δ _{V∞,x}	[mm]	2,0	2,2		
Stainless steel						
Shear load	Vy	[kN]	66	,8		
Short-term displacement ¹⁾	δ _{ν0,у}	[mm]	2,	5		
Long-term displacement 1)	δ∨∞,γ	[mm]	3,7			
Shear load	Vx	[kN]	38,4			
Short-term displacement ¹⁾	δ _{V0,x}	[mm]	1,3			
Long-term displacement ¹⁾	δ _{V∞,x}	[mm]	2,0			

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 32: Displacements under shear load of HAC-C(-P) (hot-rolled) anchor channels

Anchor channe	l		HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Shear load	Vy	[kN]	10,3	29,0	29,0	16,0	39,7	28,4	28,4
Short-term displacement ¹⁾	δ _{V0,y}	[mm]	2,1	2,0	2,0	2,6	2,7	3,7	3,7
Long-term displacement ¹⁾	δ∨∞,y	[mm]	3,1	3,5	3,5	3,9	4,0	5,5	5,5
Shear load	Vx	[kN]	2)	5,2	5,2	2)	3,3	3,3	7,9
Short-term displacement ¹⁾	δ _{V0,x}	[mm]	2)	0,1	0,1	2)	0,1	0,1	1,4
Long-term displacement ¹⁾	δ∨∞,x	[mm]	2)	0,2	0,2	2)	0,2	0,2	2,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Displacements under shear load

Table 33: Displacements under shear load perpendicular to longitudinal axis of HAC-C (cold-formed) anchor channels

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Shear load	Vy	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement ¹⁾	δ _{V0,y}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement ¹⁾	δγ∞,y	[mm]	0,9	2,0	2,1	2,1	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 34: Characteristic resistances under combined tension and shear load of HAC-C-T (serrated hotrolled) anchor channels

Anchor channel			HAC-C-T 53/34					
Steel failure: Local fle	al flexure of channel lips and flexure of channel							
Product factor k ₁₃ [-]			Values according to EN 1992-4:2018, Section 7.4.3.1					
Steel failure: Anchor and connection between anchor and channel								
Product factor	k 14	[-]	Values according to EN 1992-4:2018, Section 7.4.3.1					

Table 35: Characteristic resistances under combined tension and shear load of HAC-C(-P) (hot-rolled) anchor channels

Anchorchannal	Anchor channel			HAC-C-P	HAC-C-P	HAC-C	HAC-C-P	HAC-C-P	HAC-C	
			40/22	40/22	40L	50/30	50/30	50L	52/34	
Steel failure: Local flexure of channel lips and flexure of channel										
Product factor	k 13	[-]	Values according to EN 1992-4:2018, Section 7.4.3.1							
Steel failure: Anchor and connection between anchor and channel										
Product factor	k 14	[-]	Values according to EN 1992-4:2018, Section 7.4.3.1							

Table 36: Characteristic resistances under combined tension and shear load of HAC-C (cold-formed) anchor channels

Anchor channel	28/15 38/17 40/25 49/30 54/33							
Steel failure: Local f	lexure	of ch	nannel lips and	flexure of cha	annel		·	
Product factor	k 13	[-]	Valu	ues according to	o EN 1992-4:20	18, Sectio	n 7.4.	3.1
Steel failure: Anchor and connection between anchor and channel								
Product factor	k 14	[-]	Valu	ues according to	o EN 1992-4:20	18, Sectio	n 7.4.	3.1
Hilti anchor channe								
Performance Displacements under s Characteristic resistan	d	A	nnex C13					

Channel bolt					M8	M10	M12	M16	M20
Steel failure									
				8.8		_ 3)		125,6	203,4
			HBC-T 53/34	A4-70 ¹⁾	_ ³⁾			109,9	171,5
			HBC-50/30	8.8	-	3)	67,4	125,6	147,1
			HBC-50/30	A4-70 ¹⁾	-	3)	59,0	109,9	121,2
			HBC-50/30-N	8.8	_ 3)			125,6	186,6
			1180-50/50-11	A4-70 ¹⁾			_ 3)	_ 3)	
Characteristic resistance N (tension load)	N=. 1)	[kN]	HBC-40/22	8.8	_ 3)		67,4	125,6	_ 3)
	N _{Rk,s} 1)			A4-70 ¹⁾	- ³⁾	20,5	59,0	91,0	- 3)
,			HBC-40/22-N	8.8	_ 3)			125,6	_ 3)
				A4-70			- 3)		
			HBC-38/17	8.8	_ 3)	_ 3)	35,4	55,8	- ³⁾
				A4-70 ¹⁾	_ 3)	20,5	47,2	53,0	- 3)
			HBC-28/15	8.8	22,4	35,4	44,3	-	3)
			HBC-20/15	A4-70 ¹⁾	25,6	38,9	51,3	-	3)
			HBC-T 53/34 HBC-50/30(-N)	8.8	1,50				1,50 1,51 ⁴⁾
Partial factor	γMs ²⁾	[-]	HBC-40/22(-N) HBC-38/17 HBC-28/15	A4-70 ¹⁾			1,87		

¹⁾ Materials according to Table 5, Annex A6 ²⁾ In absence of other national regulations

³⁾ Product not available

 $^{4)}$ Partial factor γ_{Ms} = 1,51 only for bolts HBC-T 53/34 M20

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under tension load

Channel bolt					M8	M10	M12	M16	M20
Steel failure									
		-	HBC-T 53/34	8.8		_ 3)		62,8	101,7
			ПБС-1 53/34	A4-70 ¹⁾	_ 3)			65,9	102,9
			HBC-50/30	8.8	-	3)	33,7	62,8	101,7
			HBC-50/50	A4-70 ¹⁾	-	3)	35,4	65,9	102,9
			HBC-50/30-N	8.8	_ 3)			62,8	101,7
			HBC-20/30-IN	A4-70			_ 3)	·	
Characteristic resistance (shear load)	V _{Rk,s} ¹⁾	[kN]	HBC-40/22	8.8	_ 3)	23,2	33,7	62,8	_ ³⁾
	VRk,s'	[KIN]	1100-40/22	A4-70 ¹⁾	_ 3)	24,4	35,4	65,9	- 3)
. ,			HBC-40/22-N	8.8	_ 3)			62,8	_ ³⁾
				A4-70	_ 3)				
				8.8	- ³⁾	- 3)	33,7	62,8	- ³⁾
			HBC-38/17	A4-70 ¹⁾	_ ³⁾	24,4	35,4	65,9	- ³⁾
			HBC-28/15	8.8	14,6	23,2	33,7	-	3)
			HBC-20/15	A4-70	15,4	24,4	35,4	-	3)
	2)		HBC-T 53/34 HBC-28/15	8.8	1,25				1,25 1,26 ⁴
Partial factor	γMs ²⁾	[-]	HBC-38/17 HBC-40/22(-N) HBC-50/30(-N)	A4-70			1,56		

¹⁾ Materials according to Table 5, Annex A6

²⁾ In absence of other national regulations

³⁾ Product not available

 $^{4)}$ Partial factor γ_{Ms} = 1,26 only for bolts HBC-T 53/34 M20

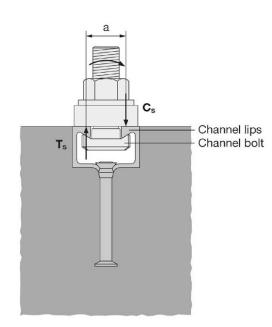
Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under shear load

Page 37 of European Technical Assessment ETA-17/0336 of 18 July 2024

English translation prepared by DIBt


Channel bolt					M8	M10	M12	M16	M20
Steel failure									
			HBC-T 53/34	8.8		- 4)		233,1	454,4
		⁵⁾ [Nm]		A4-70 ²⁾		_ 4)		233,1	454,4
Characteristic flexural M ⁰ _{Rk,s} ⁵ resistance	M ⁰ Rk,s ⁵⁾		HBC-50/30(-N) HBC-40/22(-N) HBC-38/17 HBC-28/15	8.8	30,0	59,8	104,8	266,4	538,7
				A4-70 ²⁾	26,2	52,3	91,7	233,1	454,4
Partial factor	γ _{Ms} ¹⁾		HBC-T 53/34 HBC-50/30(-N)	8.8	1,25				
	YMs Y	[-]	HBC-40/22(-N) HBC-38/17 HBC-28/15	A4-70 ²⁾	1,56				
			HBC-T 53/34	53/34		_ 4)		29,0	32,0
			HBC-50/30(-N)	50/30	-	4)	29,9	31,7	33,9
Internal lever arm	a	[mm]	HBC-40/22(-N)	40/22	_ 4)	24,3	25,7	27,3	- 4)
ann			HBC-38/17	38/17	_ ⁴⁾	23,0	24,3	26,3	- 4)
			HBC-28/15	28/15	17,3	18,7	20,0	-	4)

¹⁾ In absence of other national regulations

²⁾ Materials according to Table 5, Annex A6

³⁾ Not applicable for HBC-28/15 and HBC-50/30

⁴⁾ Product not available

³⁾ The characteristic flexure resistance according to Table 23 is limited as follows:

 $M_{Rk,s}^0 \le 0.5 \cdot N_{Rk,s,l} \cdot a$ (N_{Rk,s,l} according to Table 15 and 17)

and

 $M_{Rk,s}^{0} \leq 0.5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 29)

a = internal lever arm according Table 30

 T_s = tension force acting on the channel lips

 C_s = compression force acting on the channel lips

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under shear load with lever arm

Table 40: Combination of anchor channels and channel bolts under fatigue tension load (Design method I or II for assessment method A1, A2 and B according to EOTA TR050, June 2022)

Anch	or channel		Channel bolt				
Channel profile	Anchor type	Corrosion protection	Channel bolt	Diameter	Steel grade	Corrosion protection	
HAC-C-P 40/22	HBC-40/22 M12						
HAC-C-P 40L			1100-40/22	M16	- 8.8	G	
HAC-C-P 50/30	-	-	HBC-50/30	M16			
HAC-C-P 50L	R	F		M20		F	
	0.50/04			M16			
HAC-C 52/34			HBC-50/30	M20			

Table 41: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR050, June 2022)

Anchor channel		HAC-C-P 40/22 HAC-C-P 40L	HAC-C-P 50/30 HAC-C-P 50L	HAC-C 52/34		
Steel failure	n	$\Delta N_{Rk,s,0,n}$ [kN]				
	≤ 10 ⁴	16,4	20,9	24,3		
	≤ 10 ⁵	7,7	9,0	12,5		
Characteristic resistance under fatigue	≤ 10 ⁶	3,2	4,2	7,1		
tension load after n load cycles without static preload	≤ 2 · 10 ⁶	2,6	3,7	6,4		
$(N_{Ed} = 0)$	≤ 5 · 10 ⁶	2,2	3,4	5,9		
	≤ 10 ⁸	2,0	3,3	5,7		
	> 10 ⁸	1,8	3,2	5,5		

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Characteristic resistances under fatigue tension load according to assessment method A1, A2 and B $\,$

Table 42: Reduction factor $\eta_{c,fat}$ under fatigue tension load – concrete failure with n load cycles without static preload (N_{Ed} = 0)

(Design method I or II for assessment method A1, A2 and B according to EOTA TR050, June 2022)

Anchor channel	HAC-C-P 40/22 HAC-C-P 40L	HAC-C-P 50/30 HAC-C-P 50L	HAC-C 52/34			
Pull-out failure Concrete cone failure	n		ηc,fat [-]			
Reduction factor for	≤ 10 ⁶	0,600				
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}$	≤ 3·10 ⁶	0,571				
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$	≤ 10 ⁷	0,542				
with $N_{Rk,p}$ according to Annex C3 and C4 and $N_{Rk,c}$ calculated according to EOTA	≤ 3·10 ⁷	0,516				
	≤ 6·10 ⁷	0,500				
TR 047, March 2018 or EN 1992-4:2018	> 6·10 ^{7 1)}	0,500				

1) for $\Delta N_{Rk,p;0;\infty}$, $\Delta N_{Rk,c;0;\infty}$

Table 43: Characteristic resistances under fatigue tension load – steel failure with $n \rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II for assessment method B according to EOTA TR050, June 2022)

Anchor channel		HAC-C-P 50/30 HAC-C-P 50L	HAC-C 52/34				
Steel failure							
ΔN _{Rk,s;0;∞}	[kN]	1,8	3,2	5,5			
Concrete cone and pull-out failure							
ηc,fat	0,5						

For the reduction of the characteristic resistances given in Tables 32 and 33 in the transition zone from the static resistance to the fatigue limit resistance the partial safety factors are calculated as follows:

 $\gamma_{M,fat,n} = \gamma_{M,fat} + (\gamma_M - \gamma_{M,fat}) \cdot (\Delta N_{Rk,n} - \Delta N_{Rk,\infty}) / (N_{Rk} - \Delta N_{Rk,\infty})$

In absence of other national regulations, the following safety factors γ_M and $\gamma_{M,fat}$ are recommended for design method I according to EOTA TR 050, **June 2022**:

γ_M according Annex C1

γ_{M,fat} = 1,35

In absence of other national regulations, the following safety factor $\gamma_{M,fat}$ is recommended for design method II (Table 34) according to EOTA TR 050, **June 2022**:

 $\gamma_{M,fat} = 1,35$

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Characteristic resistances under fatigue tension load according to assessment method A1, A2 and B $\,$

Table 44: Characteristic resistance under fire exposure – steel failure for HAC-C(-P) (hot-rolled)	
anchor channels	

Channel bolt	M10	M12	M16	M20				
Steel failure of anchor, connection between anchor and channel, local flexure of channel lip								
Characteristic resistance under fire exposure	HAC-C(-P) 40/22 HAC-C-P 40L	R60	N _{Rk,s,fi} = V _{Rk,s,y,fi}	[kN] -	_ 3)	_ 3)	3,5	
		R90					2,2	_ 2)
		R120					1,5	
	HAC-C(-P) 50/30	R60			_ 2)	3,8	3,	9
	HAC-C-P 50L	R90				2,5	2,9	
	HAC-C 52/34	R120				1,9	2,	4
Partial safety factor			γMs,fi ¹⁾	[-]	1,0			

¹⁾ In absence of other national regulations.

²⁾ Product not available.

³⁾ Performance not assessed.

Table 45: Characteristic resistance under fire exposure – steel failure for HAC-C (cold-formed) anchor channels

Channel bolt	M10	M12	M16	M20				
Steel failure of anchor, connection between anchor and channel, local flexure of channel lip								
		R60		- - [kN] - -	0	8		
	HAC-C 28/15	R90			0,6		_ 2)	_ 2)
		R120			0,5			
	HAC-C 38/17 HAC-C 40/25	R60	N _{Rk,s,fi} = V _{Rk,s,y,fi}				1,9	_ ²
Characteristic		R90			_ 3)	- ³⁾	1,3	
		R120					1,0	
resistance under fire exposure		R60			1,7	3,5		
-		R90			1,2	2,2 -2		_ 2)
		R120			0,9	1	1,5	
	HAC-C 49/30	R60			_ 2)	3,8	3,	9
		R90				2,5	2,	9
		R120				1,9	2,4	
Partial safety factor			γMs,fi ¹⁾	[-]	1,0			

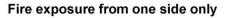
¹⁾ In absence of other national regulations.

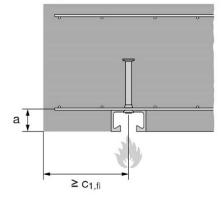
²⁾ Product not available.

³⁾ Performance not assessed.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance


Characteristic resistances of anchor channels and channel bolts under fire exposure


Page 41 of European Technical Assessment ETA-17/0336 of 18 July 2024

English translation prepared by DIBt

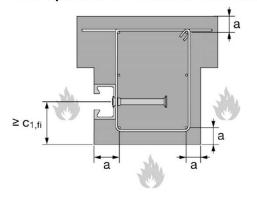


Table 46: Minimum axis distance of reinforcement								
Anchor channel				HAC-C 28/15; HAC-C 38/17; HAC-C 40/25; HAC-C(-P) 40/22; HAC-C-P 40L	HAC-C 49/30; HAC-C(-P) 50/30; HAC-C-P 50L; HAC-C 54/33; HAC-C 52/34			
	R60		8	35	50			
Minimum axis distance	R90	а	[mm]	45	50			
	R120			55	55			

Fire exposure from more than one side

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure