

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-19/0501 of 11 June 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	fischer Superbond dynamic
Product family to which the construction product belongs	Post-installed fasteners in concrete under fatigue cyclic loading
Manufacturer	fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND
Manufacturing plant	fischerwerke
This European Technical Assessment contains	28 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330250-01-0601, Edition 10/2023
This version replaces	ETA-19/0501 issued on 22 January 2021

Page 2 of 28 | 11 June 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The fischer superbond dynamic is a bonded anchor consisting of a cartridge with injection mortar FIS SB or FIS SB High Speed or mortar capsule RSB and a steel element according to Annex A3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The resin capsule is placed into the hole and the steel element is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between steel element, chemical mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (Assessment method C: Linearized function)	Performance	
Characteristic fatigue resistance under cyclic tension loading		
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)		
Characteristic concrete cone and splitting fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,sp,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	See Annex C1, C3 and C4	
Characteristic combined pull-out /concrete cone fatigue resistance $\Delta \tau_{Rk,p,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)		
Characteristic fatigue resistance under cyclic shear loading		
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)		
Characteristic concrete edge fatigue resistance $\Delta V_{Rk,c,0,n}$ ($n = 1$ to $n = \infty$)	See Annex C2, C3 and C4	
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ ($n = 1$ to $n = \infty$)		

Page 4 of 28 | 11 June 2024

Essential characteristic (Assessment method C: Linearized function)	Performance
Characteristic fatigue resistance under cyclic combined ten	sion and shear loading
Characteristic steel fatigue resistance a_s ($n = 1$ to $n = \infty$)	See Annex C1 to C4
Load transfer factor for cyclic tension and shear loading	
Load transfer factor ψ_{FN}, ψ_{FV}	See Annex C1 to C4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 11 June 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Installation conditions fischer anchor rod FIS A or RG M with fischer injection system FIS SB Pre-positioned installation with dynamic set (annular gap filled with mortar) Size: M12, M16, M20, M24 Push through installation with dynamic set (annular gap filled with mortar) Size: M12, M16, M20, M24 Push through installation with washer and centering sleeve (annular gap filled with mortar) Size: M12, M16, M20, M24 fischer anchor rod RG M with fischer mortar capsule system RSB Pre-positioned or push through installation the dynamic set (annular gap filled with mortar) Size: M12, M16, M20, M24 Figures not to scale

fischer Superbond dynamic

Product description Installation conditions Annex A1

Overview system components Part 1	
Mortar cartridge (shuttle cartridge) with sealing cap; Size: 390 ml, 585 ml, 1100 ml, 1500	0 ml
Imprint: fischer FIS SB, FIS SB High Speed, processing notes piston travel scale (optional), curing times and processing time (depending on temperature), hazard code, size, volume	s
Mortar cartridge (coaxial cartridge) with sealing cap; Size: 150 ml, 300 ml ,380 ml, 410 r	nl
Imprint: fischer FIS SB, FIS SB High Speed, processing notes piston travel scale (optional), curing times and processing time (depending on temperature), hazard code, size, volume	es
Mortar capsule	
Size: 12 mini, 12, 16 mini, 16, 20, 20 E /24	
RSB	
Static mixer FIS MR Plus for injection cartridges up to 410 ml	
Static mixer FIS UMR for injection cartridges from 585 ml	
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR	
	Figures not to scale
fischer Superbond dynamic	
System description Overview system components part 1; cartridges / capsule / static mixer / injection adapter	Annex A2

Overview system components Part 2								
fischer anchor rod FI Size: M12, M16, M20,								
fischer anchor rod R	GM							
Size: M12, M16, M20,	M24							
spherical washer		onical washer (various						
	without drill hole	radial	angular	axial				
centering sleeve (only push through installation)	washer	hexagonal nut with spherical contact surface	hexagon nut	lock nut				
Injection adapter								
Cleaning brush BS		<u>Bibibibibi</u> j	ļ					
	e Kalikatikatikatikatikatikatikatikatikatikat	energi kakakakakaka di sebelah kakakakaka di sebelah kakakakakakaka di sebelah kakakakakaka di sebelah kakakaka Kakakakakakakakakakakakakakakak						
Compressed-air clear	ning tool ABP or ABG							
		>	A					
			fischer C					
				Figures not to scale				
fischer Superbond	dynamic							

Page 8 of European Technical Assessment ETA-19/0501 of 11 June 2024

English translation prepared by DIBt

Part	Designation	Material					
1	Injection cartridge	Mortar, ha	rdener, filler				
2	Resin capsule	Mortar, hardener, filler					
		Steel	Stainless steel R				
	Steel grade	zinc plated	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015				
3	fischer anchor rod FIS A or RG M	Property class 8.8; EN ISO 898-1:2013 zinc plated \ge 5 µm EN ISO 4042:2022 $f_{uk} \le$ 1000 N/mm ²	$\begin{array}{c} \mbox{Property class 70} \\ \mbox{EN ISO 3506-1:2020} \\ 1.4401 \mbox{(M12 to M24)} \\ 1.4062 \mbox{(M12 and M16)} \\ 1.4362 \mbox{(M12 and M16)} \\ \mbox{EN 10088-1:2023} \\ \mbox{f}_{uk} \leq 1000 \mbox{ N/mm}^2 \end{array}$				
4	Centering sleeve	Pla	astic				
5a	Washer ISO 7089:2000		1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023				
5b	Fillable conical washer similar to DIN 6319-G	zinc plated ≥ 5 μm, EN ISO 4042:2022	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023				
6	Spherical washer	zinc plated ≥ 5 µm, EN ISO 4042:2022	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023				
7a	Hexagon nut	Property class 8;	Property class 80				
7b	Hexagonal nut with spherical contact surface	EN ISO 898-2:2022 zinc plated ≥ 5 µm, EN ISO 4042:2022	EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023				
8	Lock nut	zinc plated ≥ 5 µm, EN ISO 4042:2022	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023				

fischer Superbond dynamic

Product description Materials

Annex A4

Specifications of intended use part 1									
Table B1.1: Overview use and performance categories injection motar system									
	FIS S	B with							
	fischer anchor rod FIS A c	or fischer anchor rod RG M							
	Steel, zinc plated M12 + M16	Stainless steel R M12 - M24							
Hammer drilling with standard drill bit Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD"; DreBo "D-Plus"; DreBo "D-Max")	Nominal drill bit diameter (d₀) 14 mm to 18 mm	Nominal drill bit diameter (d₀) 14 mm to 28 mm							
Diamond drilling	no performa	nce assessed							
Fatigue load, in concre cracke concre	te Steel, zinc plated: ed M12 and M16	Stainless steel R: M12, M16, M20 and M24							
Design method I acc. to EOTA TR 061:2023	n = 1 t	o n = ∞							
Design method II acc. to EOTA TR 061:2023	n =	= ∞							
Use I1 dry or wet concre	te M12, M16, M	//20 and M24							
Installation direction		03 pwards (overhead) installation							
Installation method	pre-positioned or pus	sh through installation							
Installation temperature	,	15 °C to T _{i,max} = +40 °C 20 °C to T _{i,max} = +30 °C							
In-service Temperature range I:		ax. short term temperature +40 °C; ax. long term temperature +24 °C)							
temperature Temperature range II:		ax. short term temperature +80 °C; ax. long term temperature +50 °C)							
fischer Superbond dynamic	;								
Intended use Specifications injection mortar s	vstem FIS SB part 1	Annex B1							

Specification	s of intended u	ise part 2				
Table B2.1:	Overview use	and performance categories resir	n capsule syste	em		
			3 with			
		fischer anch	nor rod RG M	Norman 4		
Hammer drilling with standard dril bit	2444					
Hammer drilling with hollow drill b		Nominal drill bit diameter (d₀) 14 mm to 18 mm		rill bit diameter (d₀) nm to 28 mm		
(fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD"; DreBo "D-Plus"; DreBo "D-Max")						
Diamond drilling		Nominal drill bit diameter (d₀) 18 mm		rill bit diameter (d₀) nm to 28 mm		
Fatigue load, in Cracked concrete		Steel, zinc plated: M12 and M16		nless steel R: l6, M20 and M24		
Design method I acc. to EOTA TR	061:2023	n = 1 to n = ∞				
Design method II acc. to EOTA TR		n = ∞				
Use category I1 dr	ry or wet concrete	M12, M16, M20 and M24				
Installation direct	ion	D3 Downward, horizontal and upwards (overhead) installation				
Installation metho	bd	pre-positioned or pu				
Installation tempe			-30 °C to $T_{i,max} = -$			
In-service	Temperature range I:	-40 C to +40 C m	nax. long term ten	nperature +40 °C; nperature +24 °C)		
temperature	Temperature range II:			nperature +80 °C; nperature +50 °C)		
fischer Superl	oond dynamic					
Intended use Specifications re	sin capsule systen	n RSB part 2		Annex B2		

Specifications of intended use part 3

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibers of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel R).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A4 Table A4.1.

Design:

- Fastenings have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages have to be designed in accordance with:
 - EN 1992-4:2018 and
 - EOTA Technical Report TR 061 "Design method for fasteners in concrete under fatigue cyclic loading", Edition 2023.
- Static and quasi-static loading see ETA-12/0258 of 24.10.2023. Centering sleeve and lock nut are additional parts for fatigue loading, which are not part of ETA-12/0258 of 24.10.2023.
- Fastenings shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
- Fastenings in stand-off installation or with a grout layer are not covered by this European Technical Assessment (ETA).

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: The hole shall be filled with mortar.
- Fastening depth should be marked and adhered to on installation.
- If only tension loads are involved in the application, the annular gap does not need to be filled.
- Overhead installation is allowed.
- Setting the fastener with clearance between concrete and anchor plate (only if the fastener is loaded in axial direction)

fischer Superbond dynamic

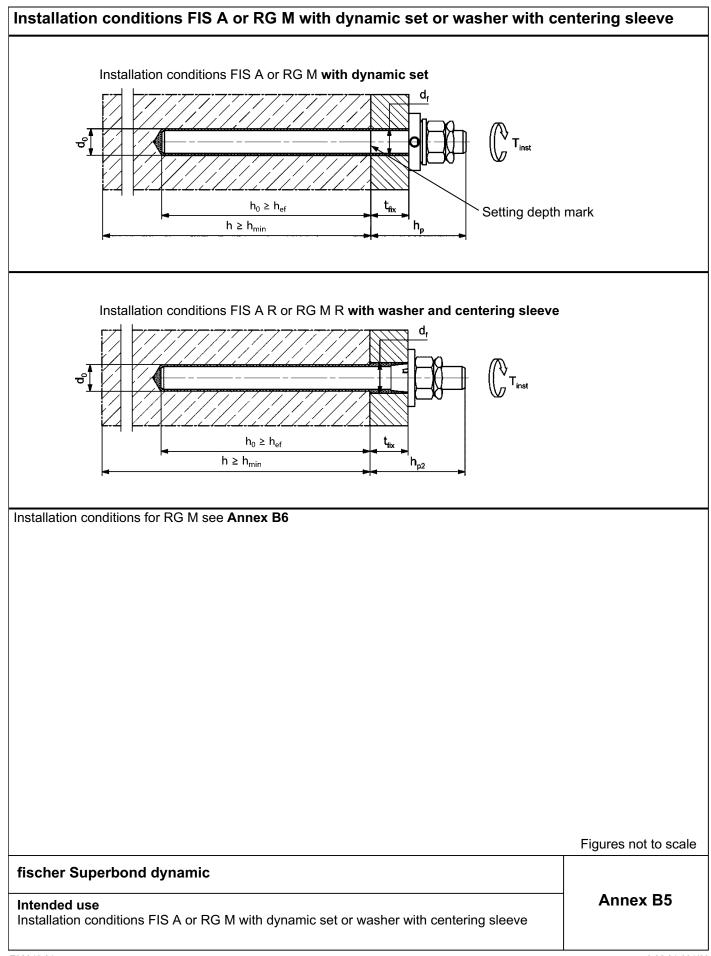

Intended use Specifications part 3 Annex B3

Table B4.1:Installation parameters for fischer anchor rods in combination with injection mortar
system FIS SB

fischer anchor rods	6		Thread	M12	M16	M2	0	M24
Material				zinc plated steel or stainless steel R		S	tainless	steel R
Nominal drill hole dia	ameter	d ₀		14	18	24	L I	28
Drill hole depth		h ₀			h ₀ =	h _{ef}		
Effective embedmen	t depth	h _{ef, min}		70	80	90)	96
Design method I	·	h _{ef, max}		240	320	400	0	480
Effective embedment depth Design method II		h _{ef, min}		95	125	160	0	190
		h _{ef, max}		240	320	400	0	480
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	55	65	85	5	105
Diameter of the pre-positioned installation		d _f		14-16	18-20	22-2	26	26-30
clearance hole of the fixture	push through installation	d _f		15-16	19-20	25-2	26	29-30
Fixture thickness		t _{fix,min}		6	8	10)	12
		t _{fix,max}			20	00		
Minimum thickness of member	of concrete	h _{min}		h _{ef} + 30	h_{ef} + 2d ₀	h _{ef} +	2d ₀	h _{ef} + 2d ₀
Installation with dy	namic set							
Protrusion anchor rod FIS A or RG M without hexagon head Protrusion anchor rod RG M (with hexagon head)		h _{p,min}	[mm] –	$25 + t_{fix}$	30 + t _{fix}	36 +	t _{fix}	43 + t_{fix}
		h _{p,min}	[]	$32 + t_{fix}$	38 + t _{fix}	43 +	t _{fix}	
Installation with wa	sher (only with	stainless	s steel R)				
Protrusion anchor rod FIS A or RG M without hexagon head		h _{p2,min}	[mm] –	19 + t _{fix}	23 + t _{fix}	27 +	t _{fix}	$32 + t_{fix}$
Protrusion anchor ro (with hexagon head)		h _{p2,min}	[]	26 + t _{fix}	31 + t _{fix}	34 +	t _{fix}	
Required installation	torque	T _{inst}	[Nm]	40	60	120	0	150
fischer anchor ro				Tr 	nread Marki			
Property class 8.8: •	ŀ							
Installation cond	itions see Anne	х В5					Figure	s not to scal
fischer Superbor	id dynamic							10 0001
Intended use Installation parameter injection mortar syst		or rods FIS	S A and F	RG M in combi	nation with		An	nex B4

Table B6.1:Installation parameters for fischer anchor rods RG M in combination with resin
capsule system RSB

	RG M	Т	hread	M12	M16	M	20	M24	
Material					zinc plated steel or stainless steel R stai		stainless	tainless steel R	
Nominal drill hole dia	ameter	d ₀		14	18	2	5	28	
Drill hole depth		h ₀			h ₀ =	• h _{ef}			
		h _{ef,1}		75	95	-			
Effective embedmer	nt depth	h _{ef,2}		110	125	17	70	210	
		h _{ef,3}		150	190	2′	10		
Ainimum spacing and minimum edge distance		S _{min} = C _{min}	[mm] _	55	65	8	5	105	
Diameter of the clearance hole of	pre-positioned installation	d _f		14-16	18-20	22	-26	26-30	
the fixture	push through installation	d _f		15-16	19-20	2	6	29-30	
- ixture thickness		t _{fix,min}		6	8		0	12	
		t _{fix,max}			20	00			
Minimum thickness of concrete member		h _{min}		h _{ef} + 30	h _{ef} + 2d ₀	h _{ef} +	2d ₀	h_{ef} + 2 d_0	
Installation with dy		,			1				
Protrusion anchor ro		h _{p,min}		32 + t _{fix}	38 + t _{fix}	43	+ t _{fix}		
Protrusion anchor rod RG M without hexagon head		h _{p,min}	[mm]					43 + t _{fix}	
Required installation	n torque	T _{inst}	[Nm]	40	60	12	20	150	
Marking (on randor Property class 8.8:	• •	anchor ro	od RG M	- <u></u>	Markin	<i></i> g			
Installation cond	litions:	$h_0 \ge h_{min}$	h _{ef}			T _{inst}	g depth r	nark	
	litions:		h _{ef}			- Setting		nark es not to scale	
	litions:		h _{ef}			- Setting			

Page 15 of European Technical Assessment ETA-19/0501 of 11 June 2024

English translation prepared by DIBt

Resin capsule RSB	,	12 mini	1	12	16 mini	16	20	20 E / 24
Capsule d _P diameter	[mm] —		12,5		1	6,5		23,0
Capsule L _P length			ę	97	72	95	160	190
		þ		ter and the second s	RSB			
					L _P	000A007-00		
			-		<u> </u>			
Table B7.2: A	ssignm	nent of re	esin caps	ule RSB	to fischer	anchor ro	d RG M	
Anchor rod RG M			M1:	2	M16		M20	M24
Effective anchorage depth	h _{ef,}	1 [mm]	75		95			
Related capsule RSI	3	[-]	12 m	ini	16 mini			
Effective anchorage depth	h _{ef,}	2 [mm]	11()	125		170	210
Related capsule RSI	3	[-]	12		16		20	20 E / 24
Effective anchorage depth	h _{ef,}	3 [mm]	150)	190		210	
Related capsule RSI	3	[-]	2x 12	2x 12 mini		ni	20 E / 24	
The size of the clean Nominal drill hole diameter Steel brush	d ₀ [m	h refers to	the drill ho	ole diamete		24	steel bristle 25 27	28
Steel brush diameter	d _b		16	20		26	27	30

fischer Superbond dynamic

Intended use Dimensions of the capsules; Assignment of the capsule to the anchor rod RG M; Cleaning brush (steel brush)

Table B8.1:	Conditio	Conditions for use static mixer without an extension tube									
Nominal drill hole diameter	d ₀	[mm]	14	18	24	25	28				
Drill hole	FIS MR Plus	[mm]	≤ 120	≤ 150	≤ 190	≤ 210					
depth h ₀ by using	FIS UMR	[mm]	≤ 90	≤ 180	≤ 2	220	≤ 250				

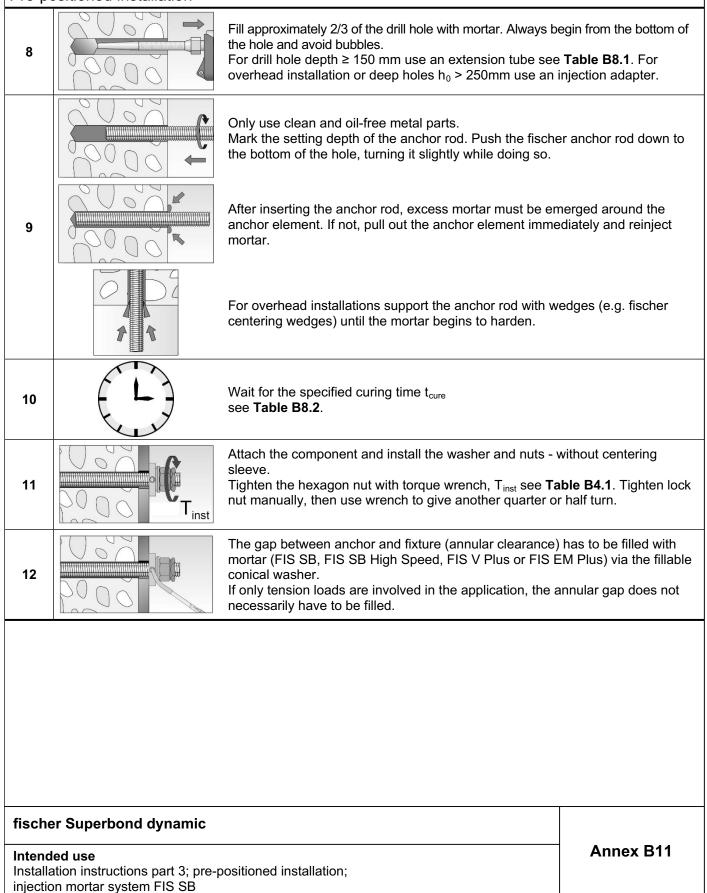
Table B8.2:Maximum processing time of the mortar and minimum curing time


During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature. Minimal cartridge temperature +5 °C; minimal resin capsule temperature -15 °C

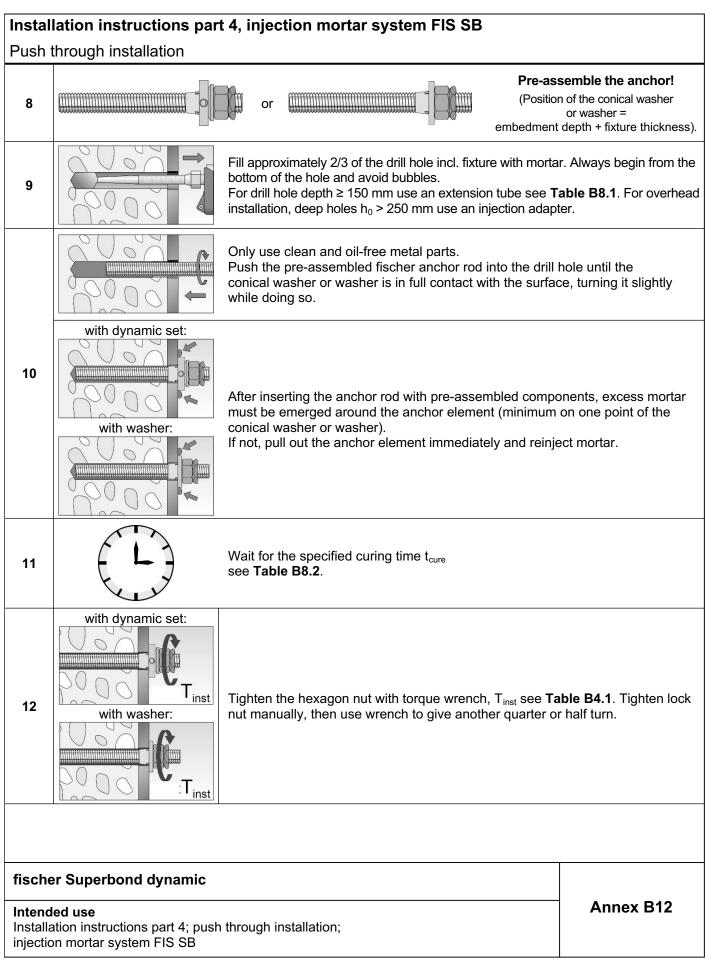
	Marian and		N.4:		
Temperature at	Maximum pro	Minimum curing time			
anchoring base	۱ ــــــــــــــــــــــــــــــــــــ	ork		t _{cure}	
[°C]	FIS SB	FIS SB High Speed	FIS SB	FIS SB High Speed	RSB
-30 to -20					120 h
> -20 to -15		60 min		24 h	48 h
> -15 to -10	60 min	30 min	36 h	8 h	30 h
> -10 to -5	30 min	15 min	24 h	3 h	16 h
> -5 to ±0	20 min	10 min	8 h	2 h	10 h
> ±0 to +5	13 min	5 min	4 h	1 h	45 min
> +5 to +10	9 min	3 min	2 h	45 min	30 min
> +10 to +20	5 min	2 min	1 h	30 min	20 min
> +20 to +30	4 min	1 min	45 min	15 min	5 min
> +30 to +40	2 min		30 min		3 min

fischer Superbond dynamic

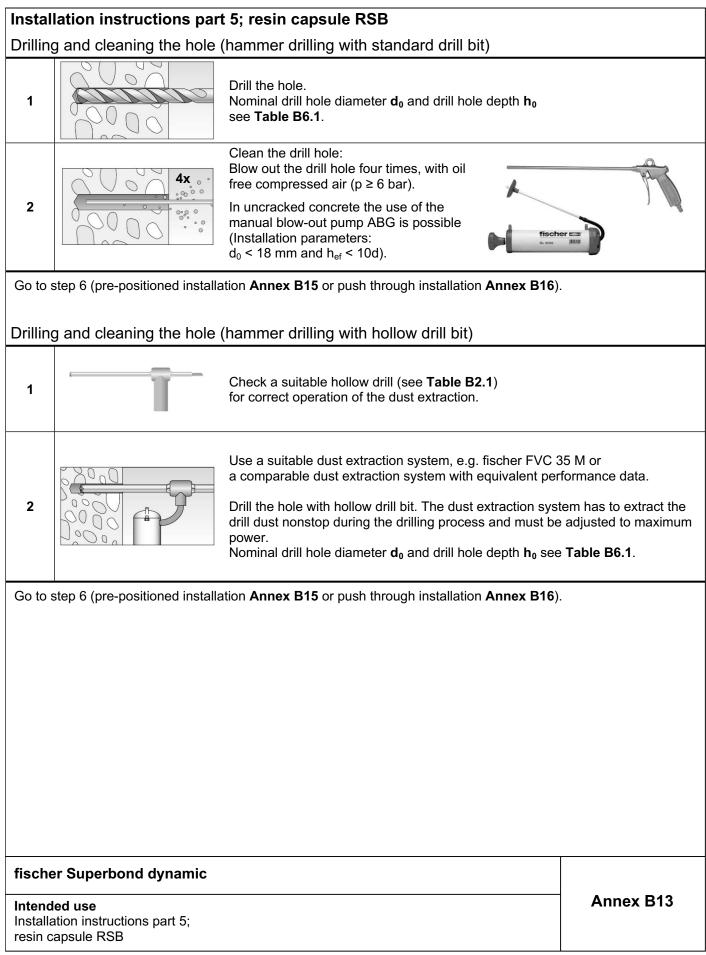
Conditions for use static mixer without an extension tube; Maximum processing time and minimum curing time Annex B8

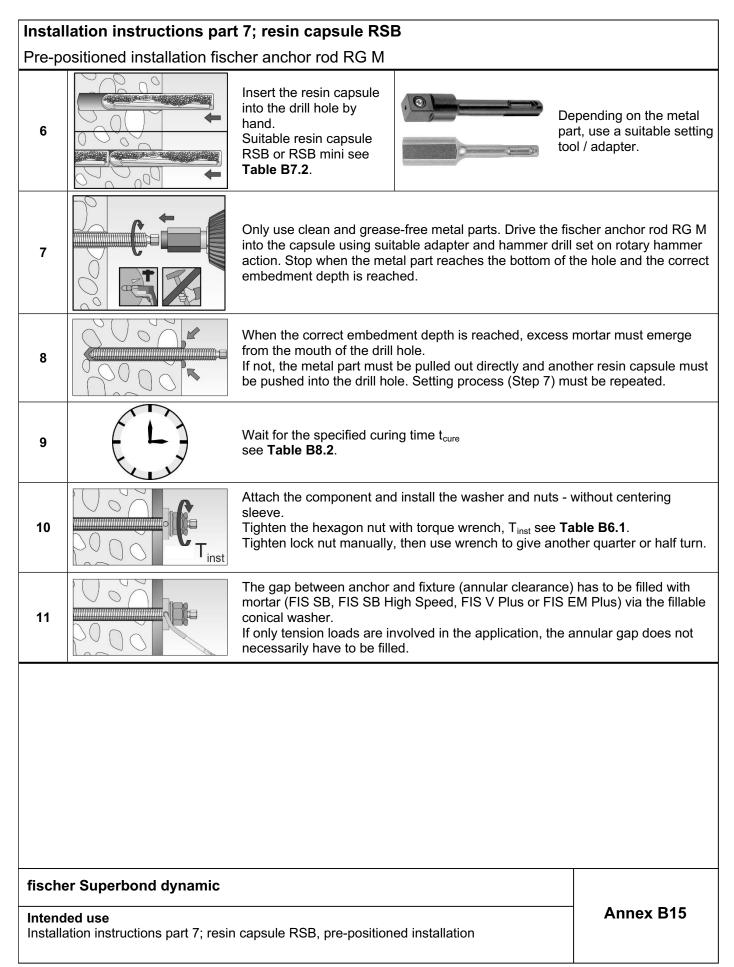


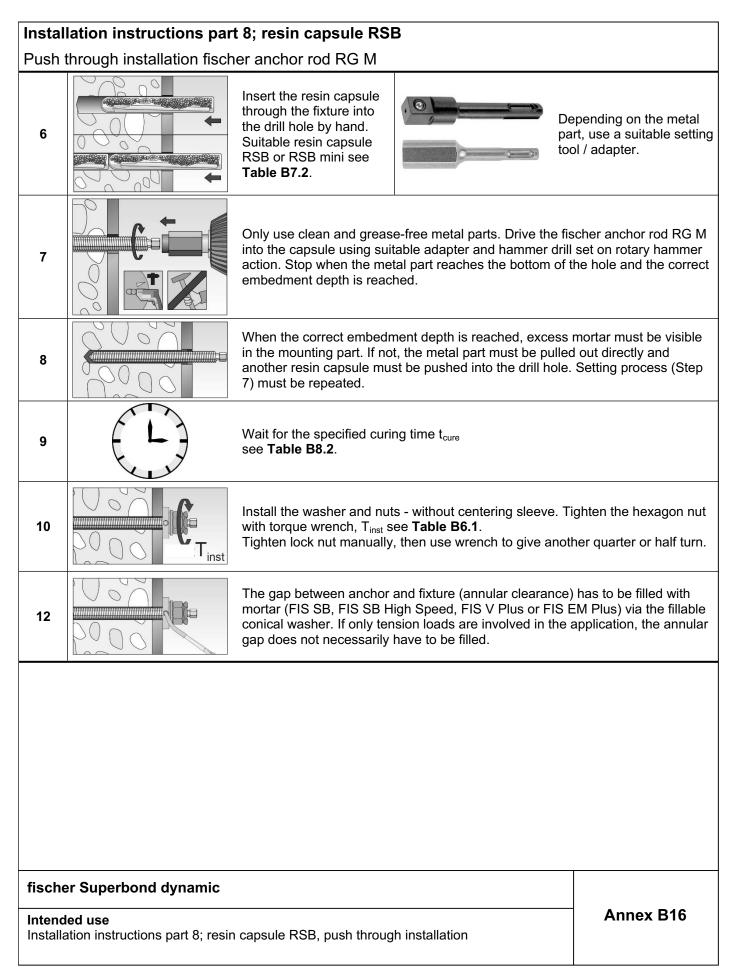
	ring the cartridge	rt 2; injection mortar		
5		Remove the sealing cap Screw on the static mixe (the spiral in the static m		
6	fischer cz	, , , , , , , , , , , , , , , , , , , 	Place the cartridge into the dispenser.	
7	×	X	Extrude approximately 10 cm of material out un resin is evenly grey in colour. Do not use morta is not uniformly grey.	ntil tł r tha
Go to s	step 8 (pre-positioned install	ation Annex B11 or push	through installation Annex B12).	
ïsche	er Superbond dynamic			



Installation instructions part 3, injection mortar system FIS SB


Pre-positioned installation





	-	t 6; resin capsule RSB		
Drillin	g and cleaning the hole	(wet drilling with diamond drill I	oit)	
1		Drill the hole. Drill hole diameter d_0 and nominal drill hole depth h_0 see Table B6.1 .		Break the drill core and remove it.
2	0000	Flush the drill hole, until clear water	r emerges from the dri	ll hole.
3	2x 2x 2x 	Blow out the drill hole twice, using o	oil-free compressed ai	r (p > 6 bar).
4	2x	Brush the drill hole twice using a po Corresponding brushes see Table		
5	2x	Blow out the drill hole twice, using o	oil-free compressed ai	r (p > 6 bar).
Go to s	step 6 (pre-positioned installa	ation Annex B15 or push through ins	tallation Annex B16).	
fische	er Superbond dynamic			
Installa	led use ation instructions part 6; capsule RSB			Annex B14

		teristics under according to T		n fatigue loading for FI	S SB / RSB;
		Required	evidenc	e	
		Number of lo	ad cycle	s (n)	
$n \le 10^4$	$10^4 < n$	$1 \le 5 \cdot 10^6$		$5 \cdot 10^6 < n \le 10^8$	n > 10 ⁸
		Tension	loading		
	Characterist	c steel fatigue res ∆N _{Rk,s,0,n}		(zinc plated steel 8.8)]	
0,75·N _{Rk,s,(8.8)} ·0,33		$\cdot 10^{(-0,12 \cdot \log(n))}$ _{Rk,s,(8.8)} ·0,33	0,75∙N _{Rk}	$(s,s,(8.8)) \cdot 10^{(-0,438-0,057 \cdot \log(n))}$	0,75·N _{Rk,s,(8.8)} ·0,12
Cha	aracteristic steel	fatigue resistance ΔN _{Rk,s,0,n} (l	•	ess steel R, property class N]	s 70)
0,75·N _{Rk,s,(R-70)} ·0,33	0,75·N _{Rk,s,(R-70)} ·1	0 (-0,16-0,09 · log (<i>n</i>))	1	0,75·N _{Rk,s,(R-70)} · ₀(- 0,469 - 0,043 · log (n))	0,75·N _{Rk,s,(R-70)} ·0,15
	Characteristic co	mbined pull-out / n uncracked and	concret	e cone fatigue resistance	¢,
				cracked concrete	
		$\Delta \tau_{Rk,p,ucr,0,n}$	-		
$\tau_{Rk,ucr}$ · 0,575	$ au_{Rk,ucr}\cdot 10^{0}$	$(-0,06 \cdot \log(n))$	τ _{Rk,uc}	$10^{(-0,207-0,029 \cdot \log{(n)})}$	$\tau_{Rk,ucr} \cdot 0,35$
	Charac	teristic bond stre Δτ _{Rk,p,cr,0,r}	-		
$\tau_{Rk,cr} \cdot 0,575$	$\tau_{Rk,cr} \cdot 10^{(}$	$-0,06 \cdot \log(n)$	τ _{Rk,cr}	$\cdot 10^{(-0,207-0,029 \cdot \log{(n)})}$	τ _{Rk,cr} · 0,35
	Characteristi	c concrete cone a	and split	ting fatigue resistance	
	Characteristic o	concrete fatigue r ∆N _{Rk,c/sp,ι}		e in uncracked concrete]	
N _{Rk,c/sp,ucr} · 0,66	М	$I_{Rk,c/sp,ucr} \cdot 1,1 \cdot n^{-0}$	^{),055} ≥ N _R	_{k,c/sp,ucr} · 0,50	$N_{Rk,c/sp,ucr} \cdot 0,50$
	Characteristic	concrete fatigue	resistan	ice in cracked concrete	
		$\Delta N_{Rk,c/sp}$	_{,cr,0,n} [kN]		
$N_{Rk,c/sp,cr} \cdot 0,66$		$N_{Rk,c/sp,cr} \cdot 1, 1 \cdot n^{-0}$	^{),055} ≥ N _R	_{k,c/sp,cr} · 0,50	$N_{Rk,c/sp,cr} \cdot 0,50$
		Exponents and lo	ad trans	fer factor	
Exponent for combine	d loading				
	M12	M16		M20	M24
$\alpha_{s} = \alpha_{sn}$ [-]	0,5			0,7	
Load transfer factor					
Ψfn [-]			0,5	5	
$ \begin{array}{c} N_{Rk,s}, \tau_{Rk,ucr} , \tau_{Rk,cr} se \\ N_{Rk,c/sp,ucr} , N_{Rk,c/sp,cr} se \end{array} $				70) ≤ 0,85 · τ _{Rk} (M20-R-70 4:2018)
fischer Superbone	d dynamic				
Performance Essential characteris Design method I acco		fatigue loading;			Annex C1

	l characteristics under shear f nethod I according to TR 061		3 / RSB;
	Required evide	nce	
	Number of load cyc	, , 	
n ≤ 10 ⁴	$10^4 < n \le 5 \cdot 10^6$	$5 \cdot 10^6 < n \le 10^8$	n > 10 ⁸
	Shear loading	•	
Ch	aracteristic steel fatigue resistan ΔV _{Rk,s,0,n} (8.8) [Ι		
$V_{Rk,s,(8.8)}\cdot0,\!23$	$V_{\text{Rk},s,(8.8)} \cdot 10^{(-0,147 \cdot \log(n))}$ ≤ V _{Rk,s,(8.8)} · 0,23	$V_{\text{Rk},s,(8.8)}$ · 10 ^{(-0,573-0,068 · log} ≥ $V_{\text{Rk},s,(8.8)}$ · 0,08	(<i>n</i>)) $V_{\text{Rk},s,(8.8)} \cdot 0,08$
Characteri	stic steel fatigue resistance (stair ΔV _{Rk,s,0,n} (R-70)		s 70)
$V_{Rk,s,(R-70)} \cdot 0,31$	$V_{\text{Rk},s,(R-70)} \cdot 10^{(-0,042 - 0,118 \cdot \log(n))}$	$V_{\text{Rk,s},(\text{R-70})} \cdot 10^{(-0.461 - 0.056 \cdot \log(n))}$	$V_{\text{Rk},s,(\text{R-70})}\cdot0,12$
Characteristic c	⊔ oncrete pry out fatigue resistanc ∆V _{Rk,cp,0,n} [kN		concrete
V _{Rk,cp} · 0,574	$V_{Rk,cp} \cdot 1,2 \cdot n^{-0,0}$	$V^8 \ge V_{Rk,cp} \cdot 0,50$	$V_{Rk,cp} \cdot 0,50$
Characteristic	concrete edge fatigue resistance ΔV _{Rk,c,0,n} [kN]		concrete
V _{Rk,c} · 0,574	$V_{Rk,c} \cdot 1, 2 \cdot n^{-0,0}$	$V^{08} \geq V_{Rk,c} \cdot 0,50$	V _{Rk,c} · 0,50
	Exponents, load trans	sfer factor	
Exponent for combined loading	g, steel failure		
M12	2 M16	M20	M24
$\alpha_{s} = \alpha_{sn}$ [-] 0,5		0,7	
	g, verification regarding failure mod		
α _c [-] Load transfer factor		1,5	
		0,5	
		0,0	
V _{Rk,s} see ETA-12/0258 of 24. V _{Rk,c} , V _{Rk,cp} see ETA-12/0258	of 24.10.2023 and EN 1992-4:2018	3	
fischer Superbond dynar Performance Essential characteristics under Design method I according to	er shear fatigue loading;		Annex C2

Size			M12	M16	
Tension loading					
Effective embedment depth	h _{ef,min}	[mm]	95	125	
Steel failure		· ·		·	
Characteristic steel fatigue resistance	$\Delta N_{Rk,s,0,\infty}$	[kN]	6,1	11,3	
Exponent for combined loading	$\alpha_{s} = \alpha_{sn}$	[-]	0,5	0,7	
Combined pull-out / concrete c	one failure				
Characteristic bond fatigue Δau_{RI}	_{k,p,ucr,0,∞} [N/	/mm²]	$\tau_{ m Rk,ucr}$	· 0,35	
resistance		/mm²]	τ _{Rkcr}	· 0,35	
Concrete cone failure and conc	r,p,or,o,	-	- AAyer		
	ΔN _{Rk,c,0,∞}	[-]	0,5 · N	3k c ¹⁾	
Characteristic concrete fatigue resistance	ΔN _{Rk,sp,0,∞}	[-]	$0,5 \cdot N_{\text{Rk,sp}}^{1)}$		
Exponent for combined loading			1,5		
Load transfer factor		[-]	0,5		
Shear loading	ΨFN	[-]	0	,0	
Shear loading, steel failure with	out lever ar	m			
Characteristic steel fatigue					
resistance	∆V _{Rk,s,0,∞}	[kN]	2,7	5,0	
Exponent for combined loading	$\alpha_{s} = \alpha_{sn}$	[-]	0,5	0,7	
Concrete pryout failure		· · ·			
Characteristic concrete fatigue resistance	$\Delta V_{Rk,cp,0,\infty}$	[kN]	0,5 · \	/ _{Rk,cp} ¹⁾	
Concrete edge failure					
Characteristic concrete fatigue resistance	$\Delta V_{\text{Rk,c,0,}\infty}$	[kN]	0,5 · V _{Rk,c} ¹⁾		
Effective length of fastener	۱ _f	[mm]	min (h _{ef} ; 12 · d _{nom})		
Effective outside diameter of the anchor	d _{nom}	[mm]	12	16	
Exponent for combined loading	α_{c}	[-]	1	,5	
Load transfer factor	ΨFV	[-]	0	,5	

fischer Superbond dynamic

Performance Essential characteristics under tension / shear fatigue loading; Design method II according to TR 061; zinc plated steel 8.8 Annex C3

Size			M12	M16	M20	M24
Tension loading						
Effective embedment depth	h _{ef,min}	[mm]	95	125	170	220
Steel failure		· ·				·
Characteristic steel fatigue resistance	∆N _{Rk,s,0,∝}	, [kN]	6,6	12,4	19,4	27,8
Exponent for combined loading	$\alpha_{s} = \alpha_{sn}$	[-]	0,5 0,7			
Combined pull-out / concrete co	one failure	•				
Characteristic bond fatigue $\Delta \tau_{Rk}$.,p,ucr,0,∞ [[N/mm²]	$\tau_{\rm Rk,ucr} \cdot 0,35$			
resistance		N/mm²]	$\tau_{\rm Rk,cr} \cdot 0,35$			
Concrete cone failure and conc		ing failu	.e			
Characteristic concrete fatigue	∆N _{Rk,c,0,∝}	, [-]	0,5 · N _{Rk c} ¹⁾			
resistance	$\Delta N_{Rk,sp,0,q}$		0,5 · N _{Rk,sp} ¹⁾			
Exponent for combined loading	α _c	[-]		1	,5	
Load transfer factor	$\psi_{\sf FN}$	[-]	0,5			
Shear loading		- · ·				
Shear loading, steel failure with	out lever	arm				
Characteristic steel fatigue resistance	$\Delta V_{Rk,s,0,x}$, [kN]	3,6	6,6	10,3	14,9
Exponent for combined loading	$\alpha_{s} = \alpha_{sn}$	[-]	0,5 0,7			
Concrete pryout failure						
Characteristic concrete fatigue resistance	$\Delta V_{Rk,cp,0,cp}$	。 [kN]	0,5 · V _{Rk,cp} ¹⁾			
Concrete edge failure						
Characteristic concrete fatigue resistance	$\Delta V_{Rk,c,0,\prec}$, [kN]	0,5 · V _{Rk,c} ¹⁾			
Effective length of fastener	l _f	[mm]	min (h _{ef} , 12 · d _{nom})			
Effective outside diameter of the anchor	d _{nom}	[mm]	12	16	20	24
Exponent for combined loading	α_{c}	[-]		1	,5	
Load transfer factor	ψ_{FV}	[-]	0,5			

fischer Superbond dynamic

Performance Essential characteristics under tension / shear fatigue loading; Design method II according to TR 061; stainless steel R property class 70 Annex C4