

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0715 of 30 April 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection System VMH for rebar connection
Product family to which the construction product belongs	Systems for post-installed rebar connections with mortar
Manufacturer	MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND
Manufacturing plant	Werk 1, D und Werk 2, D
This European Technical Assessment contains	24 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330087-01-0601, Edition 06/2021
This version replaces	ETA-17/0715 issued on 18 July 2018

Page 2 of 24 | 30 April 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 30 April 2024

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Injection System VMH for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection adhesive VMH are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1 and C 2
Characteristic resistance under seismic loading	See Annex B 5 and C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 4 and C 5

Page 4 of 24 | 30 April 2024

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

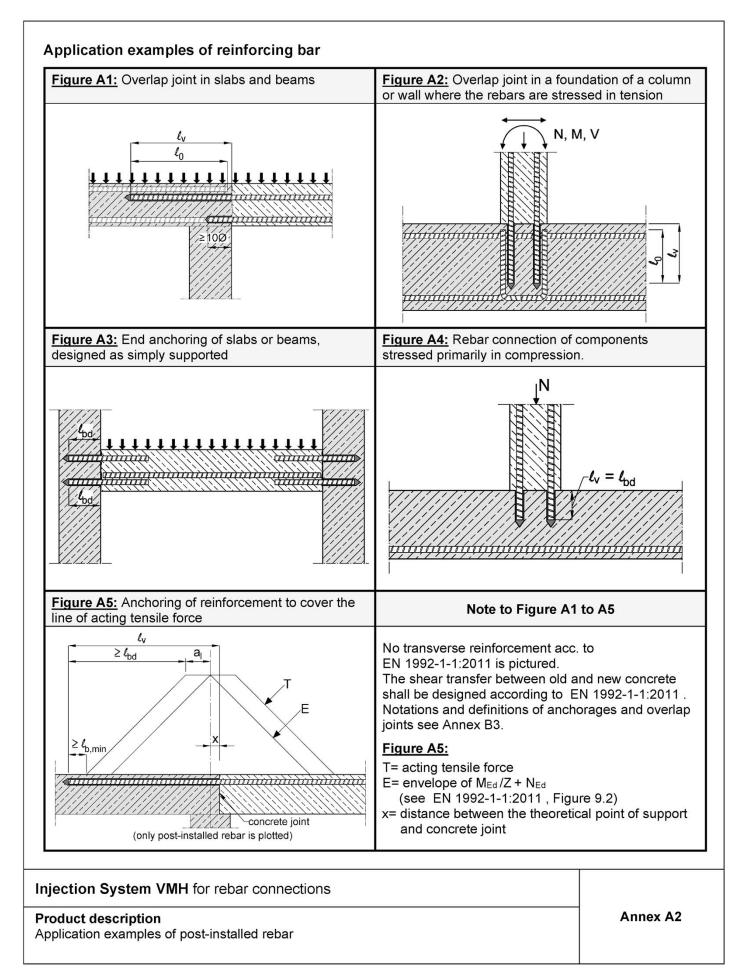
In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

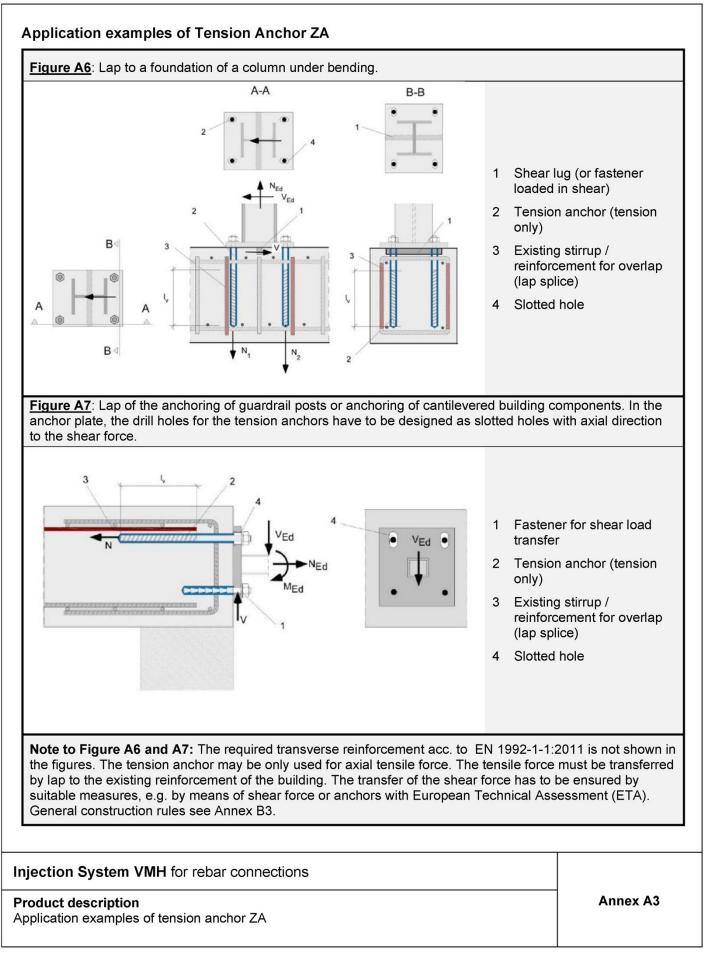
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 30 April 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider


Page 5 of European Technical Assessment ETA-17/0715 of 30 April 2024

Cartridge: Injection Adhesive VMH							
Coaxial Cartridge 150 ml, 280 ml, 300 ml up to 333 ml, 380 ml up to 420 ml							
Side-by-side Cartridge 235 ml, 345 ml up to 360 ml, 825 ml							
Imprint: VMH processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and (depending on the temperature), optional with travel scale	working time						
Static mixer VM-XHP							
Retaining washer with extension pipe							
)						
Tension Anchor ZA: M12, M16, M20, M24							
Reinforcing bar: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø22, Ø24, Ø25, Ø28, Ø	732						
Injection System VMH for rebar connections							
Product description Injection Adhesive with tension anchor ZA or reinforcing bar	Annex A1						


Page 6 of European Technical Assessment ETA-17/0715 of 30 April 2024

Page 7 of European Technical Assessment ETA-17/0715 of 30 April 2024

Part	Description		Material										
		ZA vz				ZA A4			ZA HCR				
lensi	on Anchor ZA	M12	M16	M20	M24	M12	M16	M20	M24	M12	M16	M20	M24
1	Rebar		B accc ∝= k∙f _{yk}		o NDP	or NCI	acc. to	EN 19	92-1-1	/NA			
	f _{yk} [N/mm²]		50	00			50	00			50	00	
2	Threaded rod	EN IS	zinc pl O 683-)263:20	4:1998			ess ste)088:2(steel,	corrosio 0088:20		stant
	f _{yk} [N/mm²]		64	10			640		560		640		560
3	Washer	Steel,	zinc pl	ated		Stainl	ess ste	el		High steel	corrosio	on resis	stant
4	Hexagon nut	EN IS	zinc pl O 683-)263:20	4:1998			ess ste)088:20			steel,	corrosio 0088:20		stant
Reba	r									•			
		8888888888888887788778778777877 <th7< th="">77777<th< td=""></th<></th7<>											
5	EN 1992-1-	f _{yk} and	k acco	ording t				1992-1	-1/NA				
	EN 1992-1-	f_{yk} and $f_{uk} = f_{tl}$	l k acco ∝= k•f _{yk}	ording t	to NDP	or NCI		1992-1		ıg: e.g. .	₹ ♪ 1	2 A4	
ensio	EN 1992-1- 1:2011, Annex C On Anchor ZA: M12	f _{yk} and f _{uk} = ft 2, M16,	I k acco <= k•f _{yk} M20,	ording t		or NCI		4	Markin CA 12 Additic A4	Identify manufa Produc Anchor onal ma Stainle	ving man acturing t identit size / t	rk of plant y hread I A4	nt stee
ensic	EN 1992-1- 1:2011, Annex C on Anchor ZA: M12	f _{yk} and f _{uk} = ft 2, M16	M20,	m24		or NCI	of EN	4	Markin CA 12 Additic A4	Identify manufa Produc Anchor onal ma Stainle	ving man acturing ti identit size / t rking: ss steel	rk of plant y hread I A4	nt stee
ensic	EN 1992-1- 1:2011, Annex C	f _{yk} and f _{uk} = ft 2, M16	M20,	m24		or NCI	of EN	4	Markin CA 12 Additic A4	Identify manufa Produc Anchor onal ma Stainle	ving man acturing ti identit size / t rking: ss steel	rk of plant y hread I A4	nt stee
ensic	EN 1992-1- 1:2011, Annex C	f _{yk} and f _{uk} = ft 2, M16, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A k acco k = k · fyk M20, M20, 6, Ø20 6, Ø20 6, Ø20 6 k · rang	M24 c ₂ c ₂	to NDP 2 3 3 3 3 3 3 3 3 3 3	or NCI t_{fix} $\emptyset 25, 0$ h = 0,07	of EN 3 228, Q 228, Q 2-1-1:2		Markin CA 12 Additic A4	Identify manufa Produc Anchor onal ma Stainle	ving man acturing ti identit size / t <u>rking:</u> ss steel prrosion	rk of plant y hread I A4	nt stee
ensic ebar: Mini Rib (Ø:	EN 1992-1- 1:2011, Annex C on Anchor ZA: M12 <i>l</i> v <i>l</i> v <i>l</i> ges : Ø8, Ø10, Ø12, Ø7 <i>mum</i> value of related height of the bar shal	f _{yk} and f _{uk} = ft 2, M16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A k acco k = k · fyk M20, M20, 6, Ø20 f R,min a he rang hrib: rip	M24 C 2 , Ø 22 , accordi ge 0,05 height	to NDP 2 3 3 3 3 3 3 3 3 3 3	or NCI t_{fix} $\emptyset 25, 0$ h = 0,07	of EN 3 228, Q 228, Q 2-1-1:2		Markin CA 12 Additic A4	Identify manufa Produc Anchor onal ma Stainle	ving man acturing ti identit size / t <u>rking:</u> ss steel prrosion	rk of plant y hread I A4	nt stee

Anchorages subject to		Static or quasi-static action	Seismic action			
	Working life 50 years	Ø8 to Ø32 ZA M12 to M24	Ø10 to Ø32			
Vacuum drill (VD) Hammer drill (HD)	Working life 100 years	Ø8 to Ø32 ZA M12 to M24	Ø10 to Ø32			
Compressed air drill (CD)	Fire exposure	no performance assessed				
Temperature range	- 40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C					

Base material:

- · Reinforced or unreinforced normal weight concrete acc. to EN 206-1:2013+A1:2016
- Strength classes C12/15 to C50/60 acc. to EN 206-1:2013+A1:2016
- Maximum chloride concrete of 0,40 % (CL 0,40) related to the cement content acc. to EN 206-1:2013+A1:2016
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of \emptyset + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2011. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all materials
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015:
 - stainless steel A4, according to Annex A4, Table A1: CRC III
 - high corrosion resistant steel HCR, according to Annex A4, Table A1: CRC V

Injection System VMH for rebar connections

Intended Use Specifications

Specifications of intended use - continuation

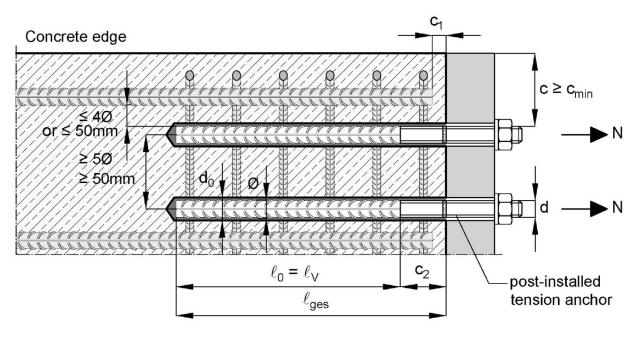
Design:

- · Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static loads are designed in accordance with EN 1992-1-1:2011 and Annex B3 and B4
- Anchorages under seismic actions are designed in accordance with EN 1998-1:2004+AC:2009.
- Anchorages under fire exposure are designed in accordance with EN 1992-1-2:2011.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing

Installation:

- Dry or wet concrete
- Installation in water filled bore holes is not admissible
- Overhead installation admissible
- Hole drilling by hammer drill, vacuum drill or compressed air drill
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint)
- · The joints for concreting must be roughened to at least such an extent that aggregate protrude
- The installation of post-installed rebar or tension anchor ZA shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the member states in which the installation is done
- Minimum concrete cover acc. to EN 1992-1-1:2011 must be observed
- Use Retaining washer for horizontal or overhead installation and bore holes deeper than 250mm

Injection System VMH for rebar connections


Intended use Specifications of intended use

General construction rules for tension anchor ZA

- The length for the post-installed thread must not be added to the anchoring length.
- The tension anchor ZA can only transfer forces towards the bar axis.
- Tension forces must be transferred by an overlap joint into the present reinforcement of the member.
- The transmission of shear forces must be ensured by additional measures, e.g. by shear cleats or anchors with an European Technical Assessment (ETA).
- In the anchor plate the holes for the tension anchors must be executed as elongated holes with axis in the direction of the shear force.
- If the clear distance of overlapping bars is greater than 4Ø or 50 mm, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø or 50 mm.

Tension anchor ZA

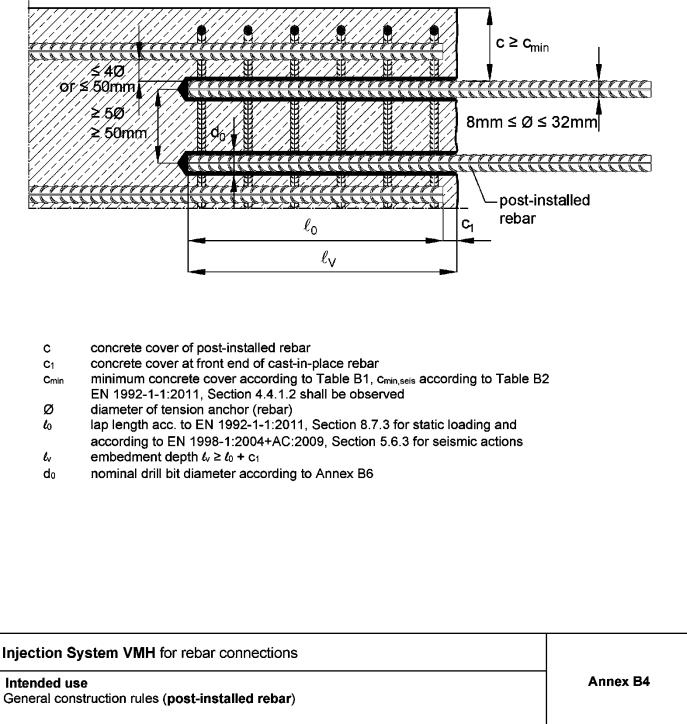
- c concrete cover of tension anchor ZA
- c1 concrete cover at front end of cast-in-place rebar
- c₂ Length of bonded thread
- cmin minimum concrete cover according to Table B1 and EN 1992-1-1:2011, section 4.4.1.2
- Ø diameter of tension anchor (rebar part)
- d diameter of tension anchor (threaded part)
- *l*₀ lap length acc. to EN 1992-1-1:2011, section 8.7.3
- ℓ_v embedment depth $\ell_v \ge \ell_0 + c_1$
- ℓ_{ges} overall embedment depth $\ell_{ges} \ge \ell_0 + c_2$
- d₀ nominal drill bit diameter according to Annex B6

Injection System VMH for rebar connections

Intended use General construction rules (Tension Anchor ZA) Anhang B3

Page 12 of European Technical Assessment ETA-17/0715 of 30 April 2024

English translation prepared by DIBt



General construction rules for post-installed rebars

- The shear transfer between old and new concrete shall be designed acc. to EN 1992-1-1:2011
- Only tension forces in the axis of the rebar may be transmitted
- If the clear distance of overlapping bars is greater than 4Ø or 50 mm, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø or 50 mm

Post-installed rebars

Concrete edge

Table B1: Minimum concrete cover cmin 1) of post-installed rebar and tension anchorZA depending on under static or quasi-static action

Drilling method	Rod diameter	c _{min} <u>(without</u> drilling aid)	c _{min} <u>(with</u> drilling aid)	
Hammer drilling	< 25 mm	30 mm + 0,06 ℓ _v ≥ 2 Ø	30 mm + 0,02 ℓ _v ≥ 2 Ø	
Vacuum drilling	≥ 25 mm	40 mm + 0,06 ℓ _v ≥ 2 Ø	40 mm + 0,02 ℓ _v ≥ 2 Ø	Bohrhilfe
Compressed air	< 25 mm	50 mm + 0,08 <i>l</i> v	50 mm + 0,02 ℓ _v	
drilling	≥ 25 mm	60 mm + 0,08 ℓ _v ≥ 2 Ø	60 mm + 0,02 ℓ _v ≥ 2 Ø	

¹⁾ See Annex B3 and B4; minimum concrete cover acc. to EN 1992-1-1:2011 must be observed

Table B2: Minimum concrete cover cmin,seis of post-installed rebar under seismic action

Drilling method	Design condition	Distance to the 1. edge	Distance to the 2. edge
Hammer drilling	edge	≥ 2 Ø	≥ 2 Ø
Vacuum drilling Compressed air drilling	corner	≥ 2 Ø	≥ 2 Ø

Table B3: Dimensions and installation parameters of tension anchor ZA

Anchor size		M12	M16	M20	M24			
Thread diameter		d	[mm]	12	16	20	24	
Rebar diameter		Ø	[mm]	12	16	20	25	
Nominal drill hole diame	ter	do	[mm]		see Table	B4 and B5		
Diameter of clearance he	df	[mm]	14	18	22	26		
Cross section area (threa	As	[mm ²]	84	157	245	353		
Width across nut flats		SW	[mm]	19	24	30	36	
Effective embedment de	pth	lv	[mm]	according to static calculation				
Length of bonded	steel, zinc plated	0	r	≥ 20	≥ 20	≥ 20	≥ 20	
thread	A4/HCR	C 2	[mm]	≥ 100	≥ 100	≥ 100	≥ 100	
Minimum thickness of fixture			[mm]		5			
Maximum thickness of fi	t _{fix}	[mm]		3000				
Maximum installation tor	que	T _{inst}	[Nm]	50	100	150	150	

Injection System VMH for rebar connections

Intended Use

Minimum concrete cover and dimension and installation parameters Tension anchor ZA

Table B4: Installation tools and max. embedment depth – Hammer drilling (HD) or compressed air drilling (CD)

Rebar	Tension	Drill bit diameter				Brush-Ø Brush-Ø Re			40ml (ridge or 585ml		Cartride 1400 n	
size Ø	anchor ZA	d			b	d _{b,min}	washer	Hand- akku-t		Compre air to		Compres air too	sed
~		HD	CD					lv,max		lv,max		lv,max	
[mm]	[-]	[mm]	[mm]	[-]	[mm]	[mm]	[-]	[cm]		[cm]		[cm]	
8	-	10	-	RB10	11,5	10,5	-	25		25		25	0
0	-	12	-	RB12	13,5	12,5	-	70		80		80	<u>_</u>
10	-	12	-	RB12	13,5	12,5	-	25	9	25		25	, ×
10	-	14	-	RB14	15,5	14,5	VM-IA 14	70	Щ Т	100	16	100	VM-XE
12	M12	14	-	RB14	15,5	14,5	VM-IA 14	25	e L	25]_щ[25	-
12		16	16	RB16	17,5	16,5	VM-IA 16	70	on pipe VM-XLI	130	-×ie	120	6
14	-	18	18	RB18	20,0	18,5	VM-IA 18	70	lo >	130	Extension pipe E 10 or VM-XL	140	16
16	M16	20	20	RB20	22,0	20,5	VM-IA 20	70	Extension (E 10 or V	130	or	160	n pipe VM-XLE
20	M20	25	-	RB25	27,0	25,5	VM-IA 25	50	te -	100	10 ten	200	pipe M-XL
20	IVIZU	-	26	RB26	28,0	26,5	VM-IA 25	50	VM-XE	100	ШЩ	200	
22	-	28	28	RB28	30,0	28,5	VM-IA 28	50	Ž	100	VM-XE	200	ensio 0 or
04/05	MOA	30	30	RB30	32,0	30,5	VM-IA 30	50	>	100	\$	200	14 – 1
24/25	M24	32	32	RB32	34,0	32,5	VM-IA 32	50		100		200	ШЩ
28	- 1	35	35	RB35	37,0	35,5	VM-IA 35	50		100] [200	VM-XE
32	-	40	40	RB40	43,5	40,5	VM-IA 40			100		200	>

Table B5: Installation tools and max. embedment depth – vacuum drilling (VD)

Rebar	Tension	Drill bit	Brush-ØBrush-Ø		Potoining	4	Carl 40ml	tridge or 585ml		Cartric 1400	
size Ø	anchor ZA	d₀	d₀	db,min	washer	Hand- akku-to		Compres air to		Compre air to	ssed ol
		VD				lv,max		lv,max		l _{v,max}	
[mm]	[-]	[mm]	[mm]	[mm]	[-]	[cm]		[cm]		[cm]	
8	-	10			-	25		25		25	
0	-	12			-	70		80		80	
10	-	12			-	25	9	25	9	25	_w
10	-	14			VM-IA 14	70	Ц Ш	100	<u> </u>	100	16
12	M12	14			VM-IA 14	25	Se	25		25	on pipe VM-XLE
12		16			VM-IA 16	70	on pipe VM-XLI	100		100	
14	-	18	No cle	eaning	VM-IA 18	70	<u>ح</u> ک	100		100	ี 5
16	M16	20	requ	uired	VM-IA 20	70	ensic 0 or	100	nsic) or	100	nsi 0 ol
20	M20	25			VM-IA 25	50	14 -	100	Extension (E 10 or V	100	1 te
22	-	28			VM-IA 28	50		100		100	
24/25	MOA	30			VM-IA 30	50	VM-XE	100	VM-XE	100	Extension VM-XE 10 or V
24/25	M24	32			VM-IA 32	50	>	100	>	100	>
28	-	35			VM-IA 35	50]	100]	100	
32	-	40			VM-IA 40	50		100		100	

Injection System VMH for rebar connections

Intended Use

Installation tools and maximum embedment depth

Page 15 of European Technical Assessment ETA-17/0715 of 30 April 2024

English translation prepared by DIBt

Vacuum drill bit	Vacuum drill bit (MKT Hollow drill bit SB, Würth Hammer drill bit with suction or Heller Duster Expert hollow drill bit system) and a vacuum cleaner with minimum negative pressure of 253 hPa and flow rate of min. 150m ³ /h (42 l/s)
Compressed air hose (min. 6 bar) with air valve	Recommended compressed air tool (min. 6 bar)
Blow-out pump (Volume 750ml)	ν
Brush RB Brush	extension SDS Plus Adapter

Table B6: Dispensing tools

	Cartridge		land tool	Pneumatic tool		
Туре	Size	r		Fileumatic tool		
Coaxial	150 ml, 280 ml, 300 ml up to 333 ml	e.g	.: VM-P 330	e.g.: VM-P 345 Pneumatic		
Соа	380 ml up to 420 ml	e.g.: VM-P 380 Standard	e.g.: VM-P 380 Profi	e.g.: VM-P 380 Pneumatik		
-by- de	235 ml, 345 ml up to 360 ml	e.g.: VM-P 345 Standard	e.g.: VM-P 345 Profi	e.g.: VM-P 345 Pneumatik		
Side-by- side	825 ml	-	-	e.g.: VM-P 825 Pneumatik		

All cartridges can also be extruded by battery tool (e.g. VM-P Akku)

Injection System VMH for rebar connections

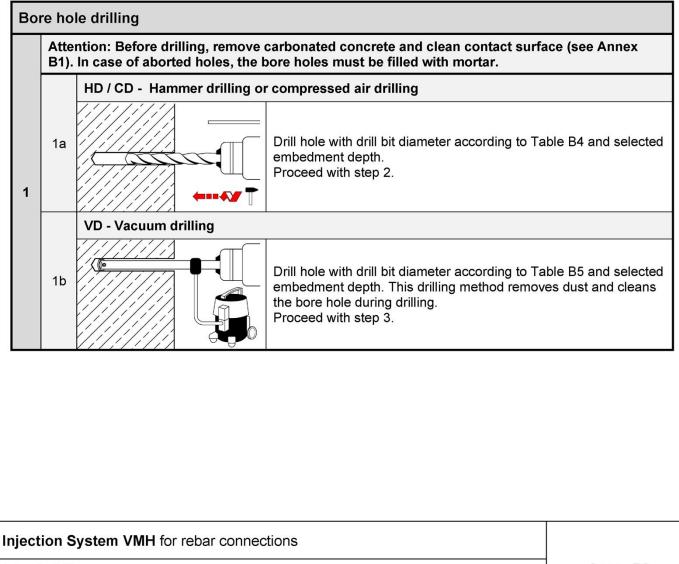
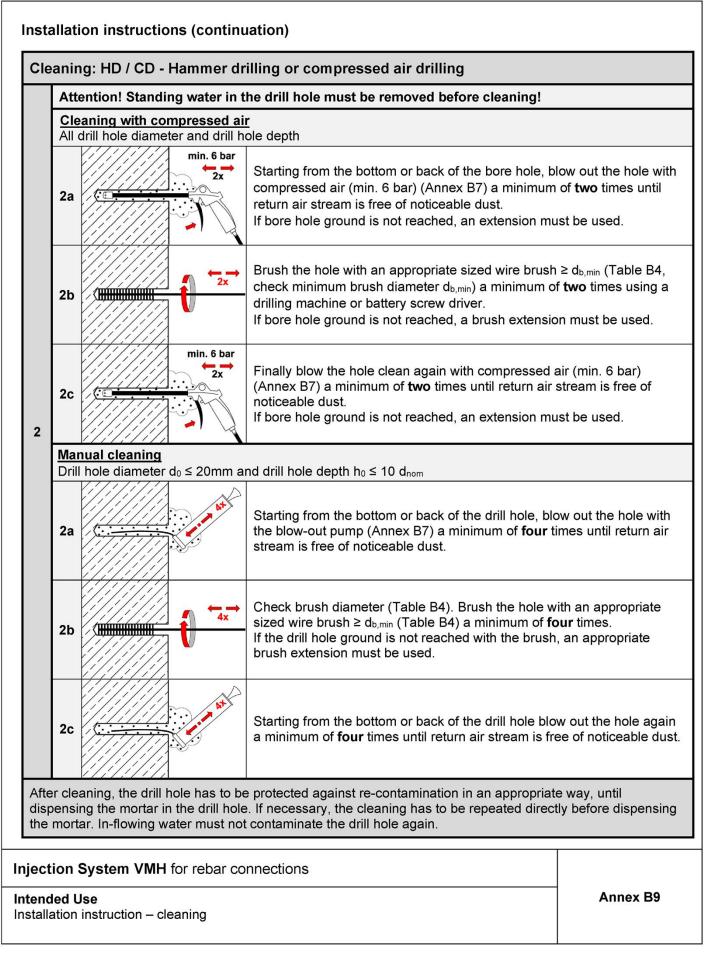

Intended Use Cleaning an installation tools

Table D7.	VVOI	king and c	uning time					
Bara ha	lo ton	oporaturo	Working time	Minimum curing time tcure				
Bore no	le ten	nperature	t gel	dry concrete	wet concrete			
-5 °C	to	- 1 °C	50 min	5 h	10 h			
0 °C	to	+ 4 °C	25 min	3,5 h	7 h			
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h			
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h			
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min			
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min			
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min			
Cartrido	ge ten	nperature	+5°C to +40°C					


Table B7: Working and curing time

Installation instructions

Intended Use Working and curing time, Installation instructions – Hole drilling

e empty rial. e mixer
e mixer
on pipe and ridge and working ixer shall be
ows a rd non-
st be marked

Inje	ection into borehole	
7		Start from the bottom or the back of the cleaned bore hole, fill with adhesive until the level mark at the mixer extension (Annex B10) is visible at the top of the hole. Slowly withdraw the static mixer and using a retaining washer during injection of the mortar, helps to avoid air pockets. If the drill hole ground is not reached, an appropriate extension pipe shall be used (Annex B6). Observe temperature dependent working times given in Table B7.
8		For horizontal or overhead installations and bore holes deeper than 250 mm, retaining washer (and appropriate extension pipe) must be used. Observe temperature dependent working times given in Table B7.
Ins	stallation of rebar or tension	n anchor
9		Push the reinforcing bar or tension anchor into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.
10		Be sure that the rebar or tension anchor is inserted in the bore hole until the embedment mark is at the concrete surface and excess mortar is visible at the top of the hole. If these requirements are not maintained, repeat application before end of working time! For overhead installation, the anchor should be fixed (e.g. by wedges).
11		Observe working and curing time according to Table B7. Slight correction of the fastening element is possible within the processing time t_{gel} .
12		The full load may only be applied after the full curing time t _{cure} has been reached. The working and curing times depend on the substrate temperature.

Injection System VMH for rebar connections

Intended use Installation instruction - injection and installation

Tension Anchor ZA			M12	M16	M20	M24
Steel, zinc plated						
Characteristic tension resistance	N _{Rk,s}	[kN]	67	125	196	282
Partial factor	γMs,N	[-]		1,	,4	
Stainless steel A4, HCR						
Characteristic tension resistance	N _{Rk,s}	[kN]	67	125	171	247
Partial factor	γMs,N	[-]	1,4	1,4	1,3	1,4

Minimum anchorage length and minimum lap length under static or quasi-static action

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2011 ($l_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $l_{0,min}$ acc. to Eq. 8.11) shall be multiplied by the amplification factor α_{lb} acc. to Table C2.

Table C2: Amplification factor α_{lb} - all drilling methods, working life 50 and 100 years

Amplification	Rod	Concrete strength class										
factor	diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
$\alpha_{\rm lb} = \alpha_{\rm lb, 100y}$ [-]	Ø8 to Ø32 ZA-M12 to ZA-M24					1,0						

Table C3: Reduction factor kb - all drilling methods, working life 50 and 100 years

Reduction	Rod	Concrete strength class									
factor	diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
k _b = k _{b,100} [-]	Ø8 to Ø32 ZA-M12 to ZA-M24					1,0					

Injection System VMH for rebar connections

Performance

Tension resistance ZA, factor for static or quasi-static loading

Table C4: Design values of the ultimate bond strength fbd,PIR for all drilling methodsand for good bond conditions, working life 50 and 100 years

 $\mathbf{f}_{bd,PIR} = \mathbf{k}_b \cdot \mathbf{f}_{bd}$

 $\mathbf{f}_{bd,PIR,100y} = \mathbf{k}_{b,100y} \cdot \mathbf{f}_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete strength classes and the rebar diameter for all other bond conditions multiply the values by 0,7 recommended partial safety factor $\gamma_c = 1,5$ according to EN 1992-1-1:2011

k_b or k_{b,100y}: Reduction factor according to Table C3

Bond	Rod	Concrete strength class										
strength	diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
fbd [N/mm²]	Ø8 to Ø32 ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

Injection System VMH for rebar connections

Performances Design values of the ultimate bond, static or quasi-static action

Minimum anchorage length and minimum lap length under seismic action

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-:2011 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiplied by the amplification factor $\alpha_{lb,seis} = \alpha_{lb,100y,seis}$ acc. to Table C5.

Table C5: Amplification factor *alb,seis* – all drilling methods, working life 50 and 100 years

Amplification	Rod	Concrete strength class										
factor	diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
αlb,seis = αlb,seis,100y [-]	Ø10 to Ø32	_1)				1	0					

¹⁾ No performance assessed

Table C6: Reduction factor kb,seis - all drilling methods, working life 50 and 100 years

Reduction-	Rod	Concrete strength class										
factor	diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
k _{b,seis} = k _{b,seis,100} [-]	Ø10 to Ø32	_1)				1	,0					

¹⁾ No performance assessed

Table C7: Design values of the ultimate bond stress for good bond conditions; seismic action; working life 50 and 100 years

 $f_{bd,PIR,seis} = k_{b,seis} \cdot f_{bd}$ $f_{bd,PIR,seis,100y} = k_{b,seis,100y} \cdot f_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete strength classes and the rebar diameter for all other bond conditions multiply the values by 0,7 recommended partial safety factor $\gamma_c = 1,5$ according to EN 1992-1-1:2011

k_{b,seis} or k_{b,seis,100}: Reduction factor according to Table C6

Bond	Rod	Concrete strength class										
strength	diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
f _{bd} [N/mm²]	Ø10 to Ø32	_1)	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

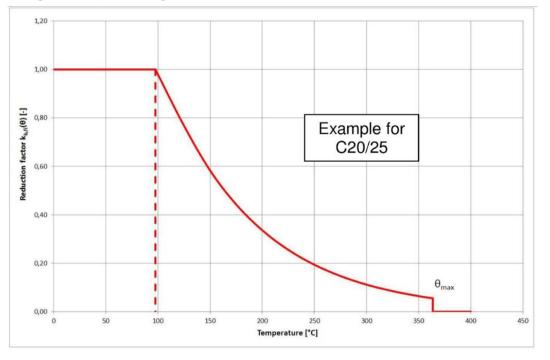
¹⁾ No performance assessed

Injection System VMH for rebar connections

Performance

Factors and design values of ultimate bond strength under seismic action

Design value of ultimate bond stress increased temperature for concrete classes C12/15 to C50/60 (all drilling methods), working life 50 and 100 years


The design value of ultimate bond stress $f_{bd,fi}$ at increased temperature will be calculated by the following equation:

Working life 5	0 years:	$\mathbf{f}_{bd,fi} = \mathbf{k}_{fi}(\mathbf{\Theta}) \cdot \mathbf{f}_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$
with:	θ ≤ 364°C:	$k_{fi}(\theta) = 30,34 * e^{(\theta-0,011)} / (f_{bd,PIR} * 4,3) \le 1,0$
Working life 1	θ > 364°C: 00 years:	$ \begin{aligned} \mathbf{k}_{\mathrm{fi}}(\theta) &= 0 \\ \mathbf{f}_{\mathrm{bd},\mathrm{fi},100y} &= \mathbf{k}_{\mathrm{fi},100y} \left(\boldsymbol{\theta} \right) \cdot \mathbf{f}_{\mathrm{bd},\mathrm{PIR},100y} \cdot \boldsymbol{\gamma}_{\mathrm{c}} / \boldsymbol{\gamma}_{\mathrm{M},\mathrm{fi}} \end{aligned} $
with:	θ ≤ 364°C:	$k_{fi,100y}(\theta) = 30,34 * e^{(\theta-0,011)} / (f_{bd,PIR,100y} * 4,3) \leq 1,0$
	θ > 364°C:	$k_{fi,100y}(\theta) = 0$
	f bd,fi (100y)	design value of ultimate bond stress at increased temperature in N/mm ²
	θ	Temperature in °C in the mortar layer
	k fi(100y) (θ)	Reduction factor at increased temperature
	fbd,PIR(100y)	Design value of the ultimate bond stress in N/mm ² in cold condition according to Table C3 considering concrete class, rebar diameter, drilling method and the bond conditions according to EN 1992-1-1:2011
	γο	= 1,5; recommended partial factor acc. to EN 1992-1-1:2011
		= 1,0; recommended partial factor acc. to EN 1992-1-2:2011 ire the anchorage length shall be calculated according to

EN 1992-1-1:2011 Equation 8.3 using the temperature-dependent ultimate bond stress fbd,fi.

Example graph of reduction factor $k_{fi}(\theta)$

Concrete strength class C20/25 for good bond conditions

Injection System VMH for rebar connections

Performances

Design value of ultimate bond stress $f_{bd,fi}$ at increased temperature for rebar

Table C8: Characteristic tension strength in case of fire for Tension Anchor ZA,concrete strength class C12/15 to C50/60, acc. to EN 1992-4:2018

Tension Anchor ZA			M12	M16	M20	M24	
Steel failure							
Steel, zinc plated	l						
Characteristic tension strength	R30	NRk,s,fi	[kN]	2,3	4,0	6,3	9,0
	R60			1,7	3,0	4,7	6,8
	R90			1,5	2,6	4,1	5,9
	R120			1,1	2,0	3,1	4,5
Stainless steel A4	, HCR						
Characteristic tension strength	R30	NRk,s,fi	[kN]	3,4	6,0	9,4	13,6
	R60			2,8	5,0	7,9	11,3
	R90			2,3	4,0	6,3	9,0
	R120			1,8	3,2	5,0	7,2

Injection System VMH for rebar connections

Performances Steel strength for tension anchor ZA under fire exposure