

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-21/0267 of 14 November 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	fischer Injection system FIS V Zero for use in masonry
Product family to which the construction product belongs	Metal Injection anchors for use in masonry
Manufacturer	fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND
Manufacturing plant	fischerwerke
This European Technical Assessment contains	44 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330076-01-0604, Edition 10/2022
This version replaces	ETA-21/0267 issued on 27 August 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The fischer injection system FIS V Zero for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar fischer FIS V Zero, a perforated sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annexes B 4 to B 7, B 14 C 1 to C 21
Characteristic resistance and displacements for seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

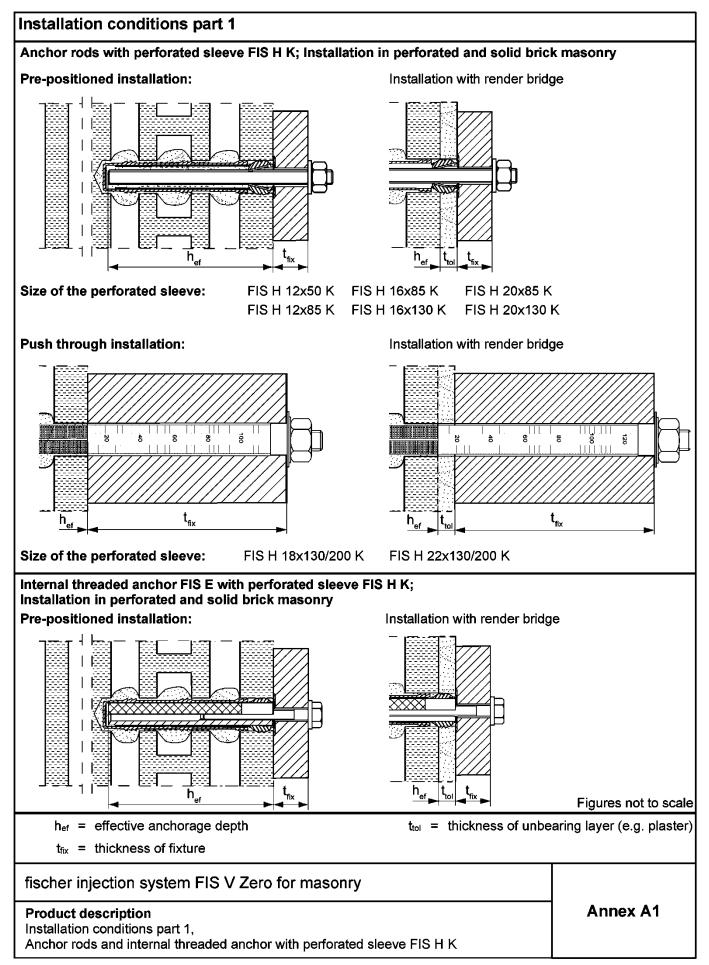
Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire under tension and shear loading with and without lever arm. Minimum edge distances and spacing	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

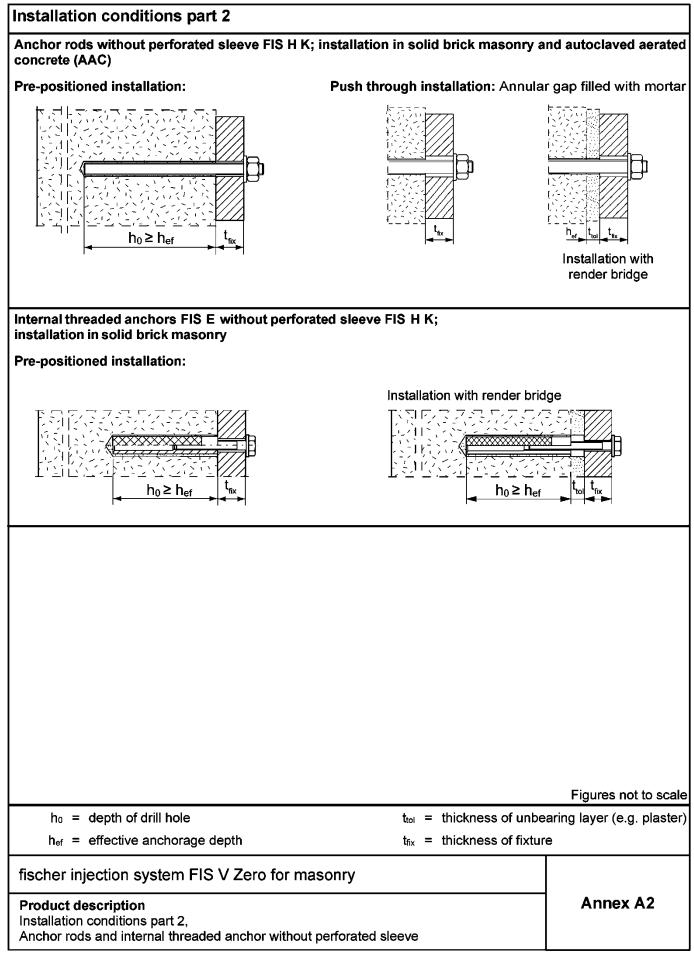
Essential characteristic	Performance	
Content, emission and/or release of dangerous substances	No performance assessed	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-01-0604 the applicable European legal act is: [97/177/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 14 November 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Overview system components part 1	
Injection cartridge (shuttle cartridge) with sealing cap	
Size: 360 ml, 825 ml	
Imprint: fischer FIS V Zero, processing notes, shelf-life, pisto travel scale (optional), curing time and processing time (depending on temperature), size, volume	on
Injection cartridge (coaxial cartridge) with sealing cap	
Size: 100 ml, 150 ml, 300 ml, 380 ml, 400 ml, 410 ml	
Imprint: fischer FIS V Zero, processing notes, shelf-life, pisto travel scale (optional), curing time and processing time (depending on temperature), size, volume	
Static mixer MR Plus or FIS JMR (only 825ml) and extension tube	
Static mixer FIS MR Plus]]-
Cleaning brush BS	
Blow-out pump ABG or ABP	
	PAR -
	Figures not to scale
fischer injection system FIS V Zero for masonry	
Product description Overview system components part 1: cartridge / static mixer / cleaning tools	Annex A3

Overview system components part 2			
fischer anchor rod			
	Size:	M8, M10, M12, M16	
Internal threaded anchor FIS E			
	Size:	11x85 M8 15x85 M10 / M12	
Perforated sleeve FIS H K	0		
	Size:	FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K	
	Size:	FIS H 16x130 K FIS H 20x130 K	
Perforated sleeve FIS H K (push through installati	ion)		
			Size: FIS H 18x130/200 K FIS H 22x130/200 K
Washer			
Hexagon nut			
Ĉ			
			Figures not to scale
fischer injection system FIS V Zero for mase	onry		
Product description Overview system components part 2: Metal parts / p	erforate	d sleeves FIS H K	Annex A4

Part I				
- 1-	Designation		Material	
1	Injection cartridge		Mortar, hardener; filler	
		Steel	Stainless steel R	High corrosion-resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4:2020	acc. to EN 10088-1:2023 Corrosion resistance class CRC V acc. to EN 1993-1-4:2020
2	Anchor rod	Property class 4.6; 4.8; 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, EN ISO 4042:2022 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004+AC:2009f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2023 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f _{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2023 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation
· · · · ·	Washer ISO 7089:2000	zinc plated ≥ 5µm, ISO 4042:2022 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565;1.4529 EN 10088-1:2023
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5µm, ISO 4042:2022 Zn5/An(A2K) or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023
	Internal threaded anchor FIS E	Property class 5.8; EN 10277-1:2018 zinc plated ≥ 5µm, ISO 4042:2022 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023
6	Commercial standard screw or threaded rod for internal threaded anchor FIS E	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:2022 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023
	Perforated sleeve FIS H K		PP / PE	

fischer injection system FIS V Zero for masonry

Product description

Materials

Annex A5

	rotary drill mode	all b	ricks ricks	
Static and qua	asi-static load	all b	ricks	
Use conditions	dry masonry	all b	• .	
		all bricks		
Installation	Pre-positioned	Anchor rod or internal threaded anchor (in solid brick masonry and autoclaved aerated concrete)	Perforated sleeve with anchor r or internal threaded anchor (in perforated and solid brick masonry) Size: FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K FIS H 20x130 K	
_	Push through	Anchor rod (in solid brick masonry and autoclaved aerated concrete)	Perforated sleeve with anchor r (in perforated and solid brick masonry) Size: FIS H 18x130/200 FIS H 22x130/200	
	condition d/d	all bricks		
		T _{i.min} = -10 °C to	o T _{i.max} = +40 °C	
	Temperature range Ta	40 °C to ±40 °C (max. shor	t term temperature +40 °C term temperature +24 °C)	
	Temperature range Tb		t term temperature +80 °C term temperature +50 °C)	
	Temperature range Tc		t term temperature +120 °C; term temperature +72 °C)	
Installation and use conditions Installation temper Service temperature	(dry/dry) rature Temperature range Ta Temperature range Tb Temperature	Ti,min = -10 °C to-40 °C to +40 °C(max. shor max. long-40 °C to +80 °C(max. shor max. long-40 °C to +120 °C(max. shor max. long	T _{i,max} = +40 °C t term temperature +40 °C term temperature +24 °C) t term temperature +80 °C term temperature +50 °C) t term temperature +120 °C;	

Specifications of intended use (part 2)

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (base material group b) and AAC masonry (base material groub d), acc. to Annex B 12
- Hollow brick masonry (base material group c), according to Annex B12
- Minimum thickness of masonry member is her+30mm
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2016
- For other bricks in solid masonry, hollow, perforated masonry or AAC masonry the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 053:2016-04 under consideration of the β-factor according to Annex C20, Table C20.1

Note (only applies to solid bricks and AAC):

The characteristic resistance is also valid for larger brick sizes, higher mean compressive strength and higher mean gross dry density of the masonry unit.

Temperature Range:

- **Ta:** from -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- **Tb:** from -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- Tc: from -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN 1993-1-4:2006+A2:2020 corresponding to corrosion resistance classes to Annex A5, Table A5.1.

fischer injection system FIS V Zero for masonry

Intended use Specifications (part 2) Annex B2

Specifications of intended use (part 2 continued)

Design:

 The anchorages have to be designed in accordance with EOTA Technical Report TR 054:2022-07, Design method A under the responsibility of an experienced in anchorages and masonry work.
 Applies to all bricks, if no other values are specified:

 $\mathbf{N}_{\mathsf{Rk}} = \mathbf{N}_{\mathsf{Rk},\mathsf{b}} = \mathbf{N}_{\mathsf{Rk},\mathsf{p}} = \mathbf{N}_{\mathsf{Rk},\mathsf{b},\mathsf{c}} = \mathbf{N}_{\mathsf{Rk},\mathsf{p},\mathsf{c}}$

 $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$

For the Calculation of pulling out a brick under tension load NRk,pb or

pushing out a brick under shear load VRk,pb see EOTA Technical Report TR 054:2022-07.

NRk,s, VRk,s and M⁰Rk,s see annex C1-C3

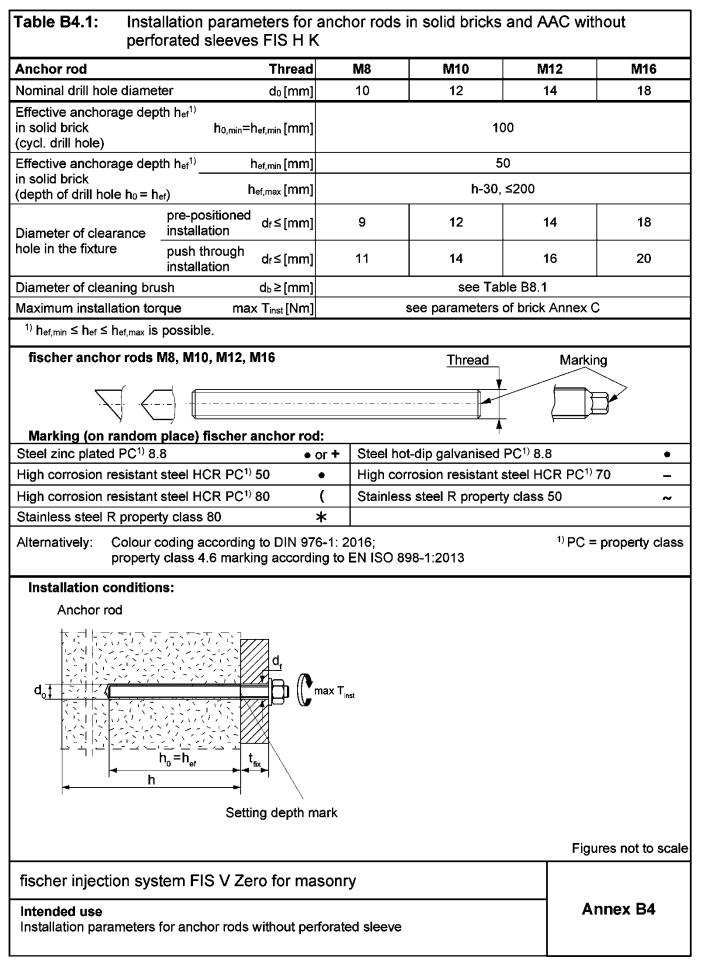
Factors for job site tests see Annes C20 and displacements see Annex C21

 Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.

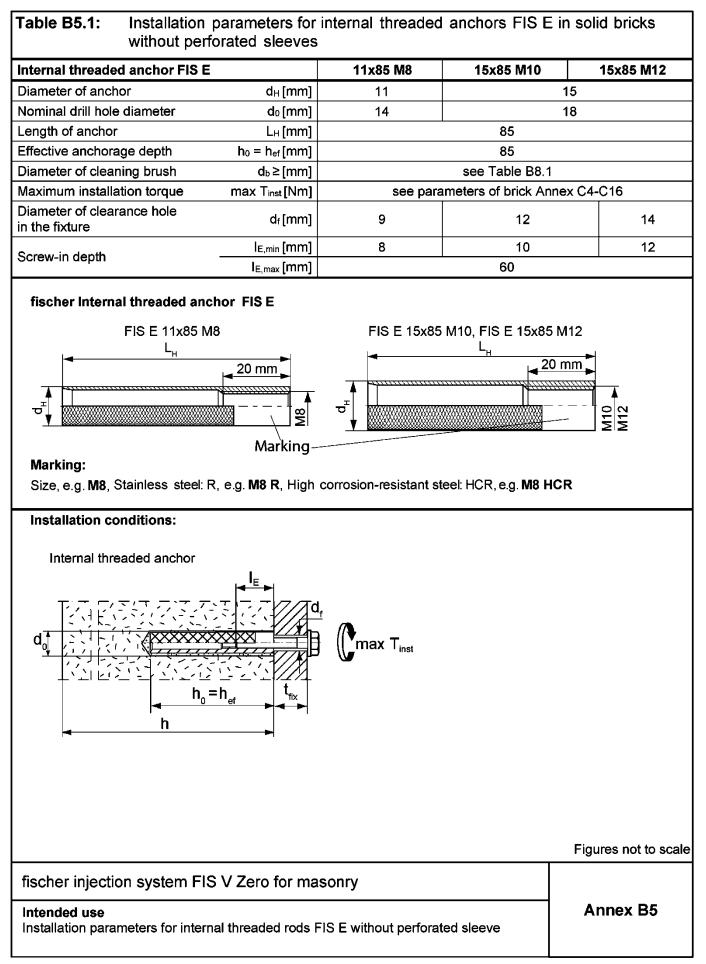
Installation:

- · Condition d/d: Installation and use in structures subject to dry, internal conditions
- Hole drilling see Annex B1.1
- · In case of aborted hole: The hole shall be filled with mortar
- · Bridging of unbearing layer (e.g. plaster) at perforated brick masonry see Annex B6, Table B6.1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or anchor rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E.
- Minimum curing time see Annex B8, Table B8.2
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

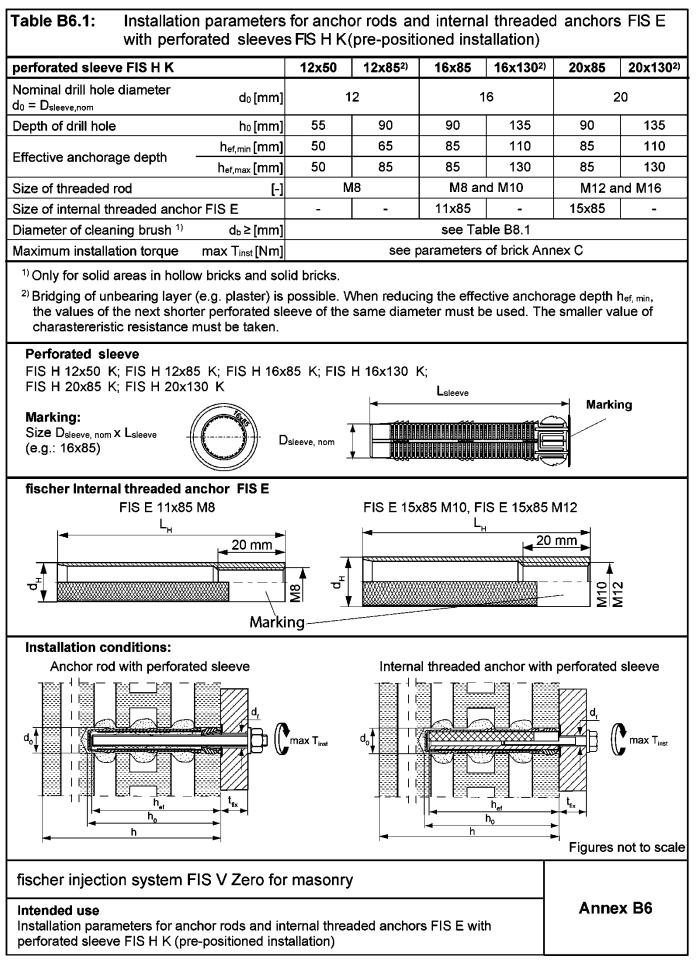
Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A5, Table 5.1

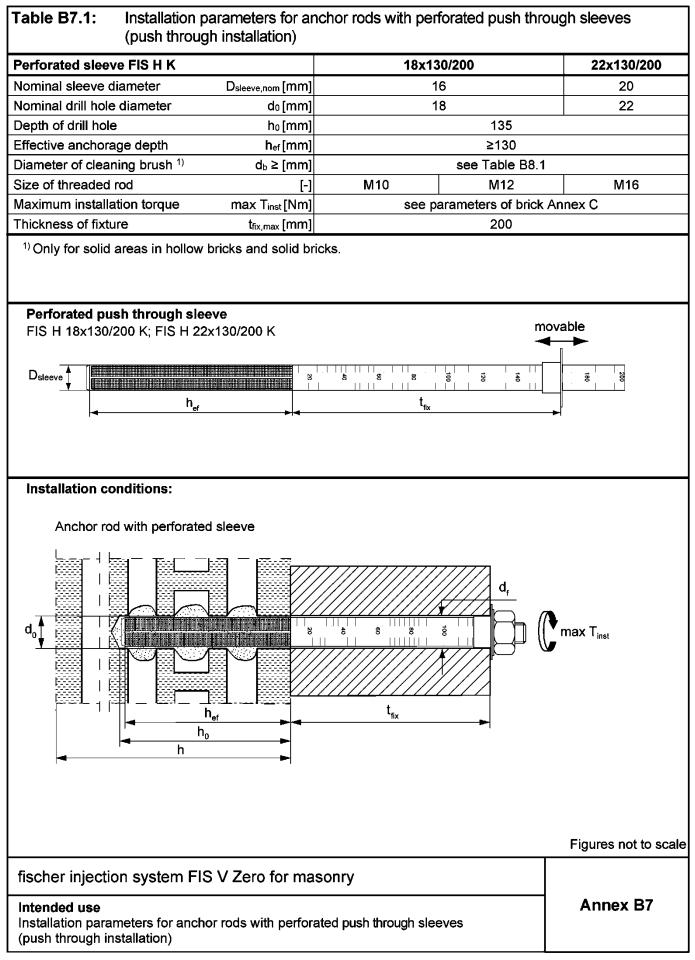

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the anchor rod with the effective anchorage depth. This may be done by the manufacturer of the rod or by a person on job site

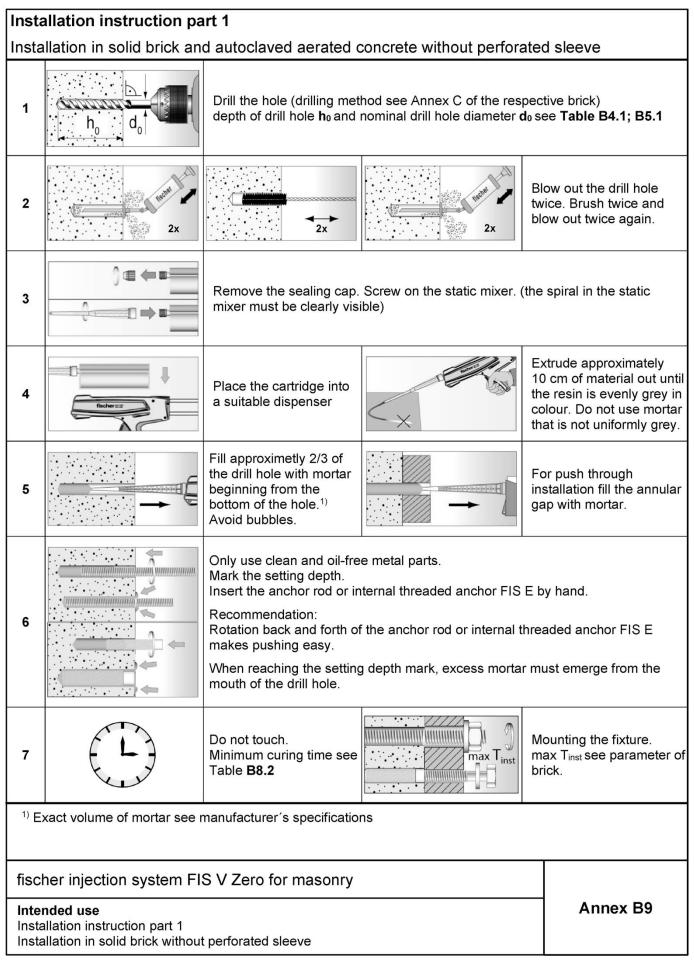

fischer injection system FIS V Zero for masonry

Intended use Specifications (part 2 continued) Annex B3

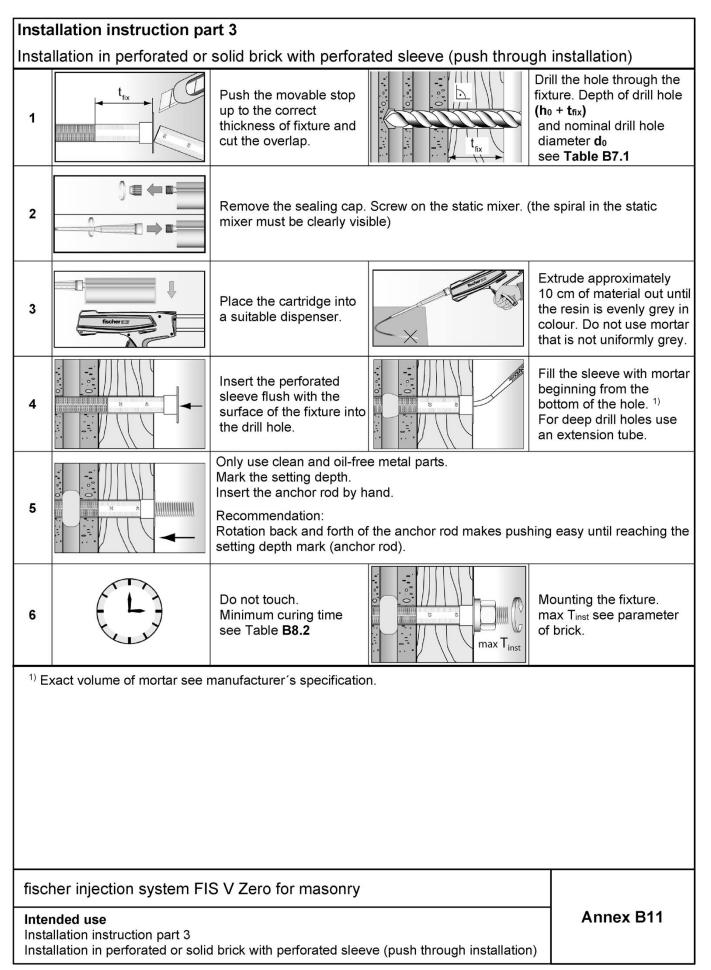




Page 16 of European Technical Assessment ETA-21/0267 of 14 November 2024



able B8.2: Maximum processi (During the curing may not fall below Temperature at anchoring base	in hold ing tir time the li two FIS V 6	low bricks mes and of the mo isted min occessing til ork	or solid brid minimum ortar the te imum tem	ks and auto curing tin emperatu	nes re of the a Minimum t _o	anchoring curing time	
Image: state of the state	in hold ing tir time the li two FIS V 6	low bricks mes and of the mo isted min occessing til ork	or solid brid minimum ortar the te imum tem	ks and auto curing tin emperatu	nes re of the a Minimum t _o	anchoring curing time	
(During the curing may not fall below Temperature at anchoring base [°C] -10 to -5 ¹⁾ > -5 to 0 ¹⁾	time the line um pro two FIS V 6	of the mo isted min ocessing til ork ' Zero	ortar the te imum tem	emperatu	re of the a Minimum t _c	curing time	base
$\begin{array}{c c} \hline remperature at \\ anchoring base \\ [°C] \\ \hline -10 to -5^{1)} \\ \hline > -5 to 0^{1)} \end{array}$	two FIS V 6	ork Zero			tc	cure	
$ \begin{bmatrix} ^{\circ}C \end{bmatrix} \\ \hline -10 \text{ to } -5^{1)} \\ \hline > -5 \text{ to } 0^{1)} $	6				FIS \		
> -5 to 0 ¹⁾		h		FIS V Zero			
	2	6 h			72 h		
> 0 to $5^{(1)}$	2 h 45 min				24	4 h	
	45 r	min			1:	2 h	
> 5 to 10	20 r					6 h	
> 10 to 15	8 min 5 min				3 h		
> 15 to 20					2 h		
> 20 to 25	3 min				h		
> 25 to 30	2 min 1 min					min	
> 30 to 40 ¹⁾ Minimum cartridge temperature +5°C	11	1111)			30	min	
					T	Figures r	not to so
fischer injection system FIS V Zer	o for	masonry	,				



	Illation instruction pa			
Insta	llation in perforated or	solid brick with perfora	ted sleeve (pre-position	ned installation)
1		Drill the hole (drilling method see Annex C of the respective brick). depth of drill hole h_0 and nominal drill hole diameter d_0 see Table B6.1	When install perforated sle solid areas of hollow brick blowing out and brushing.	
2		Remove the sealing cap. mixer must be clearly visi	Screw on the static mixer. (ble)	the spiral in the static
3	Fischer cz	Place the cartridge into a suitable dispenser.	×	Extrude approximately 10 cm of material out unti the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.
4		Insert the perforated sleeve flush with the surface of the masonry or plaster.		Fill the perforated sleeve completely with mortar beginning from the bottom of the hole. ¹⁾
5		Recommendation: Rotation back and forth o	he internal threaded anchor f the anchor rod or internal l reaching the setting depth	hreaded anchor FIS E
6		Do not touch. Minimum curing time see Table B8.2	max T _{inst}	Mounting the fixture. max T _{inst} see parameter of brick.
¹⁾ Ex	kact volume of mortar see r	nanufacturer's specification	n.	
Inter	ner injection system FI	S V Zero for masonry		Annex B10
	Illation instruction part 2 Illation in perforated or solic	brick with perforated sleev	ve (pre-positioned installatio	n)

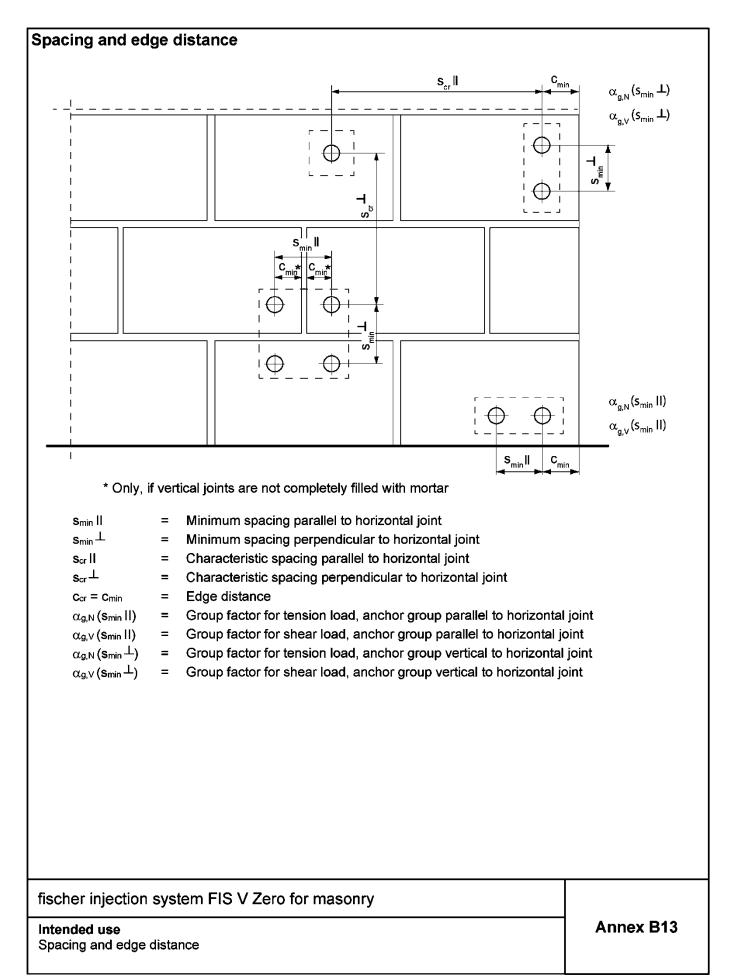


Table B12.1: Overview	v of assessed brick	S			
Kind of masonry	Brick format [mm]	Mean compressive strength [N/mm²]	Main country of origin	Mean gross dry density ρ [kg/dm³]	Annex
	So	lid brick Mz	-	-	
Solid brick Mz	≥ 230x108x55	36 - 48	Denmark	≥2,0	C4/C5
Solid calcium silicate	(sand - lime) brick KS	/ perforated calc	ium silicate (sa	nd - lime) brid	k KSL
Solid calcium silicate brick KS	NF ≥240x115x71	8- 20	Germany	≥2,0	C6/C7
Perforated calcium silicate brick KSL	3DF 240x175x113	8 - 16	Germany	≥1,6	C8 – C11
	Vertical p	erforated brick HL	z		
Vertical perforated brick HLz	230x108x55	6 - 16	Denmark	≥1,6	C12/C13
	Lightweight aggrega	ate concrete hollo	w block Hbl		
Lightweight aggregate concrete hollow block Hbl	500x200x200	2 - 4	France	≥1,0	C14/C15
	Autoclave	d aerated concret	e		
PP2 / AAC AAC PP4 / AAC PP6 / AAC	-	2 4 6	Germany	≥0,35 ≥0,5 ≥0,65	C16-C19
Vertical perforated brick HLz 2011+A1:201 according to Annex C8 Vertical perforated brick HLz 2011+A1:2015; e.g. Wienerberger according	15;; e.g. KS Wemding	Lightweight aggre 2011+A1:2015; e	egate concrete h .g. Sepa accord		
				Figure	s not to scale
fischer injection system Intended use Overview of assessed bricks Overview dimensions of perf	ŝ			Anno	ex B12
68.24					8.06.04-69/24

bacing and edge distance (continuation)	
For $s \ge s_{cr}$ $\alpha_g = 2$	
For $s_{min} \le s < s_{cr}$ α_g according to installation parameters of brick Annex C	
Group of 2 anchors	
$N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}; V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} \cdot V_{Rk}$	
Group of 4 anchors	
$N^{g}_{Rk} = \alpha_{g,N} (S_{min}II) \bullet \alpha_{g,N} (S_{min}L) \bullet N_{Rk};$	
$V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} (SminII) \bullet \alpha_{g,V} (Smin^{\perp}) \bullet V_{Rk}$	
with N _{Rk} and $\alpha_{g,N}$ depending on s _{min} II or s _{min} \perp acc. to Annex C	
with V _{Rk} and $\alpha_{g,V}$ depending on sminII or smin $oldsymbol{\perp}$ acc. to Annex C	
scher injection system FIS V Zero for masonry	

Annex B14

Anch	or rod / standard	threaded r	od		M8 ³⁾	M10 ³⁾	M12	M16
Chara	acteristic resistar	nce to steel	failure u	under	tension loadi	ng		
			4.6		15(13)	23(21)	33	63
s, s	Steel zinc plated		4.8		15(13)	23(21)	33	63
Stic N _{RK}	Steel Zille plated		5.8		19(17)	29(27)	43	79
cteri		Property	8.8	KN]	29(27)	47(43)	68	126
Characteristic esistance N _{Rk,s}	Stainless steel R and	class	50		19	29	43	79
ပန္စ	High corrosion resistant steel		70		26	41	59	110
	HCR		80		30	47	68	126
'artia	al factors 1)	1						
			4.6			2,0		
S	Steel zinc plated		4.8			1,5		
ctor			5.8			1,5		
al fac _{YMs,N}	Stainless steel R	Property	8.8	[-]		1,5		
Partial factors Y ^{Ms,N}	and	Class	50			2,8		
ш	High corrosion resistant steel		70			1,50 ²⁾	/ 1,87	
²⁾ O ³⁾ Va	HCR absence of other r nly for fischer anch alues in brackets a andard threaded ro	nor rod FIS A re valid for u	A made o undersize	ed thre	aded rods with	n smaller stress a		t dip galvanised
²⁾ O ³⁾ Va	absence of other in a second s	nor rod FIS A re valid for u	ulations A made o undersize	ed thre	aded rods with	stant steel HCR n smaller stress a		t dip galvanised

8.06.04-69/24

Table C2.1:Characteristic resistance to steel failure of a single anchor under shearIoading with and without lever arm of fischer anchor rods and standardthreaded rods

Anch	or rod / standard	threaded ro	bd		M8 ³⁾	M10 ³⁾	M12	M16
Char	acteristic resistar	nce to steel	failure	unde	r shear loading	9		-
withc	out lever arm							
			4.6		9(8)	14(13)	20	38
s, o	Steel zinc plated		4.8		9(8)	14(13)	20	38
Stic V _{Rk}	Steel Zille plated		5.8		11(10)	17(16)	25	47
cter		Property	8.8	[kN]	15(13)	23(21)	34	63
Characteristic esistance V _{Rk,s}	Stainless steel R and	class	50		9	15	21	39
CI Les	High corrosion resistant steel		70		13	20	30	55
	HCR		80		15	23	34	63
with	ever arm	1						
ce			4.6		15(13)	30(27)	52	133
stan	Steel zinc plated		4.8		15(13)	30(27)	52	133
esie			5.8		19(16)	37(33)	65	166
ristic re M ⁰ _{Rk,s}		Property	8.8	[Nm]	30(26)	60(53)	105	266
terist M ^o	Stainless steel R and	class	50		19	37	65	166
Characteristic resistance M ⁰ _{Rk,s}	High corrosion resistant steel		70		26	52	92	232
ů Ú	HCR		80		30	60	105	266
Partia	al factors 1)	1						
			4.6			1,6	122	
<i>(</i> 0	Steel zinc plated		4.8			1,2		
stor			5.8			1,2		
al fac Y _{Ms,V}		Property	8.8	[-]		1,2	25	
Partial factors	Stainless steel R and	class	50			2,3	38	
Ъ,	High corrosion resistant steel		70			1,25 ²⁾	/ 1,56	
	HCR		80			1,3	33	

¹⁾ In absence of other national regulations

²⁾ Only for fischer anchor rod FIS A made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods (M8 resp. M10) according to EN ISO 10684:2004+AC:2009.

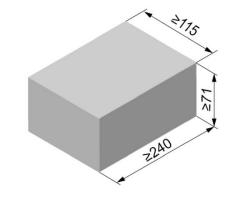
fischer injection system FIS V Zero for masonry

Performances

Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm of fischer anchor rods and standard threaded rods

Annex C2

Table C3.1:					to steel failure of al threaded ancho		under tension /
fischer interna	l thread	ed anchor	FIS E		M8	M10	M12
Characteristic	resistar	nce to steel	failure	unde	er tension loading	- -	
Characteristic		Property class	5.8	71 N 13	18	29	42
resistance with screw	NRk,s	Property class 70	R HCR	[kN]	26 26	41 41	59 59
Partial factors	1)						0.200
		Property class	5.8			1,50	
Partial factors	γMs,N	Property class 70	R HCR	[-]		1,87 1,87	
Characteristic	resistar			unde	er shear loading	1,07	
without lever a							
Characteristic		Property class	5.8	TI-N 13	9	15	21
resistance with screw	VRk,s	Property	R	[kN]	13	20	30
		class 70	HCR		13	20	30
with lever arm							
Characteristic	M ⁰ Rk,s	Property class	5.8	[Nm]	19	37	65
resistance	IVI RK,S	Property	R		26	52	92
		class 70	HCR		26	52	92
Partial factors	1)	Property class	5.8			1,25	
Partial factors	γMs,V	Property	R	[-]		1,56	
		class 70	HCR			1,56	
¹⁾ In absence o	o otner i	nauonai reg	uiations	,			
fischer inject	ion sys	tem FIS \	/ Zero	for r	nasonry		
Performances Characteristic r loading of inter	resistanc				gle anchor under tensi	ion / shear	Annex C3


Solid brick	« Mz, EN 77	'1-1:	2011-	+A1:2	015									
			108				Solid	brick N	lz, EN	771-1: 2	2011	+A1:201	5	
			108		Proc	ducer				e	e.g. '	Wienerbe	erger	
			X		Nor	ainal di	mensio	ons [m		length	L	width W	hei	ght H
					NON	inai ui	mensic	nis [n	miil	≥ 230		≥ 108	≥	55
			≥55			n gros density		[kg	/dm³]			≥ 2,0		
		2230			com	malised pressiv ngth	d mean ve		mm²]			36 / 48		
	\checkmark					ndard				EN 7	771-	1: 2011+	A1:20	15
									1					
Table C4.1	I: Installa	ation												
Anchor rod			N	18	M	10	M	12	Μ	16		-		-
Internal thre FIS E	eaded anchor	•	Ð	-		-				-		M8 1x85	M10 15	M12 x85
Anchor rod	and internal	thread	ded an	chor F	IS E wi	ithout	perfor	ated sl	eeve					
Effective anchorage d	epth h _{ef}	[mm]	50	80	50	80	50	80	50	80		8	5	
Max. installa torque	tion max T _{inst}	[Nm]				1	0					10	D	
General inst	tallation para	meter	S											
Edge distanc	$ce c_{min} = c_{cr}$							10	00					
	s _{min} II							10	00					
Spacing	s _{cr} II	[mm]						3 x	h _{ef}					
Spacing	S _{min} ⊥							10	00					
	S cr⊥							3 x	h _{ef}					
Drilling met	hod													
Hole drilling	with rotary dril	l mode	e or ha	mmer o	drilling	with ha	rd met	al hamı	mer dr	ill				
Table C4.2	2: Group	facto	ors											
Anchor rods	6		N	18	M	10	М	12	M	16		-		-
	aded anchor											M8	M10	M12
FIS E				-				-1.		-	1	1x85	15	x85
	$lpha_{ extsf{g}, extsf{N}}$ (s _{min} II)							1,	81					
Group	α _{g,V} (s _{min} II)	1						1,	49					
factors	α _{g,N} (S _{min} ⊥)	[-]						1,	74					
	α _{g,V} (S _{min} ⊥)	1						1,4	49					
		1	I											
fischer inje	ection syste	m FI	S V Z	ero foi	r maso	onry					Τ			
Performand Solid brick M	c es Mz, dimension	s, inst	allation	ı param	neters							Ann	ex C4	4

κ = Ν _{Rk,p} f _b ; (tem) 50 2,5	= N _{Rk,b} peratur		10	M					
f ь; (tem) 50	peratur				12	М	16	-	-
f ь; (tem) 50	peratur		-		-			M8	M10 M12
f ь; (tem) 50	peratur							11x85	15x85
50					depend	ding on	the no	rmalised mea	n
		orung			anchora	ige dept	h h _{ef} [m	m]	
	80	50	80	50	80	50	80		85
2,5									
3,0	3,0 3,5	3,0 3,5	3,0 3,5	3,0 3,5	3,0 3,5	3,0 3,5	4,5 5,0		2,5 3,0
				· ·		· ·		rmalised mea	<i></i>
	1	ĩ	Ef	fective a	anchora	ge dept	h h _{ef} [m	m]	
50	80	50	80	50	80	50	80		85
1,5	2,0	2,0	2,0	2,0	2,0	2,0	3,5	· · · · · · · · · · · · · · · · · · ·	1,5
1,5	2,5	2,5	2,5	2,5	2,5	2,5	4,0		1,5
M	8	В Л							
1		111	10	М	12	М	16	-	-
	•		10 -	М	12 -	M	16	M8	M10 M12
V _{Rk,b} = Y			-		-		-	M8 11x85	M10 M12 15x85
V _{Rk,b} = V	- V _{Rk,c,II} =	V _{Rk,c,⊥}	- [kN] de 80°C an	pendin d 72/12	- ig on th 20°C)	e norm	alised	M8 11x85 mean compre	M10 M12 15x85
V _{Rk,b} = V re range	- V _{Rk,c,II} =	V _{Rk,c,⊥}	- [kN] de 80°C an	pendin d 72/12	- ig on th 20°C)		alised	M8 11x85 mean compre	M10 M12 15x85
V _{Rk,b} = V re range 50	- V _{Rk,c,II} =	V _{Rk,c,⊥}	- [kN] de 80°C an	pendin d 72/12	- ig on th 20°C)	e norm	alised	M8 11x85 mean compre m]	M10 M12 15x85
re rang	- V _{Rk,c,II} = e 24/40	V _{Rk,c,⊥} °C, 50/8	- [kN] de 80°C an Ef	pendin d 72/12 fective a	- ig on th 20°C) anchora	ne norm	- alised i h h _{ef} [m	M8 11x85 mean compre m]	M10 M12 15x85 essive
	50 1,5 1,5 racteris	50 80 1,5 2,0 1,5 2,5	50 80 50 1,5 2,0 2,0 1,5 2,5 2,5	Ef Ef 50 80 50 80 1,5 2,0 2,0 2,0 1,5 2,5 2,5 2,5	Effective a 50 80 50 80 50 1,5 2,0 2,0 2,0 2,0 2,0 1,5 2,5 2,5 2,5 2,5 2,5	Effective anchora 50 80 50 80 50 80 1,5 2,0 2,0 2,0 2,0 2,0 2,0 1,5 2,5 2,5 2,5 2,5 2,5 2,5 racteristic resistance to local brick failute 1000000000000000000000000000000000000	50 80 50 80 50 80 50 1,5 2,0 2,0 2,0 2,0 2,0 2,0 1,0 1,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 racteristic resistance to local brick failure or brick 10 10 10 10 10	Effective anchorage depth h _{ef} [m 50 80 50 80 50 80 50 80 1,5 2,0 2,0 2,0 2,0 2,0 2,0 3,5 1,5 2,5 2,5 2,5 2,5 2,5 4,0	Effective anchorage depth h _{ef} [mm] 50 80 50 80 50 80 50 80 1,5 2,0 2,0 2,0 2,0 2,0 3,5 7 1,5 2,5 2,5 2,5 2,5 2,5 4,0 7

Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2: 2011+A1:2015

Solid calci NF,		te (sand-lin 2: 2011+A1		S,
Producer				
Nominal dimensions	[mm]	length L	width W	height H
	[mm]	≥ 240	≥ 115	≥ 71
Mean gross dry density	[kg/dm³]		≥ 2,0	
Normalised mean compressive strength	[N/mm ²]		12 / 16 / 20	
Standard		EN 771	I-2: 2011+A	1:2015

Table C6.1: Installation parameters

			N	18	M	10	м	12	M	16	-2	-	
Internal threade	ed anchor	.		-		_		-		-	M8	M10	M12
FIS E											11x85	15>	(85
Anchor rod and	internal	thread	led an	chor F	IS E w	ithout	perfor	ated sl	eeve				
Effective anchorage depth	h _{ef}	[mm]	50	80	50	80	50	80	50	80	85	8	5
Max. installation torque	max T _{inst}	[Nm]	8	3			1	0			8	1	0
General installa	ation para	meter	s										
Edge distance	$c_{min} = c_{cr}$							1(00				
<u></u>	s _{min} II							1(00				
Spacing —	s _{cr} II	[mm]							h _{ef}				
	$s_{\sf min} oldsymbol{oldsymbol{\bot}}$							1(00				
	S _{cr} ⊥							3 x	h _{ef}				
Drilling method	l												
Hole drilling with	rotary dril	I mode	e or ha	mmer	drilling	with ho	rd mot	al ham	man dri				
					arining	with ha	ind met	arnam	meran	11			
Table C6.2:	Group				anning	with he	iru met		meran	11			
Table C6.2: Anchor rod			ors	Л8		with he		ar nam 12		16	-		-
Anchor rod Internal threade	Group	facto	ors								- M8	M10	- M12
Anchor rod Internal threade	Group	facto	ors										- M12 x85
Anchor rod Internal threade FIS E	Group	facto	ors					12			M8		
Anchor rod Internal threade FIS E 	Group ed anchor	facto	ors					1 12 - 1,	M		M8		
Anchor rod Internal threade FIS E	Group ed anchor a _{g,N} (s _{min} II)	facto	ors					1 12 - 1, 1,	M 67		M8		
Anchor rod Internal threade FIS E Group factors	Group ed anchor a _{g,N} (s _{min} II) a _{g,V} (s _{min} II)	facto	ors					112 - 1, 1, 1,	M 67 26		M8		
Anchor rod Internal threade FIS E Group factors	Group ed anchor a _{g,N} (smin II) a _{g,V} (smin II) a _{g,N} (smin ⊥)	facto	ors					112 - 1, 1, 1,	M 67 26 67		M8		
Anchor rod Internal threade FIS E Group factors	Group ed anchor a _{g,N} (smin II) a _{g,V} (smin II) a _{g,N} (smin ⊥)	facto	ors					112 - 1, 1, 1,	M 67 26 67		M8		
Anchor rod Internal threade FIS E Group factors	Group ed anchor a _{g,N} (smin II) a _{g,V} (smin II) a _{g,N} (smin ⊥) a _{g,V} (smin ⊥)	facto	rs N	Л8 -	M	-		112 - 1, 1, 1,	M 67 26 67		M8		

Anchor rod		18	54	10		12	5.0	16			
Internal threaded		10	IVI	10	IVI	12	IVI	10	- M8	M10	- M12
anchor FIS E		-	ĝ	-		-		•	11x85	120102/014011-0011	(85
Tension resistance N _R compressive strength						depend	ding on	the no	rmalised mea	in	
Normalised mean			20	Ef	fective a	anchora	ge dept	h h _{ef} [m	m]	25	
compressive strength f ь	50	80	50	80	50	80	50	80	85	8	5
12 N/mm ²	2,0	2,0	2,5	4,5	2,0	4,5	2,0	2,0		2,0	
16 N/mm ²	2,5	2,5	2,5	5,0	2,5	5,0	2,5	2,5		2,5	
20 N/mm ²	2,5	3,0	3,0	6,0	2,5	6,0	2,5	3,0		2,5	
Tension resistance N _R compressive strength								the no	rmalised mea	in	
Normalised mean				Ef	fective	anchora	ge dept	h h _{ef} [m	m]	-	
compressive strength f ь	50	80	50	80	50	80	50	80	85	8	5
12 N/mm ²	1,5	1,5	1,5	3,0	1,5	3,0	1,5	1,5		1,5	
16 N/mm ²	1,5	1,5	2,0	3,5	1,5	3,5	1,5	1,5		1,5	
20 N/mm ²	2,0	2,0	2,0	4,0	2,0	4,0	2,0	2,0	:	2,0	
	iracteris				ocal bri	ck failu	ure or I	orick e	dge failure o	of a sin	gle
A		/18	M	10	м	12	M	16	-		-
Anchor rod											
Internal threaded						_			M8	M10	Μ

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,\parallel} = V_{Rk,c,\perp}$ [kN] depending on the normalised mean compressi strength f_b; (temperature range 24/40°C, 50/80°C and 72/120°C)

Normalised mean				Ef	fective	anchora	ge dep	th h _{ef} [m	m]	
compressive strength f ь	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	3,5	3,5	4,5	4,5	3,5	4,0	3,5	4,0	3,5	3,5
16 N/mm ²	4,0	4,0	5,0	5,0	4,0	4,5	4,0	4,5	4,0	4,0
20 N/mm ²	4,5	4,5	6,0	6,0	4,5	5,0	4,5	5,0	4,5	4,5

Factor for job site tests see annex C20 and displacements see annex C21

fischer injection system FIS V Zero for masonry

Performances

Solid calcium silicate (sand-lime) brick KS, NF, Characteristic resistance under tension and shear loading

Annex C7

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2: 2011+A1:2015 Perforated calcium silicate (sand-lime) brick KSL, 3DF. EN 771-2: 2011+A1:2015 Producer e.g. KS Wemding length L width W height H Nominal dimensions [mm] 240 175 113 Mean gross [kg/dm³] ≥ 1.6 dry density p Normalised mean [N/mm²] 6/8/10/12/16 compressive strength 240 Standard EN 771-2: 2011+A1:2015 4 **Dimensions** see 4 also Annex B12 30 45 12 12 Table C8.1: Installation parameters (Pre-positioned installation with perforated sleeve FIS H K) M8 M10 M8 M10 M12 M16 M12 M16 Anchor rod **M8 M**8 -M10 M12 **M8** Internal threaded anchor FIS E 11x85 15x85 Perforated sleeve FIS H K 12x50 12x85 16x85 20x130 16x130 20x85 Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K Max. installation max Tinst [Nm] 8 8 8 8 10 8 10 10 torque General installation parameters $C_{min} = C_{cr}$ Edge distance 100 100 Smin II s_{cr} II [mm] 240 Spacing 100 S_{min}⊥ $s_{cr} \perp$ 115 **Drilling method** Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill Table C8.2: Group factors M12 M16 M12 M16 M8 M10 M8 M10 Anchor rod M8 **M**8 _ M10 M12 **M8** Internal threaded anchor FIS E 11x85 15x85 Perforated sleeve FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 1,14 α_{g,N} (s_{min} II) Group αg,v (Smin II) 1,51 [-] factors $\alpha_{\text{g,N}}$ (s_{min} \perp) 1,14 1,54 $\alpha_{g,V}$ (Smin \perp) fischer injection system FIS V Zero for masonry Annex C8 Performances Perforated calcium silicate (sand-lime) brick KSL, 3DF, dimensions, installation parameters

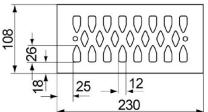
Perforated ca	alcium sili	cate (s	sand-lime) bri	ck KSL, 3DF, EN	N 771-2: 2011+A1:2015	
Table C9.1:	Installation (Push th			h perforated slee	eve FIS H K)	
Anchor rod			M10	M12	M16	
Perforated slee	eve FIS H K		18x13	0/200	22x130/200	
Anchor rod wit	T	sleeve	FIS H K			
Max. installation torque				1	0	
General install		eters				
Edge distance	$C_{min} = C_{cr}$				00	
	Smin II				00	
Spacing	s _{cr} II [n	nmj			40	
	S _{min} ⊥				00 15	
Drilling method	Scr⊥			1	15	
1 (1 77)		node or	hammer drilling v	vith hard metal ham	mer drill	
	Trotary unit fr		nammer unimig w			
Table C9.2:	Group fa	actors				
Anchor rod			M10	M12	M16	
Perforated slee	eve FIS H K		18x13	0/200	22x130/200	
	α _{g,N} (s _{min} II)			1,	14	
	α _{g,V} (s _{min} II)	[-] —		1,	51	
factors	α _{g,N} (S min ⊥)	· ·			14	
	Ջց,∨ (S min ⊥)			1,	54	
fischer inject	ion system	FIS V	Zero for maso	nry		
Performances				F, dimensions, insta	Ilation Annex C9	

Table C10.1: Characteris single anch			oull-out fa loading (
Anchor rod	M8	M8	-	M8 M10	M8 M10	-	M12 M16	M12 M1
Internal threaded	-	_	M8	_		M10 M12	_	-
anchor FIS E			11x85			15x85		
Perforated sleeve FIS H K	12x50	12x85	162		16x130		(85	20x130
Tension resistance N _{Rk} = N _{Rk,p} compressive strength f _b ; (temp				epending	on the no	ormalised	mean	
Norm. mean compressive strength f_b			,					
6 N/mm ²	1	.2	0	9	2,0	0	.9	2,0
8 N/mm ²		,5	1		2,5		2	2,5
10 N/mm ²		5	1		3,0		,5	3,0
12 N/mm ²	2	,0	1	5	3,5	1	,5	3,5
16 N/mm ²	2		2		4,5		,0	4,5
Tension resistance N _{Rk} = N _{Rk,p}					on the no	ormalised	mean	
compressive strength f _b ; (temp Norm. mean compressive strength f _b	berature ra	inge 50/80		2/120-0)				
6 N/mm ²	0	6	0,	75	1,5	0	75	1,5
8 N/mm ²		. 0 75	0.		2,0		,9	2,0
10 N/mm ²	0,		0		2,0		,9 ,9	2,5
12 N/mm ²	0			2	2,5		,3	2,5
16 N/mm ²		.2		5	3,5		, <u>2</u> ,5	3,5
Anchor rod	M		M	12			16	
Perforated sleeve FIS H K Tension resistance N _{Rk} = N _{Rk,p}			30/200	onondina	on the no		0/200 moan	
compressive strength f _b ; (temp				epenang	on the ne	manoca	mean	
Norm. mean compressive strength $\mathbf{f}_{\mathbf{b}}$								
6 N/mm ²				2	.0			
8 N/mm ²				2	,5			
10 N/mm ²				3	,0			
12 N/mm ²				3	,5			
16 N/mm ²				4				
Tension resistance N _{Rk} = N _{Rk,p} compressive strength f _b ; (temp					on the no	ormalised	mean	
Norm. mean compressive strength \mathbf{f}_{b}								
6 N/mm ²				1	,5			
8 N/mm ²				2	,0			
10 N/mm ²				2	,5			
12 N/mm ²				2	,5			
16 N/mm ²					,5			
Factor for job site tests see an	nex C20 a	nd displac	ements se	e annex C	21			
fischer injection system FI	S V Zero	for mase	onry					
Performances							Annex	C10

Internal threaded anchor FIS E Perforated sleeve FIS H K	6	M8	-	M8 M10	M8 M10	-	M12 M16	6 M12 M1
	-	-	M8 11x85	-	-	M10 M12 15x85	-	-
	12x50	12x85	16:	x85	16x130	20)	k85	20x130
Shear resistance V _{Rk} = V _{Rk,t} strength f _b ; (temperature ra					ormalised	mean cor	npressiv	e
Normalised mean compress strength f ь	ive							
6 N/mm ²	1	,5		2,0			3,0	
8 N/mm ²	2	,0		2,5			3,5	
10 N/mm ²	2	,5		3,0			4,5	
12 N/mm ²	2	,5		3,5			5,0	
16 N/mm ²	3	,5		4,0			6,5	
anchor u	under shear		(Push thr)	16	
	under shear	loading (10	(Push thr	ough ins) M		
anchor u Anchor rod Perforated sleeve FIS H K Shear resistance V _{Rk} = V _{Rk,t}	b = V _{Rk,c,II} = V _R	loading (10 18x13 _{k,c,⊥} [kN] d	(Push thr M 30/200 lepending	ough ins	tallation)) 	16 80/200	e
anchor u Anchor rod Perforated sleeve FIS H K Shear resistance Vռk = Vռk,t strength fь; (temperature ra	b = V _{Rk,c,II} = V _R ange 24/40°C,	loading (10 18x13 _{k,c,⊥} [kN] d	(Push thr M 30/200 lepending	ough ins	tallation)) 	16 80/200	e
Anchor rod Perforated sleeve FIS H K Shear resistance V _{Rk} = V _{Rk,t} strength f _b ; (temperature ra Normalised mean compress strength f _b	b = V _{Rk,c,II} = V _R ange 24/40°C,	loading (10 18x13 _{k,c,⊥} [kN] d	(Push thr M 30/200 lepending	ough ins	tallation)) 	16 80/200	e
anchor u Anchor rod Perforated sleeve FIS H K Shear resistance V _{Rk} = V _{Rk,t} Strength f _b ; (temperature ra Normalised mean compress strength f _b 6 N/mm ²	b = V _{Rk,c,II} = V _R ange 24/40°C,	loading (10 18x13 ,,c,⊥ [kN] d , 50/80°C a	(Push thr 0/200 lepending and 72/120	ough ins	tallation)	M 22x13 mean cor	16 60/200 npressiv ,0	e
Anchor rod Perforated sleeve FIS H K Shear resistance V _{Rk} = V _{Rk,t} strength f _b ; (temperature ra Normalised mean compress strength f _b 6 N/mm ² 8 N/mm ²	b = V _{Rk,c,II} = V _R ange 24/40°C,	loading (10 18x13 k,c,⊥ [kN] d 50/80°C a 2 2	(Push thr M 30/200 lepending and 72/120 ,0	ough ins	tallation)	M 22x13 mean cor 3 3	16 30/200 mpressiv ,0	e
anchor u Anchor rod Perforated sleeve FIS H K Shear resistance V_{Rk} = $V_{Rk,t}$ Strength f _b ; (temperature rationalised mean compress strength f _b 6 N/mm ² 8 N/mm ² 10 N/mm ²	b = V _{Rk,c,II} = V _R ange 24/40°C,	loading (10 18x13 k,c,⊥ [kN] d 50/80°C a 2 2 3	(Push thr 0/200 lepending and 72/120 ,0 ,5 ,0	ough ins	tallation)) <u>22x13</u> mean cor 3 3 4	16 60/200 npressiv ,0 ,5 ,5	e
Anchor rod Perforated sleeve FIS H K Shear resistance V _{Rk} = V _{Rk,t} strength f _b ; (temperature ra Normalised mean compress strength f _b 6 N/mm ² 8 N/mm ²	b = V _{Rk,c,II} = V _R ange 24/40°C,	loading (10 18x13 k,c,⊥ [kN] d 50/80°C a 2 2 3 3	(Push thr M 30/200 lepending and 72/120 ,0	ough ins	tallation)	M 22x13 mean cor 3 3 4 5	16 30/200 mpressiv ,0	e

Performances

Perforated calcium silicate (sand-lime) brick KSL, 3DF, Characteristic resistance under shear loading


Annex C11

Vertical perforated brick HLz, EN 771-1: 2011+A1:2015

108	Proc
	Non
	Mea
5	dry
10	Nor
	com
	Star
230	

Vertical perforate	d brick H	Lz, EN 77 [.]	1-1: 2011+ <i>A</i>	1:2015		
Producer		e.g. Wienerberger.				
Nominal dimensions	Imml	length L	width W	height H		
nominal dimensions	[mm]	230	108	55		
Mean gross dry density ρ	[kg/dm ³]		≥ 1,6			
Normalised mean compressive strength	[N/mm ²]	8 / 10 / 12 / 16				
Standard		EN 77	1-1: 2011+/	1:2015		

Dimensions see also Annex B12

Table C12.1: Installation parameters

	motane		Jaramett	15	F						
Anchor rod			M8	M8	-	M8 M10	M8	M10	-	M12 M16	M12 M16
Internal threade	ed				M8				M10 M12		
anchor FIS E			-	-	11x85	-		-	15x85	-	-
Perforated slee	ve FIS H k	<	12x50	12x85	16:	x85	16>	(130	20:	x85	20x130
Anchor rod and	internal t	thread	led ancho	r FIS E wi	ith perfora	ated sleev	/e FIS	знк			
Max. installation torque	max T _{inst}	[Nm]					5				
General installa	tion para	meter	S								
Edge distance	$c_{min} = c_{cr}$					1	00				
	s _{min} II					1	00				
Spacing	s _{cr} II	[mm]	-			2	30				
Spacing	${\sf s}_{\sf min} oldsymbol{oldsymbol{oldsymbol{eta}}}$					(60				
	$s_{cr} \perp$					(60				
Drilling method											
Hole drilling with	rotary dril	l mode	or hamme	er drilling v	with hard i	metal ham	mer o	drill			
Table C12.2:	Group	facto			1						
Anchor rod			M8	M8	-	M8 M10	M8	M10		M12 M16	M12 M16
Internal threade anchor FIS E	ed		-	-	M8	-		-	M10 M12	-	-
	= = = = = = = = = = = = = = = = = = = =				11x85				15x85		
Perforated slee			12x50	12x85	16	x85		130	202	x85	20x130
2	_{.g,N} (S _{min} II)	1 1					,65				
	.g,∨ (S _{min} II)	[-]	-				,64				
	g,N (S min 上)						,65				
α	g,∨ (S min ⊥)		-			2	,00				
fischer injecti	on syste	m FIS	S V Zero	for maso	onry						
Performances Vertical perforat	ed brick H	ILz, dir	mensions,	installatio	n paramet	ers				Annex	C12

	racteristic le anchor				OF DRICK K	reakout t	allure of a	3
Anchor rod	M8	M8	-	M8 M10	M8 M10	-	M12 M16	M12 M16
Internal threaded			M8			M10 M12		
anchor FIS E	-	-	11x85	-		15x85	-	-
Perforated sleeve FIS H K	12x50	12x85	16:	x85	16x130	20	x85	20x130
Tension resistance N _{Rk} compressive strength f				kN] depend	ling on the	normalise	ed mean	
Normalised mean compressive strength f ь								
8 N/mm ²	1,2	1,5	1	,5	2,5	1	,5	2,5
10 N/mm ²	1,2	2,0	2,0		2,5	2	,0	2,5
12 N/mm ²	1,5	2,0	2	,0	3,0	2	,0	3,0
16 N/mm ²	1,5	2,5	2	,5	3,5	2	,5	3,5
Tension resistance N _{Rk} compressive strength f	$c = N_{Rk,p} = N_{fh}$	$R_{k,b} = \mathbf{N}_{Rk,p}$	$_{c} = N_{Rk,b,c}$ [$_{c} = 50/80^{\circ}C$ a	kN] depend and 72/120°	ling on the	normalise	ed mean	
Normalised mean		iture range	50/00 C a		0)			
compressive								
strength f ₀								
8 N/mm ²	0,6	1,2		,2	1,5		,2	1,5
10 N/mm ²	0,75	1,2		,2 	2,0		,2 	2,0
12 N/mm ² 16 N/mm ²	0,75 0,9	1,5 1,5		,5 ,5	2,0 2,5		,5 ,5	2,0 2,5
	0,0	1,0	I.	,0	2,0	·	,0	2,0
	racteristic nor under s			brick failu	ure or bric	k edge fa	ilure of a	single
Anchor rod	M8	M8	-	M8 M10	M8 M10	-	M12 M16	M12 M1
Internal threaded anchor FIS E	-	-	M8 11x85	-	-	M10 M12 15x85	-)	-
Perforated sleeve FIS H K	12x50	12x85	16:	x85	16x130	20	x85	20x130
Shear resistance V _{Rk} =	$V_{Rk,b} = V_{Rk,c}$.,II = V _{Rk,c,⊥}	[kN] deper	nding on th	e normalis	ed mean o	ompressiv	e
strength f _b : (temperatu								
strength f _b ; (temperatu Normalised mean compressive strength f _b								
Normalised mean	2,0	3,5	2	,5	3,5	2	,5	3,5
Normalised mean compressive strength f ь	2,0 2,0	3,5 4,0		,5 ,0	3,5 4,0		,5 ,0	3,5 4,0
Normalised mean compressive strength f _b 8 N/mm ²	200 - 100 -		3			3	10 10	10 10 00 000
Normalised mean compressive strength f _b 8 N/mm ² 10 N/mm ²	2,0	4,0	3	,0	4,0	3	,0	4,0
Normalised mean compressive strength f _b 8 N/mm ² 10 N/mm ² 12 N/mm ²	2,0 2,0 2,5	4,0 4,0 5,0	3 3 3	,0 ,0 ,5	4,0 4,5 5,0	3	,0 ,0	4,0 4,5

Lightweight a	ggregat	e coi	ncrete ho	ollow	v bloc	k Hb	I,E	N 77	1-3: 2	2011+A1:	2015	
			200	ſ	L	ightw	eight	aggr EN 7	egate 771-3:	concrete h 2011+A1:2	ollow bloo 015	k Hbl,
				>	Produc	er					e.g. Sep	a
					Nomina	al dim	ensio	ns [r	nm]	length L	width W	height l
		>						[.]	500	200	200
	>		000		Mean g dry der			[kg/dm ³]	≥ 1,0	
					Norma compre			gth [[]	N/mm ²	1	2/4	
				ļ	Standa	ird				EN 77	71-1: 2011+	A1:2015
500					200	9 9 9 16					Dimensio Annex B	ons see als 12
Table C14.1:	Installa	tion	paramete	rs	-	132		500)	•		
Anchor rod			-	M8	M10	M8	M10	M10	M12	-	M12 M10	6 M12 M
Internal threade	d		M8							M10 M12		
anchor FIS E			11x85		-					15x85		-
Perforated sleev			1.000 M/A	x85	16x130 18x130/200			20x85 20x1				
Anchor rod and	internal t	hread	led anchor	FIS I	E with	perfo	rated	sleev	ve FIS	нк		
Max. installation torque	max T _{inst}	-							2			
General installa	-	neter	S									
Edge distance	$C_{min} = C_{cr}$								00			
1-	S _{min} II	[mm]	-						00			
Spacing -		[]							00			
-	S _{min} ⊥ S _{cr} ⊥								200			
Drilling method			-									
Hole drilling with	rotary drill	mode	e or hamme	r drill	ing with	n hard	meta	l ham	imer dr	ill		
Table C14.2:	Group	facto	ors									
Anchor rod			-	M8	M10	M8	M10	M10	M12	-	M12 M10	6 M12 M
Internal threade	d		M8		-		_		<u></u>	M10 M12		_
anchor FIS E			11x85		87 7					15x85		
Perforated sleev	/e FIS H K		16)	x85		16x	130		30/200	20	x85	20x13
	_{g,N} (S _{min} II)								,00			
Service and servic	_{g,V} (S _{min} Ⅱ)	[-]							,28			
	g,N (S min⊥)								,40			
α	g,∨ (S min ⊥)							2	,00			
fischer injection Performances Lightweight aggi	-		and attent on the s	2 G. 155 A		-	, insta	allatio	n para	meters	Anne	ex C14
1												

Lightweight aggreg Table C15.1: Char	ate concr e acteristic r											а	
singl	e anchor u	nder	tensic	on loa	ding								
Anchor rod	-	M8	M10	M8	M10	M10	M12		-	M12	M16	M12	M16
Internal threaded	M8		_		-		-	M10	M12		-		_
anchor FIS E	11x85							15	x85				_
Perforated sleeve FIS H K		x85			(130		0/200			x85		20x	130
Tension resistance N _{Rk} compressive strength f						lepend	ling o	n the I	norma	lised ı	nean		
Normalised mean													
compressive strength f ь													
2 N/mm ²		0,4 0,6											
4 N/mm ²		0,5 0,75											
Tension resistance N _{Rk} compressivestrength ft	$= N_{Rk,p} = N_{Rl}$	_{k,b} = N Jre rai	_{Rk,p,c} =	N _{Rk,b,c} /80°C	[kN] c and 72	lepenc 2/120°0	ling o	n the I	norma	lised ı	nean		
Normalised mean	,, (.90 00				- /						
compressive													
strength f _b 2 N/mm²						2						0	F
4 N/mm ²						,3 ,4							,5 ,6
	acteristic r or under s	hear			al bric				-	e failu M12			
Construction and the second method of the second second	- M8	M8		IVIO	INTU	M10	WITZ	M10	- M12	IVI12	IVI16	IVI12	IVITO
Internal threaded anchor FIS E	11x85	1	-		-		-		x85	-	-		-
Perforated sleeve FIS H K		x85		16>	(130	18x13	0/200			x85		20x	(130
Shear resistance $V_{Rk} = V_{Rk}$ strength f _b ; (temperatu							e norr	nalise	d mea	in con	press	ive	
Normalised mean compressive strength f ь													
2 N/mm ²						1	,5						
4 N/mm ²						2	,0						
Factor for job site tests	Factor for job site tests see annex C20 and displacements see annex C21												
fischer injection syst	tem FIS V	Zero	for ma	asonr	у								
	fischer injection system FIS V Zero for masonry Performances Lightweight aggregate concrete hollow block Hbl Characteristic resistance under tension and shear loading												

	\sim	Prod	ucer				e.g. Ytong		
			gross dry density	γρ	[kg/dm ³]	0,35	0,5	0,65	
			compressive stre		[N/mm ²]	2,5 / 2	5/4	8/6	
			ressive strength s	single brick 1)	[]	5.			
		Stand	lard or annex			EN 771	-4:2011+A	1:2015	
able C16.1: I	nstallati	on para	ameters						
Anchor rod			M8		M1	6			
nternal threaded	l anchor		-		-				
	internal t	hreade	anchor FIS E w	ithout perforated	l sleeve				
Effective anchorage depth	h _{ef}	[mm]					100)	
orque	max T _{inst}		2	2	2		2		
General installat		neters			100				
Edge distance –	C _{min} C _{cr}				250				
	s _{cr} II 250								
-	s _{min} II	[mm]			100				
Spacing –	$\mathbf{s}_{cr} ot$				250				
	${f s}_{\sf min} oldsymbol{oldsymbol{\bot}}$				100				
Hammer drilling w ¹⁾ The compre				st not be less than 8	80% of the mea	n compre	ssive stren	gth.	

Table			s for autoclaved a essive strength si					
Ancho	or rod		M8	M10	M12	M16		
s	α _{g,N} II, (s _{min} II)			1,	13			
Groupfactors	α _{g,N} ⊥, (s min⊥)	[-]		1,:	20			
Group	α _{g,∨} , (s _{min} II)			1,;	39			
	$lpha_{g, V}, (\mathbf{S}_{min} \perp)$			1,	17			
Table C17.2: Group factors for autoclaved aerated concrete (Min. compressive strength single brick 4 N/mm ²)								
Ancho	or rod		M8	M10	M12	M16		
ဖ	α _{g,N} II, (s _{min} II)			1,	13			
Groupfactors	α _{g,N} ⊥, (s _{min} ⊥)	[-]		1,:	20			
Group	α _{g,∨} , (s _{min} II)	• •	1,39					
	$lpha_{ extsf{g}, extsf{V}}$, (S _{min} ot)		1,17					
Table	Table C17.3: Group factors for autoclaved aerated concrete (Min. compressive strength single brick 6 N/mm²)							
Ancho	or rod		M8	M10	M12	M16		
S	α _{g,N} II, (s _{min} II)			1,	13			
Groupfactors	α _{g,N} ⊥, (Smin⊥)	[-]		1,:	20			
Group	α _{g,V} , (S _{min} II)	• •		1,:	39			
	$lpha_{ extsf{g}, extsf{V}}$, (Smin ot)			1,	17			
fisch	er injection system	FIS	V Zero for masor	ıry				
	rmance laved aerated concrete	(cyli	ndrical drill hole), Gr	oup factors		Annex C17		

Autoclaved aerated	concrete (cylindrical dr	ill hole), EN 771	-4:2011+A1	:2015				
		esistance to pu nder tension loa	ll-out failure or b ading	rick breakou	failure of a				
Anchor rod		M8	M10	M12	M16				
ſension resistance N _{Rk} = ⁄lin. compressive streng				on the mean co	mpressive strength /				
Maan aampropoivo atron			Effective anchor	age depth h _{ef} [n	nm]				
Mean compressive stren- gth / Min. compressive strength single brick ¹⁾	Use conditions	100	100	100	100				
2,5 / 2 N/mm ²	d/d	1,2	1,2	1,2	1,5				
5 / 4 N/mm ²	d/d	1,2	1,2	1,2	1,5				
8 / 6 N/mm²	d/d	1,2	1,2	1,2	1,5				
Anchor rod		M8	M10	M12	M16				
רension resistance N _{Rk} = Min. compressive streng				on the mean co	mpressive strength				
Mean compressive stren-			Effective anchor	age depth h _{ef} [n	nm]				
gth / Min. compressive stren- strength single brick ¹⁾	Use conditions	100	100	100	100				
2,5 / 2 N/mm ²	d/d	0,9	0,9	1,2	1,5				
5 / 4 N/mm ²	d/d	0,9	0,9	1,2	1,5				
8 / 6 N/mm ²	d/d	0,9	0,9	1,2	1,5				
fischer injection syste	em FIS V Z	Zero for mason	D /						
Performance Autoclaved aerated conc	5 Day 51-50		Ty		Annex C18				

Anchor rod		M8	M10	M12	M16		
nternal threaded nchor FIS E		-	-	-	-		
hear resistance V _{Rk} = V _R ompressive strength sin							
Mean compressive stren-	Use		Effective anchorage	e depth h _{ef} [mi	m]		
gth / Min. compressive strength single brick ¹⁾	con- ditions	100	100	100	100		
2,5 / 2 N/mm²	d/d	1,2	1,2	1,2	1,2		
5 / 4 N/mm²	d/d	1,2	1,2	1,2	1,2		
8 / 6 N/mm²	d/d	1,2	1,2	1,2	1,2		
Anchor rod		M8	M10	M12	M16		
Internal threaded anchor FIS E		-	-	-	-		
Shear resistance V _{Rk} = V _R compressive strength sin	_{k,b} = V _{Rk,c,I} gle brick;	= V _{Rk,c,⊥} [kN] de (temperature rar	pending on the mean uge 24/40°C and 50/80	compressiv 0°C) c _{cr} >250r	e strength / Min. nm		
Mean compressive stren-	Use		Effective anchorage	e depth h _{ef} [mi	m]		
gth / Min. compressive strength single brick ¹⁾	con- ditions	100	100	100	100		
2,5 / 2 N/mm ²	d/d	2,5	2,5	2,5	2,5		
5 / 4 N/mm²	d/d	2,5	2,5	2,5	2,5		
8 / 6 N/mm²	d/d	2,5	2,5	2,5	2,5		
 ¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength. Factor for job site tests see annex C20, table C20.2 and displacements see annex C 21 							
fischer injection syste	m FIS V	Zero for masor	nry				
Performance		Annex C19					

β-factors for job site tests

Table C20.1: β-factors for job site tests

Installation and use conditions		d/d	
temperature range [°C]	24/40	50/80	72/120
M8	0,81	0,47	0,45
M10	0,62	0,49	0,45
M12 / FIS E 11x85	0,62	0,49	0,52
M16 / FIS E 15x85	0,56	0,45	0,57

Table C20.2: β-factors for job site tests for AAC

Installation and use conditions	d/d			
temperature range [°C]	24/40	50/80		
All sizes	0,58	0,49		

fischer injection system FIS V Zero for masonry

Performances β-factors for job site tests Annex C20

Material	Size	Effective anchorage depth [mm]	N [kN]	δΝ₀ [mm]	δN∞ [mm]	V [kN]	δV₀ [mm]	δV∞ [mm]
Solid brick acc. to C4-C5	M8 -	50	0,57	0,00	0,00	0,71	0,08	0,12
		80	1,00	0,00	0,00	1,71	0,32	0,48
	M10 -	50	0,57	0,00	0,00	0,71	0,18	0,27
		80	1,00	0,01	0,02	1,71	0,50	0,75
	M12 -	50	1,29	0,03	0,06	0,71	0,05	0,08
		80	1,00	0,01	0,02	1,71	0,75	1,13
	M16 -	50	1,29	0,03	0,06	0,71	0,35	0,53
		80	1,71	0,04	0,08	1,71	0,20	0,30
Solid calcium silicate (sand-lime) brick acc. to C6-C7	M8 -	50	0,86	0,03	0,06	1,43	0,32	0,48
		80	0,86	0,00	0,00	1,43		
	M10 -	50	0,86	0,00	0,00	1,43	0,34	0,51
		80	1,71	0,02	0,04	1,43		
	M12 -	50	0,86	0,03	0,06	1,43	0,12	0,18
		80	1,71	0,04	0,08	1,43	0,32	0,48
	M16 -	50	0,86	0,03	0,06	1,43	0,57	0,86
		80	1,14	0,02	0,04	1,43	0,20	0,03
Perforated calcium silicate (sand-lime) brick acc. to C8-C11	M8 -	12x50 12x85	0,71	0,01	0,02	1,00	0,16	0,24
	M8 _ M10	16x85	0,57	0,02	0,04	1,14	0,57	0,86
		16x130	1,29	0,06	0,12	1,14	1,03	1,55
	M12 _ M16	20x85	0,57	0,03	0,06	1,86	1,15	1,73
		20x130	1,29	0,04	0,08	1,86	1,24	1,86
Perforated brick Hlz acc. to C12-C13	M8 -	12x50	0,43	0,00	0,00	0,71	0,25	0,38
		12x85	0,71	0,00	0,00	1,43	0,61	0,92
	M8 M10	16x85	0,71	0,03	0,06	1,00	0,36	0,54
		16x130	1,00	0,02	0,04	1,43	0,30	0,45
	M12 _ M16 _	20x85	0,71	0,00	0,00	1,00	0,22	0,33
		20x130	1,00	0,04	0,08	1,43	0,17	0,26
Lightweight aggregate concrete hollow block Hbl acc. to C14-C15	M8 M10	16x85	0,14	0,03	0,06	0,57	1,54	2,31
		16x130	0,14	0,02	0,04	0,57	1,01	1,52
	M12 _ M16	20x85	0,14	0,06	0,12	0,57	1,31	1,97
		20x130	0,21	0,04	0,08	0,57	0,82	1,23
Autoclaved aerated concrete acc. to C16-C19		M8x100 M10x100	0,48	0,08	0,16	0,89	1,49	2,24
		M12x100	0,49	0,09	0,18	0,89	1,49	2,24
		M16x100	0,65	0,12	0,24	0,89	1,49	2,24

fischer injection system FIS V Zero for masonry

Performances

displacements

Annex C21