

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-19/0465 of 10 September 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Hilti HIT-HY 170 with HAS-U
Product family to which the construction product belongs	Bonded fasteners and bonded expansion fasteners for use in concrete
Manufacturer	Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Corporation
This European Technical Assessment contains	21 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-02-0601, Edition 12/2023
This version replaces	ETA-19/0465 issued on 6 September 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 170 is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-HY 170 and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex C1, C2, B3
Characteristic resistance for static and quasi-static shear load	See Annex C2
Displacements for static and quasi-static loads	See Annex C3
Characteristic resistance for seismic performance category C1	No performance assessed
Characteristic resistance and displacements for seismic performance category C2	See Annex C4 and C5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

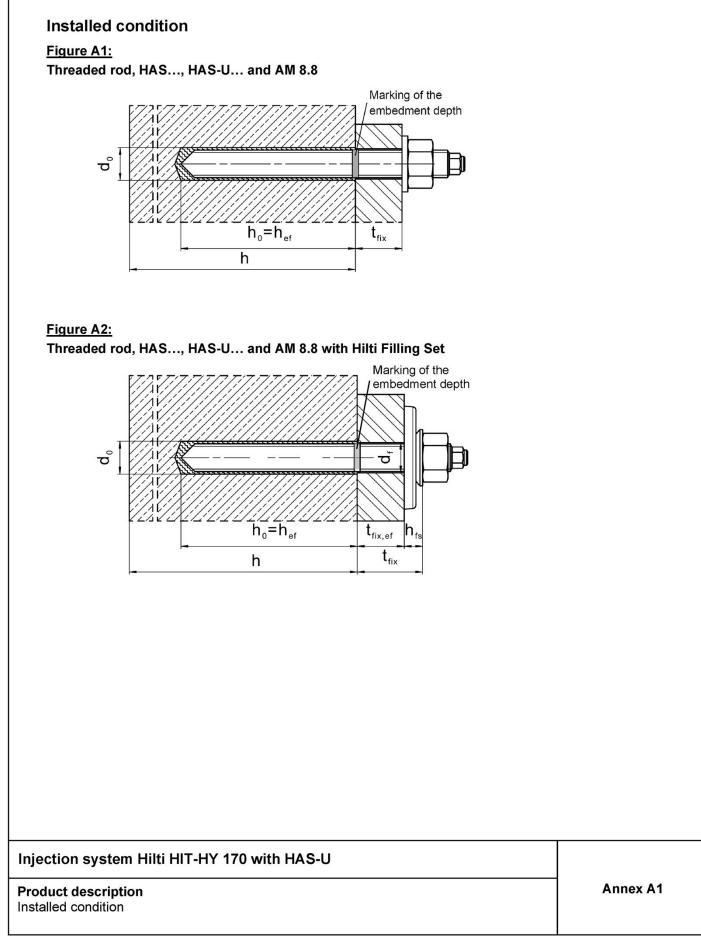
In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

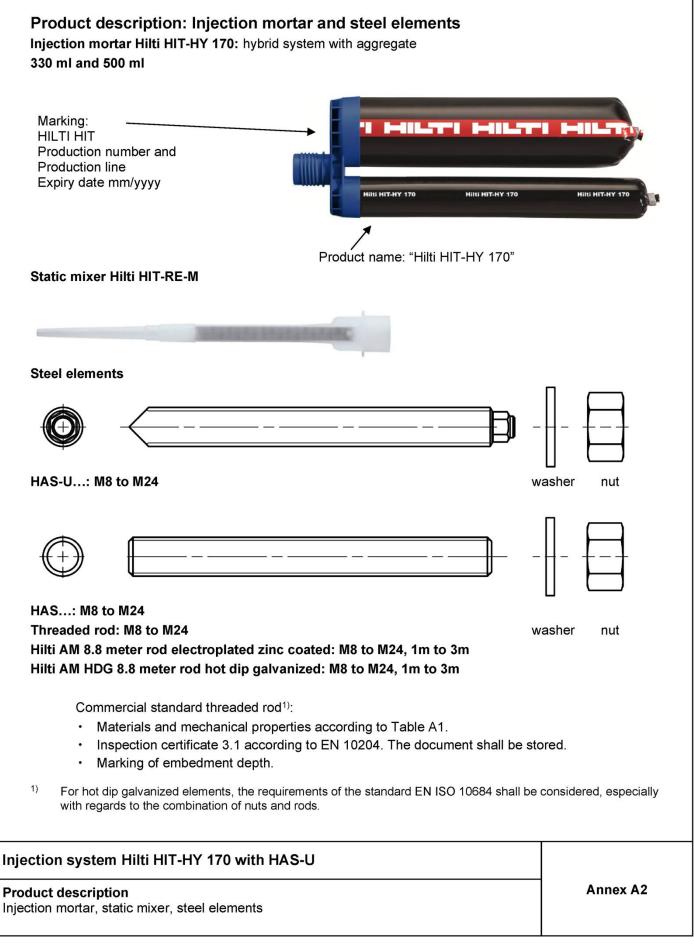
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

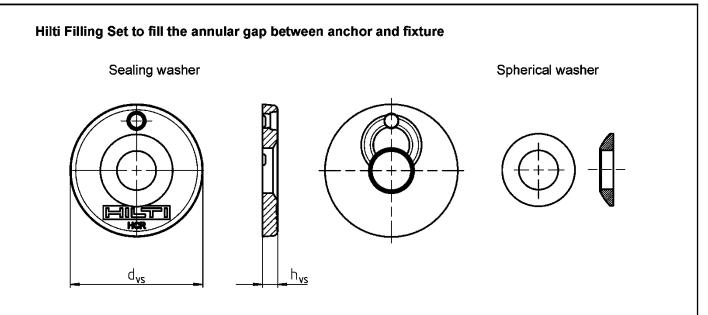
The following standards and documents are referred to in this European Technical Assessment:


-	EN 1992-4:2018	Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete
-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels
-	EN 10088-1:2014	Stainless steels - Part 1: List of stainless steels
-	EN ISO 10684:2004 + AC:2009	Fasteners - Hot dip galvanized coatings
-	EN 206:2013 + A1:2016	Concrete - Specification, performance, production and conformity
-	EOTA TR 055	Design of fastenings based on EAD 330232-00-0601, EAD 330499-00-0601 and EAD 330747-00-0601, February 2018

Issued in Berlin on 10 September 2024 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstockbeglaubigt:Head of SectionStiller

Page 5 of European Technical Assessment ETA-19/0465 of 10 September 2024



Hilti Filling Set			M12	M16
Diameter of sealing washer	d∨s	[mm]	44	56
Thickness of sealing washer	h∨s	[mm]	5	6
Thickness of Hilti Filling Set	h _{fs}	[mm]	10	11

Injection system Hilti HIT-HY 170 with HAS-U

Product description Steel elements Annex A3

Designation	Material					
Steel elements made of zinc coated steel						
HAS 5.8 (HDG), HAS-U 5.8 (HDG), Threaded rod 5.8	Strength class 5.8, f_{uk} = 500 N/mm ² , f_{yk} = 400 N/mm ² , Elongation at fracture (l ₀ =5d) > 8% ductile Electroplated zinc coated \ge 5 µm, (F) or (HDG) hot dip galvanized ¹) \ge 50 µm					
Threaded rod 6.8	Strength class 6.8, f_{uk} = 600 N/mm ² , f_{yk} = 480 N/mm ² , Elongation at fracture (l_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 µm or hot dip galvanized ¹) \geq 50 µm					
HAS 8.8 (HDG), HAS-U 8.8 (HDG), AM 8.8 (HDG) Threaded rod 8.8	Strength class 8.8, f_{uk} = 800 N/mm ² , f_{yk} = 640 N/mm ² , Elongation at fracture (l ₀ =5d) > 12% ductile Electroplated zinc coated ≥ 5 µm, (F) or (HDG) hot dip galvanized ¹⁾ ≥ 50 µm					
Washer	Electroplated zinc coated \ge 5 μ m Hot dip galvanized \ge 50 μ m					
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \ge 5 µm Hot dip galvanized ¹⁾ \ge 50 µm					
Hilti Filling Set (F)	$ \begin{array}{l} \mbox{Sealing washer: Electroplated zinc coated} \geq 5 \ \mu m, \ (F) \ hot \ dip \ galvanized \geq 50 \ \mu m \\ \mbox{Spherical washer: Electroplated zinc coated} \geq 5 \ \mu m, \ (F) \ Hot \ dip \ galvanized \geq 50 \ \mu m \\ \mbox{Lock nut: Electroplated zinc coated} \geq 5 \ \mu m, \ (F) \ \mbox{Electroplated zinc - nickel coated} \geq 6 \ \mu m \\ \end{array} $					
Metal parts made o	f stainless steel corrosion resistance classes II according EN 1993-1-4					
Theaded rod	Strength class 70, f_{uk} = 700 N/mm ² , f_{yk} = 450 N/mm ² . Elongation at fracture (l_0 = 5d) > 12% ductile. Stainless steel 1.4301, 1.4307, 1.4311, 1.4541, 1.4306, 1.4567 EN 10088-1.					
Washer	Stainless steel EN 10088-1					
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel EN 10088-1.					

¹⁾ according to EN ISO 10684

Injection system Hilti HIT-HY 170 with HAS-U

Product description Materials

Annex A4

Designation	Material		
Metal parts made	of stainless steel corrosion resistance classes III according EN 1993-1-4		
HAS A4, HAS-U A4	Strength class 70, f _{uk} = 700 N/mm², f _{yk} = 450 N/mm²; Elongation at fracture (I₀=5d) > 12% ductile		
Threaded rod	Strength class 70, f _{uk} = 700 N/mm², f _{yk} = 450 N/mm²; Elongation at fracture (l₀=5d) > 12% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1		
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1		
Nut	Strength class 70, f _{uk} = 700 N/mm², f _{yk} = 450 N/mm²; Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1		
Hilti Filling Set A4	Sealing washer: Stainless steel according to EN 10088-1 Spherical washer: Stainless steel according to EN 10088-1 Lock nut: Stainless steel according to EN 10088-1		
Metal parts made	of stainless steel corrosion resistance classes V according EN 1993-1-4		
HAS-U HCR	For \leq M20: f _{uk} = 800 N/mm ² , f _{yk} = 640 N/mm ² , For > M20: f _{uk} = 700 N/mm ² , f _{yk} = 400 N/mm ² , Elongation at fracture (l ₀ =5d) > 12% ductile		
Threaded rod	For \leq M20: f _{uk} = 800 N/mm ² , f _{yk} = 640 N/mm ² , For > M20: f _{uk} = 700 N/mm ² , f _{yk} = 400 N/mm ² , Elongation at fracture (l ₀ =5d) > 12% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1		
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1		
Nut	For \leq M20: f _{uk} = 800 N/mm ² , f _{yk} = 640 N/mm ² , For > M20: f _{uk} = 700 N/mm ² , f _{yk} = 400 N/mm ² , High corrosion resistant steel 1.4529, 1.4565 EN 10088-1		

Injection system Hilti HIT-HY 170 with HAS-U

Product description Materials Annex A5

Specifications of	intended use
-------------------	--------------

Anchorages subject to:

- Static and quasi-static loading: M8 to M24.
- Seismic performance category C2: M12 and M16.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206 + A1.
- Strength classes C20/25 to C50/60 according to EN 206 + A1.
- Cracked and uncracked concrete.

Temperature in the base material:

At installation

0 °C to +40 °C for the standard variation of temperature after installation

In-service

```
Temperature range I: -40 °C to +40 °C
```

(max. long term temperature +24 °C and max. short term temperature +40 °C) Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Table B1: Specifications of intended use

	HIT-HY 170 with
Elements	Threaded rod (Annex A)
Hammer drilling with hollow drill bit TE-CD or TE-YD	\checkmark
Hammer drilling mode	\checkmark
Static and quasi-static loading in uncracked concrete	M8 to M24
Static and quasi-static loading in cracked concrete	M10 to M24
Seismic performance category C2	M12 and M16

Injection system Hilti HIT-HY 170 with HAS-U

Intended use Specifications

Use conditions (environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4 corresponding to corrosion resistance classes Annex A (stainless steels).

Design:

- Fastenings are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4 and EOTA Technical Report TR 055.

Installation:

- Use category: dry or wet concrete (not in flooded holes) for all drilling techniques.
- Drilling technique:
 - Hammer drilling,
 - Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD
- Installation direction D3: downward, horizontal and upward (e.g. overhead) installation admissible for all elements.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-HY 170 with HAS-U

Intended use Specifications

Deutsches Institut für Bautechnik

Threaded rod according to Anne	x A		M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Nominal diameter of drill bit	d ₀	[mm]	10	12	14	18	22	28
Range of effective embedment depth and depth of drilled hole	ange of effective embedment $h_{ef} = h_0$ [mm] to to to			80 to 192	90 to 240	96 to 288		
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26
Thickness of Hilti Filling Set	of Hilti Filling Set h _{fs} [mm] 10		11	-	-			
Effective fixture thickness with Hilti Filling Set	t fix,ef	[mm]	$t_{\rm fix,ef} = t_{\rm fix} - h_{\rm fs}$					
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2·d₀)		
Maximum torque moment	T _{max}	[Nm]	10 20 40		40	80	150	200
Minimum spacing	Smin	[mm]	40	50	60	75	90	115
Minimum edge distance	Cmin	[mm]	40 45 45 50 55		60			

Marking:

A4

Steel grade number and length identification letter: e.g. 8L

Threaded rod, HAS..., AM...

HAS Color code marking:

5.8 = RAL 5010 (blue) 8.8 = RAL 1023 (yellow)

= RAL 3000 (red)

Table B3: Maximum working time and minimum curing time¹⁾

Temperat ma	Temperature in the base material T ²⁾		Maximum working time t _{work}	Minimum curing time t _{cure}		
0°C	to	5°C	10 min	5 h		
> 5°C	to	10°C	8 min	2,5 h		
> 10°C	to	20°C	5 min	1,5 h		
> 20°C	to	30°C	3 min	45 min		
> 30°C	to	40°C	2 min	30 min		

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

²⁾ The minimum temperature of the injection mortar Hilti HIT-HY 170 during installation is + 5°C

Injection system Hilti HIT-HY 170 with HAS-U

Intended use

Installation parameters of threaded rod, HAS..., HAS-U... and AM 8.8 Maximum working time and minimum curing time

Elements	Dri	ill and clean		Installation
Threaded rod (Annex A)	Hammer drilling	Hollow drill bit ¹⁾	Brush	Piston plug
4				
size	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	10	-	10	-
M10	12	12	12	12
M12	14	14	14	14
M16	18	18	18	18
M20	22	22	22	22
M24	28	28	28	28
 With vacuum cleaner Hilti VC 10/20/40 providing equivalent cleaning perform. Cleaning alternatives 				
 With vacuum cleaner Hilti VC 10/20/40 providing equivalent cleaning perform. Cleaning alternatives Manual Cleaning (MC): Hilti hand pump for blowing out drill h with diameters d₀ ≤ 18 mm and drill h 	noles			
With vacuum cleaner Hilti VC 10/20/40	noles			

Injection system Hilti HIT-HY 170 with HAS-U

Intended use Cleaning and setting tools Cleaning alternatives

Hole drilling		
a) Hammer drilling		
6 <i>2333</i> 0000000000000000000000000000000000	Drill hole to the required embedment depth with a h rotation-hammer mode using an appropriately sized	
b) Hammer drilling with Hilti	hollow drill bit	
	Drill hole to the required embedment depth with an Hilti TE-CD or TE-YD hollow drill bit with vacuum a requirements given in Table B4. This drilling syster cleans the bore hole during drilling when used in a user's manual. After drilling is completed, proceed preparation" step in the installation instruction.	ttachment following the m removes the dust and ccordance with the
Drill hole cleaning	Just before setting an anchor, the drill hole must be debris.	e free of dust and
Manual Cleaning (MC)	Non-cracked concrete. For drill hole diameters $d_0 \le 18$ mm and drill hole d	epths h₀ ≤ 10·d
4 4x	The Hilti manual pump may be used for blowing oud diameters $d_0 \le 18$ mm and embedment depths up Blow out at least 4 times from the back of the drill b stream is free of noticeable dust	to h _{ef} ≤ 10·d.
	Brush 4 times with the specified brush (see Table I steel brush Hilti HIT-RB to the back of the hole (if r in a twisting motion and removing it. The brush must produce natural resistance as it er (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too sma with the proper brush diameter.	needed with extension) hters the drill hole
+ 4x	Blow out again with manual pump at least 4 times is free of noticeable dust.	until return air stream
ijection system Hilti HIT-H	イ 170 with HAS-U	
tended use stallation instructions		Annex B5

Compressed air clean	ing (CAC) for all drill hole diameters d_0 and all drill hole depths h_0	
	Blow 2 times from the back of the hole (if needed with nozzle ex length with oil-free compressed air (min. 6 bar at 6 m³/h) until re of noticeable dust.	
	Brush 2 times with the specified brush (see Table B4) by insertir Hilti HIT-RB to the back of the hole (if needed with extension) in removing it. The brush must produce natural resistance as it enters the drill h hole \emptyset) - if not the brush is too small and must be replaced with diameter.	a twisting motion and nole (brush $\emptyset \ge$ drill
	Blow again with compressed air 2 times until return air stream is	free of noticeable dust.
Injection preparation		
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack man modify the mixing nozzle. Observe the instruction for use of the dispenser. Check foil pack holder for proper function. Do not use damaged Insert foil pack into foil pack holder and put holder into HIT-dispe	foil packs / holders.
	Discard initial adhesive. The foil pack opens automatically as dis Depending on the size of the foil pack an initial amount of adhes Discarded quantities are	ive has to be discarded.
		ml foil pack, ml foil pack
Inject adhesive from th	e back of the drill hole without forming air voids.	
	Inject the adhesive starting at the back of the hole, slowly withdr each trigger pull. Fill approximately 2/3 of the drill hole to ensure that the annular and the concrete is completely filled with adhesive along the em In water saturated concrete it is required to set the fastener imm the drillhole.	gap between the anchor bedment length.
	After injection is completed, depressurize the dispenser by press This will prevent further adhesive discharge from the mixer.	sing the release trigger.
Injection system Hilti	HIT-HY 170 with HAS-U	
Intended use Installation instructions		Annex B6
		Annex B6

	Overhead installation and/or installation with embedment depth I For overhead installation the injection is only possible with the ai piston plugs. Assemble HIT-RE-M mixer, extension(s) and appro- plug HIT-SZ (see Table B4). Insert piston plug to back of the hole During injection the piston plug will be naturally extruded out of the adhesive pressure	d of extensions and opriately sized piston e and inject adhesive.
Setting the element		
	Before use, verify that the element is dry and free of oil and othe Mark and set element to the required embedment depth until wo Table B3) has elapsed.	
	For overhead installation use piston plugs and fix embedded par (HIT-OHW).	ts with e.g. wedges
	Loading the anchor: After required curing time t_{cure} (see Table B3 loaded. The applied installation torque shall not exceed the values T_{max} g	
Installation of Hilti Fill	ing Set	
	Use Hilti Filling Set with standard nut. Observe the correct orient and spherical washer.	ation of filling washer
tcure	The applied installation torque shall not exceed the values T_{max} g	given in Table B2.
	Optional: Installation of lock nut. Tighten with a $\frac{1}{4}$ to $\frac{1}{2}$ turn.	
	Fill the annular gap between the anchor rod and fixture with 1-3 mortar HIT-HY 170. Follow the installation instructions supplied with the foil pack. After required curing time t _{cure} the anchor can be loaded.	strokes of Hilti injection
Injection system Hilti	HIT-HY 170 with HAS-U	
Intended use Installation instructions		Annex B7

Threaded rod accordi	ng to Annex A	۱.			M8	M10	M12	M16	M20	M24
Installation factor			γinst	[-]			1	,0		
Steel failure										
Characteristic resistanc	e		N _{Rk,s}	[kN]			As	· f uk		
Partial factor grade 5.8,	6.8 and 8.8		γMs,N ¹⁾	[-]			1	,5		
Partial factor HAS A4, H Threaded rod: CRC II a		1)	γMs,N ¹⁾	[-]			1,	87		
Partial factor HAS-U H0 Threaded rod: CRC V (•		γms,n ¹⁾	[-]	-] 1,5				2,1	
Combined pullout and	l concrete cor	ne fail	lure							
Characteristic bond res	istance in uncr	ackec	l concr	ete C20/25	5					
Temperature range I:	24 °C / 40 °C		$ au_{Rk,ucr}$	[N/mm ²]			10),9		
Temperature range II:	50 °C / 80 °C		$\tau_{Rk,ucr}$	[N/mm ²]	7,7					
Characteristic bond res	istance in crac	ked co	oncrete	e C20/25						
Temperature range I:	24 °C / 40 °C		$\tau_{Rk,cr}$	[N/mm ²]	2)		5,8		6	,2
Temperature range II:	50 °C / 80 °C		$\tau_{Rk,cr}$	[N/mm²]	2)		4,1		4	,6
Influence factors ψ or	bond resista	nce τ	Rk in CI	racked and	l uncra	cked co	ncrete			
				C30/37			1,	04		
Influence of concrete st $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$	rength class:	ψc		C40/50			1,	07		
				C50/60			1,	09		
Sustained load factor		Ψ^0 sus	24 °	°C / 40 °C	0,95					
			50 °	°C / 80 °C	0,79					
Concrete cone failure										
Factor for uncracked co	oncrete		k ucr,N	[-]			11	,0		
Factor for cracked conc	rete		K cr,N	[-]			7	,7		
Edge distance			C cr,N	[mm]			1,5	· h _{ef}		
Spacing			S cr,N	[mm]			3,0	· h _{ef}		

Injection system Hilti HIT-HY 170 with HAS-U

Performances

Essential characteristics under tension load in concrete

Table C1 continued				
Splitting failure				
	h / h _{ef}	≥ 2,0	1,0 · h _{ef}	h/h _e r
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} > 1,3	4,6 h _{ef} - 1,8 h	1,3
	h / h _{ef}	≤ 1,3	2,26 h _{ef}	1,0 h _{er} 2,26 h _{er} c _{cr,sp}
Spacing	S cr,sp	[mm]		2·c _{cr,sp}

¹⁾ In absence of national regulations.

²⁾ No performance assessed

Table C2: Essential characteristics for threaded rods according to Annex A under shear load in concrete

Threaded rod according to Annex A	M8	M10	M12	M16	M20	M24		
Steel failure without lever arm	12					6. S		
Characteristic resistance	V ⁰ Rk,s	[kN]] k ₆ · A _s · f _{uk}					
Factor grade 5.8	k 6	[-]	0,6					
Factor grade 6.8, 8.8, CRC II, III, V	k 6	[-]			0	,5		
Partial factor grade 5.8, 6.8 and 8.8	$\gamma_{Ms,V}^{1)}$	[-]			1,:	25		
Partial factor HAS A4, HAS-U A4, Threaded rod: CRC II and III (Table A1)	γms,v ¹⁾	[-]	-] 1,56					
Partial factor HAS-U HCR, Threaded rod: CRC V (Table A1)	γms,v ¹⁾	[-]	-] 1,25				1,75	
Ductility factor	k 7	[-]			1	,0		
Steel failure with lever arm								
Bending moment	M ⁰ Rk,s	[Nm]			1,2 · V	$V_{el} \cdot \mathbf{f}_{uk}$		
Ductility factor	k 7	[-]			1	,0		
Concrete pry-out failure								
Pry-out factor	k ₈	[-]] 2,0					
Concrete edge failure								
Effective length of fastener	lf	[mm]] min (h _{ef} ; 12 · d _{nom})					
Outside diameter of fastener	d _{nom}	[mm]] 8 10 12 16 20				24	

¹⁾ In absence of national regulations.

Injection system Hilti HIT-HY 170 with HAS-U

Performances

Essential characteristics under tension and shear load in concrete

Threaded rod according to Anne:	кA		M8	M10	M12	M16	M20	M24
Non-cracked concrete								
Displacement	δησ	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Displacement	δι∞	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Cracked concrete						•		
Displacement	δνο	[mm/(N/mm²)]	1)	0,07	0,07	0,06	0,06	0,06
Displacement	δn∞	[mm/(N/mm²)]	1)	0,11	0,11	0,11	0,15	0,17

No performance assessed

Table C4: Displacement under shear load

Threaded rod according to Annex A		M8	M10	M12	M16	M20	M24	
Displacement	δνο	[mm/(N/mm²)]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	δv∞	[mm/(N/mm²)]	0,09	0,08	0,08	0,06	0,06	0,05

Injection system Hilti HIT-HY 170 with HAS-U

Performances Displacements

Table C5: Essential characteristics for threaded rods according to Annex A under tension loads for seismic performance category C2

Threaded rod according to Annex A			M12	M16
Steel failure				
HAS 8.8 (HDG), HAS-U 8.8 (HDG), AM 8.8 (HDG), Threaded rod 8.8	N _{Rk,s,C2}	[kN]	67	126
Combined pullout and concrete cone failure				
Temperature range I: 24 °C / 40 °C	TRK,C2	[N/mm ²]	2,0	1,9
Temperature range II: 50 °C / 80 °C	TRk,C2	[N/mm ²]	1,4	1,3

Table C6: Essential characteristics for threaded rods according to Annex A under shear loads for seismic performance category C2

Threaded rod according to Annex A			M12	M16				
Steel failure without lever arm with Hilti Filling Set								
HAS 8.8, HAS-U 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	28	46				
Steel failure without lever arm without Hilti Fillin	ng Set			•				
HAS 8.8, HAS-U 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	24	40				
HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG	V _{Rk,s,C2}	[kN]	18	30				
Threaded rod, electroplated zinc coated 8.8	V _{Rk,s,C2}	[kN]	17	28				
Threaded rod, hot dip galvanized 8.8	$V_{Rk,s,C2}$	[kN]	13	21				

Table C7: Displacements under tension load for seismic performance category C2

Threaded rod according to Annex A			M12	M16
Displacement DLS	δN,C2(50%)	[mm]	0,2	0,2
Displacement ULS	δN,C2(100%)	[mm]	0,6	0,4

Injection system Hilti HIT-HY 170 with HAS-U

Performances

Essential characteristics for seismic performance category C2 and displacements

Threaded rod according to Annex A			M12	M16
Installation with Hilti Filling Set				
Displacement DLS	δv,c2(50%)	[mm]	1,6	1,2
Displacement ULS	δv,c2(100%)	[mm]	4,5	3,2
Installation without Hilti Filling Set		·		•
Displacement DLS: HAS 8.8, HAS-U 8.8, AM 8.8, Threaded rods 8.8	δv,c2(50%)	[mm]	2,9	3,2
Displacement DLS: HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG, Threaded rods 8.8 hot dip galvanized	δv,c2(50%)	[mm]	2,2	2,3
Displacement ULS: HAS 8.8, HAS-U 8.8, AM 8.8, Threaded rods 8.8	δv,c2(100%)	[mm]	5,4	9,2
Displacement ULS: HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG, Threaded rods 8.8 hot dip galvanized	δv,c2(100%)	[mm]	4,1	4,3

Injection system Hilti HIT-HY 170 with HAS-U

Performances Essential characteristics for seismic performance category C2 and displacements