

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-21/0480 of 31 October 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Hilti metal expansion anchor HST2 V3
Product family to which the construction product belongs	Mechanical fastener for use in concrete
Manufacturer	Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti plants
This European Technical Assessment contains	40 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601-v03, Edition 06/2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific part

1 Technical description of the product

The Hilti metal expansion anchor HST2 V3, HST2 V3 BW, HST2-F V3 and HST2-R V3 is an anchor made of galvanized steel (HST2 V3 and HST2 V3 BW), hot dip galvanized steel (HST2-F V3) or stainless steel (HST2-R V3) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	see Annex B7 – B9 and C1 – C4
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C5
Displacements	see Annex C6
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C7 – C11
Durability	see Annex B1

3.1 Mechanical resistance and stability (BWR 1)

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C12 – C18

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601-v03 the applicable European legal act is: 1996/582/EC. The system to be applied is: 1

Page 4 of 40 | 31 October 2024

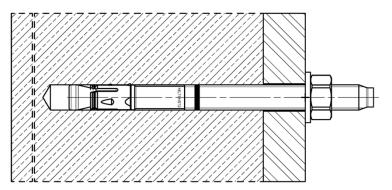
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

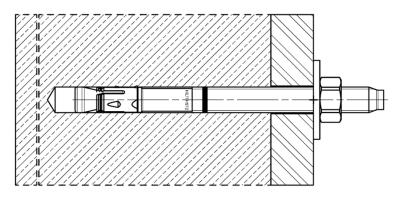
Issued in Berlin on 31 October 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Ziegler

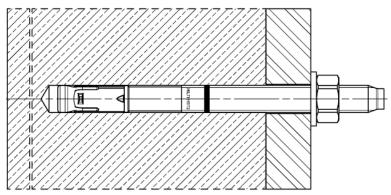
Page 5 of European Technical Assessment ETA-21/0480 of 31 October 2024


English translation prepared by DIBt

Installed condition


Figure A1:

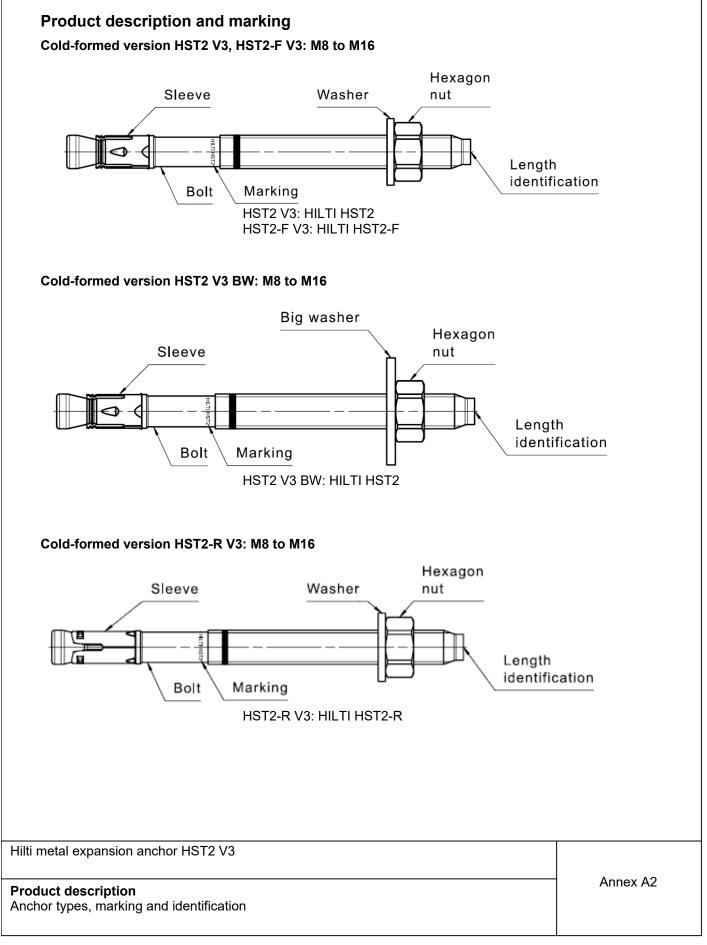
Hilti metal expansion anchor HST2 V3 and HST2-F V3


Figure A2:

Hilti metal expansion anchor HST2 V3 BW

Figure A3:

Hilti metal expansion anchor HST2-R V3



Hilti metal expansion anchor HST2 V3

Product description Installation condition

Annex A1

			Α	В	С	D	E	f	П
Angler	≥	[mm]	38,1	50,8	63,5	76,2	88,9	100,0	100,
Anchor length	<	[mm]	50,8	63,5	76,2	88,9	101,6	100,0	100,
Letter			F	G	Δ	Н	I	J	K
	≥	[mm]	101,6	114,3	125,0	127,0	139,7	152,4	165
Anchor length	<	[mm]	114,3	127,0	125,0	139,7	152,4	165,1	177
Letter			L	М	N	0	Р	Q	R
	≥	[mm]	177,8	190,5	203,2	215,9	228,6	241,3	254,
Anchor length	<	[mm]	190,5	203,2	215,9	228,6	241,3	254,0	279,
Letter			r	S	Т	U	V	W	Х
	≥	[mm]	260,0	279,4	304,8	330,2	355,6	381,0	406,
Anchor length	<	[mm]	260,0	304,8	330,2	355,6	381,0	406,4	431
Letter			Y	Z	AA	BB	СС	DD	EE
	≥	[mm]	431,8	457,2	482,6	508,0	533,4	558,8	584,
Anchor length	<	[mm]	457,2	482,6	508,0	533,4	558,8	584,2	609,
Letter			FF	GG	НН	II	JJ	KK	LL
Ancheste	≥	[mm]	609,6	635,0	660,4	685,8	711,2	736,6	762
Anchor length	<	[mm]	635,0	660,4	685,8	711,2	736,6	762,0	787
Letter			MM	NN	00	PP	QQ	RR	SS
An shan lan site	≥	[mm]	787,4	812,8	838,2	863,6	889,0	914,4	939,
Anchor length	<	[mm]	812,8	838,2	863,6	889,0	914,4	939,8	965
			TT	UU	VV]			
Letter						1			
Letter Anchor length	≥	[mm]	965,2	990,6	1016,0				

Designation	Material						
HST2 V3, HST2 V3 BW	(Carbon steel, galvanized)						
Expansion sleeve	Stainless steel A2 according to ASTM A 240/A 240M: 2019						
Bolt	Carbon steel, galvanized, coated, rupture elongation ($I_0 = 5$	d) > 8 %					
Washer	Carbon steel, galvanized						
Hexagon nut	Carbon steel, galvanized, coated						
HST2-F V3 (Carbon ste	eel, hot dip galvanized ≥ 50μm according to EN ISO 10684:20	04 + AC:2009)					
Expansion sleeve	Stainless steel A2 according to ASTM A 240/A 240M: 2019						
Bolt	Carbon steel, hot dip galvanized, coated, rupture elongation	ו (I ₀ = 5d) > 8 %					
Washer	Vasher Carbon steel, hot dip galvanized						
Hexagon nut	Carbon steel, hot dip galvanized, coated						
	steel A4 or Duplex stainless steel) class III according to EN 1993-1-4:2006+A1:2015						
Expansion sleeve	Stainless steel A4 according to EN 10088-1:2014						
Bolt Stainless steel A4 or Duplex stainless steel according to EN 10088-1:2014, cone coated, rupture elongation ($I_0 = 5d$) > 8 %							
Washer	Stainless steel A4						
Hexagon nut	Stainless steel A4, coated						
Filling set (Carbon ste	el)						
Sealing / Spherical was	ner Carbon steel, galvanized						
Filling set (Carbon ste	el, mechanical zinc plating)						
Sealing washer and Spherical washer	Carbon steel, mechanical zinc plating						
Filling Set (Stainless s	teel) Corrosion resistance class III according EN 1993-1-4:20	06+A1:2015					
Sealing washer	Stainless steel A4 according to ASTM A 240/A 240M:2019						
Spherical washer	Stainless steel A4 according to EN 10088-1:2014						
Mortar							
Injection mortar	Injection mortar Hilti HIT-HY						
ilti metal expansion ancl	nor HST2 V3						
		Annex A4					

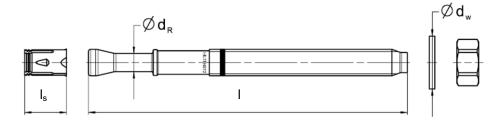

Letter code with one mark	Letter code with two marks
3	
	3

Table A4: Dimensions HST2 V3, HST2-F V3 and HST2 V3 BW

Size			M8	M10	M12	M16
Maximum length of anchor	I _{max}	[mm]	230	230	245	245
Shaft diameter at the cone	d_R	[mm]	5,65	6,94	8,22	12
Length of expansion sleeve	l _s	[mm]	13,6	18	19	24,6
Diameter of washer HST2 V3 and HST2-F V3	d _W ≥	[mm]	15,57	19,48	23,48	29,48
Diameter of washer HST2 V3 BW	d _W ≥	[mm]	23,48	29,48	43,38	49,38

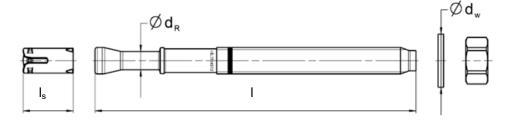

HST2 V3, HST2-F V3 and HST2 V3 BW

Table A5: Dimensions HST2-R V3

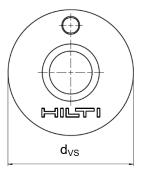
Size			M8	M10	M12	M16
Maximum length of anchor	I _{max}	[mm]	260	280	295	350
Shaft diameter at the cone	d _R	[mm]	5,6	7,3	8,6	11,6
Length of expansion sleeve	ls	[mm]	14,8	18,3	22,6	24,4
Diameter of washer	d _W ≥	[mm]	15,57	19,48	23,48	29,48

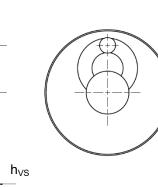
HST2-R V3

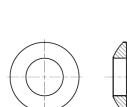
Hilti metal expansion anchor HST2 V3

Product description Dimensions

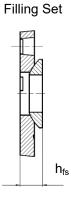
Annex A6




Filling set to fill the annular gap between the anchor and the fixture


Table A6: Dimensions of the Filling Set

Size			M8	M10	M12	M16
Diameter of sealing washer	d_{VS}	[mm]	38	42	44	52
Thickness of sealing washer	\mathbf{h}_{VS}	[mm]		5		6
Thickness of the Hilti Filling set	h _{fs}	[mm]	8	9	10	11


Sealing washer

Spherical washer

Hilti metal expansion anchor HST2 V3	
Product description Filling set	Annex A7

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loading: all sizes
- Seismic performance category C1 and C2: sizes see Table C4 C9
- Fire exposure: all sizes.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibers according to EN 206-1:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016.
- Cracked or uncracked concrete.

Use conditions (Environmetal conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance classes CRC according to Annex A4, Table A2 (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018
- Under seismic loading anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings where shear loads act on anchors with a lever arm, such as e.g.in stand-off installation or with a grout layer, are not covered in this European Technical Assessment.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.
- For effective embedment depth h_{ef} < 40 mm the use is restricted to anchoring of statically indeterminate fixings (e.g. light weight suspended ceilings) under dry internal conditions only.

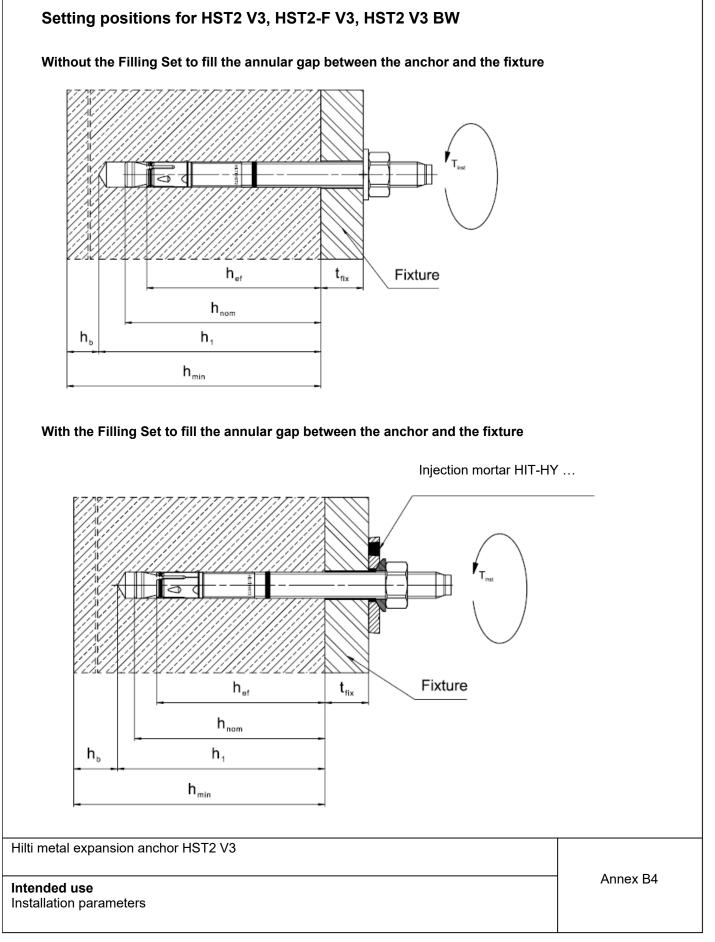
Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Hole drilling and cleaning with the methods given on Annex B2
- The anchor may only be set once.
- Overhead applications are permitted.

Hilti metal expansion anchor HST2 V3

Intended use Specifications

Anchorages subject to:	M8	M10	M12	M1
Static and quasi static loading in cracked and uncracked concrete - hammer drilling and diamond coring	~	~	~	~
Seismic performance category C1 - hammer drilling	-	~	~	~
Seismic performance category C2 - hammer drilling	-	~	~	~
Fire exposure - hammer drilling and diamond coring	\checkmark	✓	~	~
Table B2: Drilling technique		T	1	_
Anchorages subject to:	M8	M10	M12	M1
Hammer drilling (HD)	✓	 ✓ 	~	✓
 DD EC-1 coring tool and DD-C TS/TL core bits or DD-C T2/T4 core bits DD 30-W coring tool and C+ SPX-T (abrasive) core bits DD 150-U coring tool and SPX-L, SPX-L Abrasive or SPX-L Hand Held core bits 	✓	~	~	~
Manual cleaning (MC): Hilti hand pump for blowing out drill holes				
Compressed air cleaning (CAC): Air nozzle with an orifice opening of 3,5 mm in diameter			P-	
Non-cleaning (NC): Non-cleaning by 3 x venting		-	-	
Table B4: Methods for application of torque moment		I	1	
HST2 V3, HST2-F V3, HST2 V3 BW and HST2-R V3	M8	M10	M12	M10
Torque wrench Machine torqueing with Hilti SIW impact wrench and SI-AT adaptive torque module	✓	✓	✓	✓
• SIW 4AT-22 with SI-AT-22 ¹⁾	\checkmark	✓	~	-
• SIW 6AT-22 with SI-AT-22 ¹⁾	-	-	~	~
¹⁾ Equivalent combination of Hilti SIW + SI-AT tool, compatible to th	nis anchor	type, may	be used	
metal expansion anchor HST2 V3				
nded use			Ann	ex B2


HST2 V3, HST2-F V3, HST2 V3 BW			M8	M10	M12	M16
Nominal diameter of drill bit	d ₀	[mm]	8	10	12	16
Maximum cutting diameter of drill bit	d _{cut}	[mm]	8,45	10,45	12,50	16,50
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18
Effective anchorage depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Nominal embedment depth	h _{nom}	[mm]	h _{ef} + 10	h _{ef} + 10	h _{ef} + 13	h _{ef} + 13
Minimum depth of drill hole (hammer drilled, not cleaned)	h₁≥	[mm]	h _{ef} + 30	h _{ef} + 30	h _{ef} + 33	h _{ef} + 33
Minimum depth of drill hole (hammer drilled, cleaned)	h₁≥	[mm]	h _{ef} + 15	h _{ef} + 15	h _{ef} + 21	h _{ef} + 21
Minimum depth of drill hole (diamond cored boreholes)	h₁≥	[mm]	h _{ef} + 20	h _{ef} + 20	h _{ef} + 23	h _{ef} + 23
Minimum thickness of concrete member ¹⁾	h _{min} ≥	[mm]	max (100; 1,5∙h _{ef})	max (120; 1,5·h _{ef})	max (140; 1,5·h _{ef})	max (160; 1,5·h _{ef})
Minimum concrete thickness below borehole bottom ¹⁾	h _b ≥	[mm]	21	27	32	34
Width across flats	SW	[mm]	13	17	19	24
Installation torque HST2 V3, HST2 V3 BW	T _{inst}	[Nm]	15	25	40	80
Installation torque HST2-F V3	T _{inst}	[Nm]	25	40	50	110

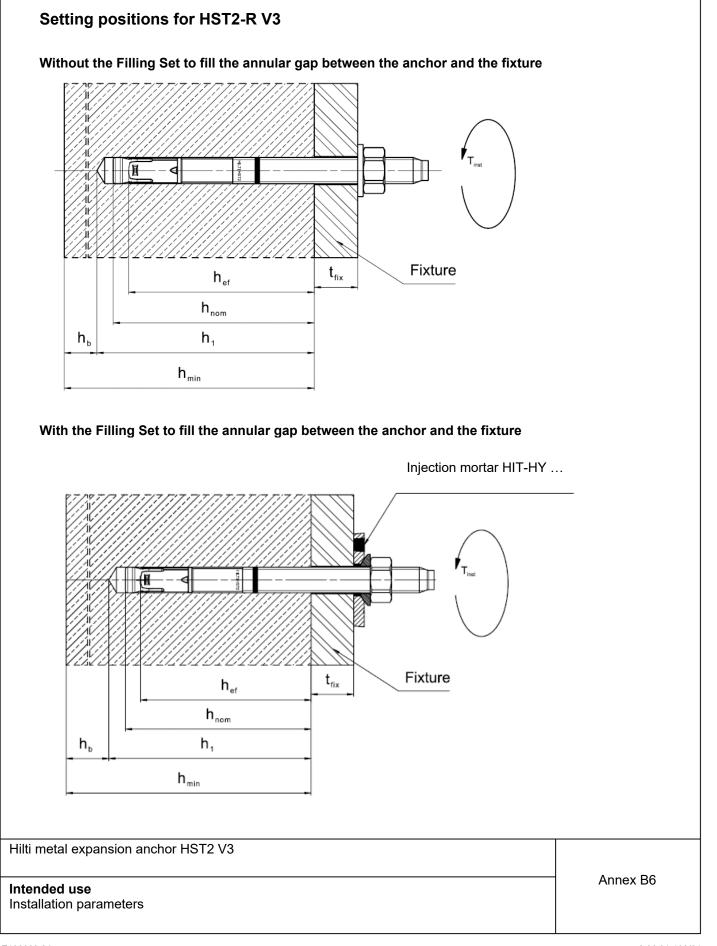
¹⁾ Under consideration of minimum concrete thickness below borehole bottom: $h_{min} \ge h_1 + h_b$

Hilti metal expansion anchor HST2 V3

Intended use Installation parameters

Table B6: Installation parameters for HST2-R V3

HST2-R V3			M8	M10	M12	M16
Nominal diameter of drill bit	d ₀	[mm]	8	10	12	16
Maximum cutting diameter of drill bit	d _{cut}	[mm]	8,45	10,45	12,50	16,50
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18
Effective anchorage depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Nominal embedment depth	h _{nom}	[mm]	h _{ef} + 8	h _{ef} + 9	h _{ef} + 10	h _{ef} + 13
Minimum depth of drill hole (hammer drilled, not cleaned)	h₁≥	[mm]	h _{ef} + 28	h _{ef} + 29	h _{ef} + 30	h _{ef} + 33
Minimum depth of drill hole (hammer drilled, cleaned)	h₁≥	[mm]	h _{ef} + 13	h _{ef} + 14	h _{ef} + 18	h _{ef} + 21
Minimum depth of drill hole (diamond cored boreholes)	h₁≥	[mm]	h _{ef} + 18	h _{ef} + 19	h _{ef} + 20	h _{ef} + 23
Minimum thickness of concrete member ¹⁾	h _{min} ≥	[mm]	max (100; 1,5∙h _{ef})	max (120; 1,5∙h _{ef})	max (140; 1,5·h _{ef})	max (160; 1,5·h _{ef})
Minimum concrete thickness below borehole bottom ¹⁾	h _b ≥	[mm]	21	27	32	34
Width across flats	SW	[mm]	13	17	19	24
Installation torque	T _{inst}	[Nm]	20	45	60	110


¹⁾ Under consideration of minimum concrete thickness below borehole bottom: $h_{min} \ge h_1 + h_b$

Hilti metal expansion anchor HST2 V3

Intended use Installation parameters

Page 17 of European Technical Assessment ETA-21/0480 of 31 October 2024

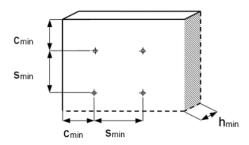


Table B7: Minimum spacing and edge distance for HST2 V3, HST2-F V3 and HST2 V3 BW

			M8	M10	M12	M16
Minimum thickness of concrete member ¹⁾	h _{min}	[mm]	max (100; 1,5∙h _{ef})	max (120; 1,5∙h _{ef})	max (140; 1,5∙h _{ef})	max (160; 1,5∙h _{ef})
Minimum encoing	S _{min}	[mm]	40	55	60	70
Minimum spacing	for c ≥	[mm]		According to	Table B9	
Minimum adaa diatanaa	C _{min}	[mm]	45	55	55	70
Minimum edge distance	for s ≥	[mm]		According to	Table B9	
Cracked concrete						
Effective embedment depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Required splitting area	$A_{sp,req}$	[mm²]	17100	26400	31000	44800
Uncracked concrete						
Effective embedment depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Required splitting area	A _{sp,req}	[mm ²]	19500	32000	38000	50100

¹⁾ Under consideration of minimum concrete thickness below borehole bottom: $h_{min} \ge h_1 + h_b$ as given in Table B5

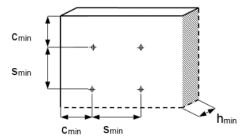
For the calculation of the minimum edge distance and spacing in combination with variable embedment depths and slab thickness the following equation must be fulfilled:

 $A_{sp,ef} \ge A_{sp,req.}$

With:

A_{sp,ef}: Effective splitting area according to Table B9

A_{sp,req}.: Minimum required splitting area according to Table B7


Hilti metal expansion anchor HST2 V3

Intended Use Minimum spacing and minimum edge distance

			M8	M10	M12	M16		
Minimum thickness of concrete member	h _{min}	[mm]	max (100; 1,5∙h _{ef})	max (120; 1,5∙h _{ef})	max (140; 1,5 [.] h _{ef})	max (160; 1,5·h _{ef})		
	S _{min}	[mm]	40	55	60	70		
Minimum spacing	for c ≥	[mm]	According to Table B9					
Minimum odgo diatanaa	C _{min}	[mm]	45	60				
Minimum edge distance	for s ≥	[mm]	According to Table B9					
Cracked concrete		I						
Effective embedment depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120		
Minimum required splitting area	A _{sp,req}	[mm ²]	18000	28800	36400	48700		
Uncracked concrete								
Effective embedment depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120		
Minimum required splitting area	A _{sp,req}	[mm ²]	21600	31800	42000	58250		

¹⁾ Under consideration of minimum concrete thickness below borehole bottom: $h_{min} \ge h_1 + h_b$ as given in Table B6

For the calculation of the minimum edge distance and spacing in combination with variable embedment depths and slab thickness the following equation must be fulfilled:

 $A_{sp,ef} \ge A_{sp,req.}$

With:

- A_{sp,ef}: Effective splitting area according to Table B9
- A_{sp,req}.: Minimum required splitting area according to Table B8

Hilti metal expansion anchor HST2 V3

Intended Use Minimum spacing and minimum edge distance

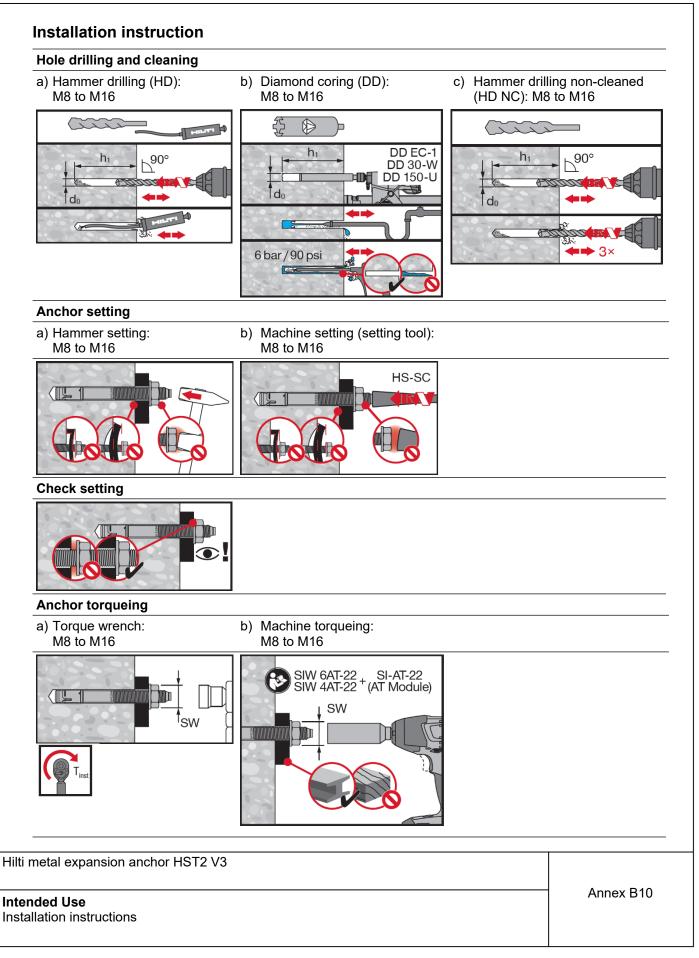
Table B9: Effective splitting area $A_{sp,ef}^{1)}$

Effective splitting area $A_{sp,ef}^{(1)}$ for a concrete member thickness $h > h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor and anchor groups (for $c \ge c_{min}$) with	s > 3 · c h _{ef} < 1,5 · c	$A_{\rm sp,ef} = (6 \cdot c) \cdot (h_{\rm ef} + 1, 5 \cdot c)$	[mm²]
Anchor groups (for $c \ge c_{min}$, $s \ge s_{min}$) with	s ≤ 3 · c h _{ef} < 1,5 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]
Single anchor and anchor groups (for $c \ge c_{min}$) with	s > 3 · c h _{ef} ≥ 1,5 · c	$A_{sp,ef} = (6 \cdot \mathbf{c}) \cdot (3 \cdot \mathbf{c})$	[mm²]
Anchor groups (for c ≥ c _{min ,} s ≥ s _{min}) with	s ≤ 3 · c h _{ef} ≥ 1,5 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (3 \cdot c)$	[mm²]

Effective splitting area $A_{sp,ef}^{(1)}$ for a concrete member thickness $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor and anchor groups	s > 3 · c		[ma.ma.2]
(for $c \ge c_{min}$) with	h _{ef} < 1,5 · c	$A_{\rm sp,ef} = (6 \cdot c) \cdot h$	[mm²]
Anchor groups	s≤3·c	$A_{sp,ef} = (3 \cdot c + s) \cdot h$	[mm²]
(for $c \ge c_{\min}, s \ge s_{\min}$) with	h _{ef} < 1,5 · c	5p,01 (
Single anchor and anchor groups	s > 3 · c	$A_{sp,ef} = (6 \cdot c) \cdot (h - h_{ef} + 1,5 \cdot c)$	[mm²]
(for $c \ge c_{min}$) with	h _{ef} ≥ 1,5 · c		[]
Anchor groups	s≤3·c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h - h_{ef} + 1, 5 \cdot c)$	[mm²]
(for $c \ge c_{min}$, $s \ge s_{min}$) with	h _{ef} ≥ 1,5 · c	$n_{sp,et} = (0 \ 0 \ 3) \ (1 = n_{ef} + 1, 3 \ 0)$	[1111]


¹⁾ Edge distance and spacing must be rounded up in 5 mm increments

Hilti metal expansion anchor HST2 V3

Intended Use

Minimum spacing and minimum edge distance

Installation of sealing washer		
tfix HST2 V3		
Anchor torqueing		
	SW SW SW SW 6AT-22 SIW 6AT-22 SIW 4AT-22 (AT Module	
Installation of counter nut (op	tional)	
	6 1/4 - 1/2 List, effective	
Injection of mortar		
HIT-HY		9 t _{cure} HIT-HY
metal expansion anchor HST2 V	3	

Table C1: Characteristic values of resistance under tension load in case of static and quasi-static loading in cracked and uncracked concrete

			M8	M10	M12	M16
Effective anchorage depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Steel failure						
HST2 V3, HST2	2-F V3 an	d HST	2 V3 BW			
Characteristic resistance	N _{Rk,s}	[kN]	16,5	28,0	41,4	82,6
Partial factor	γ _{Ms,N} 1)	[-]		1,4	0	
HST2-R V3						
Characteristic resistance	N _{Rk,s}	[kN]	17,6	30,5	43,1	78,2
Partial factor	γ _{Ms,N} 1)	[-]		1,4	.0	
Pull-out failure						
HST2 V3, HST2	2-F V3 an	d HST	2 V3 BW with Ham	nmer drilling		
Cracked concre	te C20/2	5				
Effective embedment depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Characteristic resistance	N _{Rk,p,cr}	[kN]	Min(0,1333·h _{ef} +1,0; 7,0)	Min(11,0; N ⁰ _{Rk,c} ²⁾)	Min(14,0; N ⁰ _{Rk,c} ²⁾)	Min(25,0; N ⁰ _{Rk,c} ²⁾

 $^{2)}$ $N^{0}_{\text{Rk,c}}$ according to EN 1992-4:2018

Hilti metal expansion anchor HST2 V3

Performances

Characteristic resistance under tension load

			M8	M10	M12	M16
Uncracked conc	rete C20/	25			<u> </u>	
Effective embedment depth	h _{ef,1}	[mm]	30 - 40	40 - 50	50 - 65	65 - 80
Characteristic resistance	N _{Rk,p,ucr}	[kN]	Min(12,4; N ⁰ _{Rk,c} ¹⁾)	Min(0,2555 ⋅h _{ef} +2,2254; 15,0)	Min(0,5072⋅h _{ef} -7,9657; 25,0)	Min(0,5480·h _{ef} -9,8416; 34,0)
Effective embedment depth	h _{ef,2}	[mm]	41 - 70	51 - 80	66 - 100	81 - 120
Characteristic resistance	N _{Rk,p,ucr}	[kN]	Min(0,1185⋅h _{ef} +7,7052; 16,0)	Min(0,3·h _{ef} ; 24,0)	Min(0,2571·h _{ef} +8,2857; 34,0)	Min(0,25∙h _{ef} +14,0; 44,0)
HST2 V3, HST2	-F V3 and	d HST	2 V3 BW with Diam	nond coring	· · · · · ·	
Cracked concre	te C20/25					
Effective embedment depth	h _{ef,1}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Characteristic resistance	N _{Rk,p,cr}	[kN]	Min(0,1333∙h _{ef} +1,0; 7,0)	Min(0,2857∙h _{ef} -4,4286; 9,0)	Min(0,4·h _{ef} -10,0; 12,0)	Min(0,3529·h _{ef} -8,9412; 20,0)
Uncracked conc	rete C20/	25				
Effective embedment depth	h _{ef,1}	[mm]	30 - 40	40 - 50	50 - 65	65 - 80
Characteristic resistance	N _{Rk,p,ucr}	[kN]	Min(0,4∙h _{ef} -6,0; 10,0)	Min(0,3·h _{ef} -2,0; 13,0)	Min(0,5072·h _{ef} -7,9657; 25,0)	Min(0,5480·h _{ef} -9,8416; 34,0)
Effective embedment depth	h _{ef,2}	[mm]	41 - 70	51 - 80	66 - 100	81 - 120
Characteristic resistance	N _{Rk,p,ucr}	[kN]	Min(0,1·h _{ef} +6,0; 13,0)∙	Min(0,2333∙ h _{ef} +1,3333; 20,0)	Min(0,2571 · h _{ef} +8,2857; 34,0)	Min(0,25 [.] h _{ef} +14,0; 44,0)

¹⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Hilti metal expansion anchor HST2 V3

Performances

Characteristic resistance under tension load

Page 25 of European Technical Assessment ETA-21/0480 of 31 October 2024

		M8	M10	M12	M16
HST2-R V3 with Ha	ammer drilling	1 1		1	1
Cracked concrete C	20/25				
Effective embedment depth	h _{ef} [mm]	30 - 70	40 - 80	50 - 100	65 - 120
Characteristic resistance	N _{Rk,p,cr} [kN]	5,0	9,0	12,0	25,0
Uncracked concrete	e C20/25				
Effective embedment depth	h _{ef,1} [mm]	30 - 40	40 - 50	50 - 65	65 - 80
Characteristic resistance	N _{Rk,p,ucr} [kN]	Min(12,4; N ⁰ _{Rk,c} ¹⁾)	Min(0,2555 ⋅h _{ef} +2,2254; 15,0)	Min(25,8; N ⁰ _{Rk,c} ¹⁾)	Min(35,2; N ⁰ _{Rk,c} ¹⁾)
Effective embedment depth	h _{ef,2} [mm]	41 - 70	51 - 80	66 - 100	81 - 120
Characteristic resistance	N _{Rk,p,ucr} [kN]	Min(0,1185⋅h _{ef} +7,7052; 16,0)	Min(0,3333·h _{ef} -1,6667; 25,0)	Min(0,2634 ⋅ h _{ef} +8,6563; 35,0)·	Min(0,27 ⋅ h _{ef} +13,6; 46,0)
HST2-R V3 with Di	amond coring	· · ·			
Cracked concrete C	20/25				
Effective embedment depth	h _{ef} [mm]	30 - 70	40 - 80	50 - 100	65 - 120
Characteristic resistance	N _{Rk,p,cr} [kN]	_{Rk,p,cr} [kN] 5,0 9,0		12,0	25,0
Uncracked concrete	e C20/25				1
Effective embedment depth	h _{ef,1} [mm]	30 - 40	40 - 50	50 - 65	65 - 80
Characteristic resistance	N _{Rk,p,ucr} [kN]	Min(0,4·h _{ef} -6,0; 10,0)	Min(0,2∙h _{ef} +2,0; 12,0)	Min(0,4 ⋅ h _{ef} -6,0; 20,0)	Min(0,5333·h, -14,6667; 28,0
Effective embedment depth	h _{ef,2} [mm]	41 - 70	51 - 80	66 - 100	81 - 120
Characteristic resistance	N _{Rk,p,ucr} [kN]	Min(0,0667 · h _{ef} +7,3333; 12,0)	Min(0,2667 ·h _{ef} -1,3333; 20,0)	Min(0,2286 ⋅ h _{ef} +5,1429; 28,0)	Min(0,2∙h _{ef} +12,0; 36,0)
HST2 V3, HST2-F	V3, HST2-R V3	and HST2 V3 BV	v		
Increasing factor	ψ _C C30/37		1,:	22	
for N _{Rk,p} (cr and ucr concrete)	ψ _C C40/50		1,4	41	
$\psi_{\rm c} = (f_{\rm ck}/20)^{0.5}$	ψ _C C50/60		1,4	58	
$^{1)}N^{0}_{Rk,c}$ according to	DEN 1992-4:20	18			
metal expansion and	chor HST2 V3				
					Annex C3

Page 26 of European Technical Assessment ETA-21/0480 of 31 October 2024

English translation prepared by DIBt

			M8	M10	M12	M16	
Concrete cone failure and	Splitting fa	ilure		1			
Installation factor	γinst	[-]			1,0		
Effective embedment depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120	
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]			7,7		
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]		1	1,0		
Spacing	S _{cr,N}	[mm]		3	B h _{ef}		
Edge distance	C _{cr,N}	[mm]		1,	5 h _{ef}		
Characteristic resistance	N ⁰ _{Rk,sp}	[kN]		Min (N _R	_{k,p} ; N ⁰ _{Rk,c}) ¹⁾		
Splitting area required to determine $c_{cr,sp}$	A _{rqd}	[mm ²]		(N ⁰ _{Rk,sp,C}	₂₀ - b) / a ²⁾		
HST2 V3, HST2-F V3 and H	IST2 V3 BV	V					
Calculation factor for A _{rqd}	b	[-]	-9,058	2,543	3,0415	11,556	
Calculation factor for A _{rqd}	а	[-]	0,0008	0,0003	0,0004	0,0003	
HST2-R V3							
Calculation factor for A _{rqd}	b	[-]	2,079	1,471	-2,756	-4,469	
Calculation factor for A _{rqd}	а	[-]	0,0003	0,0004	0,0005	0,0004	
Spacing (splitting)	S _{cr,sp}	[mm]		2 ·	C _{cr,sp}		
Edge distance (splitting) ³⁾	C _{cr,sp}	[mm]	$\begin{array}{c} & - & -64, \text{sp} \\ \hline & \text{MIN} \left[(A_{\text{rqd}} + 0.8 \cdot (h_{\text{min}} - h_{\text{ef}})^2) / (3.41 \cdot h_{\text{min}} - 0.59 \cdot h_{\text{rqd}} \\ & A_{\text{rqd}} / (h_{\text{min}} \cdot 8^{0.5}) \right] \\ & \geq (1.5 \cdot h_{\text{ef}})^{-4} \end{array}$				

 $^{1)}\,N^{0}_{Rk,c}$ according to EN 1992-4:2018

 $^{2)}\,N^{0}_{Rk,sp,C20}$ in kN, calculated for C20/25 uncracked concrete

 $^{3)}$ h_{min} = minimum member thickness (refer Table B5 and B6), under consideration h_{min} \leq 4 \cdot h_{ef}

⁴⁾ $c_{cr,sp} \ge (1,5 \cdot h_{ef})$ if concrete cone failure is decisive on the evaluation of the N⁰_{Rk,sp}

Hilti metal expansion anchor HST2 V3

Performances

Characteristic resistance under tension load

Table C2: Characteristic values of resistance under shear load in case of static and quasi-static loading

			M8	M10	M12	M16
Effective embedment depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Steel failure without lever arm						
HST2 V3, HST2-F V3 and HST2 V3 BW						
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	10,6	18,9	29,5	51,0
Characteristic resistance using Filling Set	V ⁰ _{Rk,s}	[kN]	10,6	18,9	29,5	51,0
Partial factor	γ _{Ms,V} 1)	[-]			1,25	·
Ductility factor	k ₇	[-]			1,0	
HST2-R V3						
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	15,7	25,3	36,7	63,6
Characteristic resistance using Filling Set	V ⁰ _{Rk,s}	[kN]	15,7	25,3	36,7	63,6
Partial factor	γ _{Ms,V} 1)	[-]			1,25	
Ductility factor	k ₇	[-]			1,0	
Steel failure with lever arm						
HST2 V3, HST2-F V3 and HST2 V3 BW						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	21,7	48,6	91,7	216
Partial factor	γ _{Ms,V} 1)	[-]			1,25	
HST2-R V3						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	27	53	93	216
Partial factor	γ _{Ms,V} 1)	[-]			1,25	
Concrete pry-out failure						
HST2 V3, HST2-F V3 HST2 V3 BW and HS	ST2-R V3					
Pryout factor	k ₈	[-]	2,34	2,55	2,57	2,82
Installation factor	γinst	[-]			1,00	
Concrete edge failure						
HST2 V3, HST2-F V3 HST2 V3 BW and HS	ST2-R V3					
Effective length of anchor in shear loading	l _f = h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Diameter of anchor	d _{nom}	[mm]	8	10	12	16
Installation factor	γinst	[-]			1,00	
¹⁾ In absence of other national regulations						
¹⁾ In absence of other national regulations						
netal expansion anchor HST2 V3						

Annex C5

Performances Characteristic resistance under shear load

Table C3: Displacements under tension load in case of static and quasi-static loading

			M8	M10	M12	M16
Displacements under tension load	ling	·				
HST2 V3, HST2-F V3, HST2 V3 BW	1					
Effective anchorage depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Tension load in cracked concrete	Ν	[kN]	3,3	5,2	6,7	11,9
O - manualization di sul s sous sut	δ_{N0}	[mm]	1,11	1,18	0,77	2,20
Corresponding displacement	δ _{N∞}	[mm]	1,70	1,28	1,73	1,13
Tension load in uncracked concrete	Ν	[kN]	7,6	11,4	16,2	21,0
	δ_{N0}	[mm]	0,96	0,31	2,17	2,07
Corresponding displacement	δ _{N∞}	[mm]	1,70	1,28	1,73	1,13
HST2-R V3						
Effective anchorage depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Tension load in cracked concrete	Ν	[kN]	2,4	4,3	5,7	11,9
Corresponding displacement	δ_{N0}	[mm]	0,6	0,2	0,8	1,0
	δ _{N∞}	[mm]	1,09	1,33	1,06	1,2
Tension load in uncracked concrete	Ν	[kN]	7,6	11,9	16,7	21,9
	δ_{N0}	[mm]	2,17	1,76	0,95	4,1
Corresponding displacement	δ _{N∞}	[mm]	1,09	1,33	1,06	1,2
Displacements under shear loadir	ıg	·				
HST2 V3, HST2-F V3, HST2 V3 BW	1					
Effective anchorage depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Shear load in cracked and uncracked concrete	V	[kN]	6,1	10,8	16,9	29,1
Componending displacement	δ_{V0}	[mm]	2,28	2,28	2,21	2,41
Corresponding displacement	δ_{V^∞}	[mm]	3,42	3,42	3,32	3,62
HST2-R V3						
Effective anchorage depth	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Shear load in cracked and uncracked concrete	V	[kN]	9,0	14,5	21,0	36,3
Corresponding displacement	δ_{V0}	[mm]	1,9	4,3	6,0	2,9
Corresponding displacement	δ _{V∞}	[mm]	2,9	6,4	9,1	4,4

Hilti metal expansion anchor HST2 V3

Performances Displacements

Table C4: Characteristic values of resistance under tension load in case of seismic performance category C1

			M10	M12	M16
Effective embedment depth	h _{ef}	[mm]	60	70	85
Steel failure		I		1	1
HST2 V3, HST2-F V3 and HS	2 V3 BW				
Characteristic resistance	N _{Rk,s,C1}	[kN]	28,0	41,4	82,6
Partial safety factor	γ _{Ms,C1} 1)	[-]		1,40	
HST2-R V3					
Characteristic resistance	N _{Rk,s,C1}	[kN]	30,5	43,1	78,2
Partial safety factor	γ _{Ms,C1} 1)	[-]		1,40	
Pullout failure					
HST2 V3, HST2-F V3 and HST	72 V3 BW				
Characteristic resistance	N _{Rk,p,C1}	[kN]	11,0	14,0	22,7
HST2-R V3					•
Characteristic resistance	N _{Rk,p,C1}	[kN]	8,0	10,7	18,0
Concrete cone failure ²⁾		· · · ·			
HST2 V3, HST2-F V3, HST2-R	V3 and HS1	72 V3 BW			
Installation factor	γinst	[-]		1,00	
Splitting failure 2)		L			
HST2 V3, HST2-F V3, HST2-R	V3 and HS1	2 V3 BW			
Installation factor	Yinst	[-]		1,00	

¹⁾ In absence of other national regulations

²⁾ For concrete cone failure and splitting failure see EN 1992-4:2018

Hilti metal expansion anchor HST2 V3

Characteristic tension resistance for seismic performance category C1

Table C5: Characteristic values of resistance under shear load in case of seismic performance category C1

			M10	M12	M16
Effective embedment depth	h _{ef}	[mm]	60	70	85
Steel failure		·			,
HST2 V3, HST2-F V3 and HST	2 V3 BW				
Characteristic resistance	V _{Rk,s,C1}	[kN]	11,9	21,4	39,7
Partial factor	γ _{Ms,C1} 1)	[-]		1,25	
HST2-R V3		I			
Characteristic resistance	V _{Rk,s,C1}	[kN]	13,6	23,1	37,5
Partial factor	γ _{Ms,C1} 1)	[-]		1,25	
Concrete pryout failure 2)		·			
HST2 V3, HST2-F V3, HST2-R	V3 and HS	F2 V3 BW			
Installation factor	γinst	[-]		1,00	
Concrete edge failure 2)		I			
HST2 V3, HST2-F V3, HST2-R	V3 and HS	T2 V3 BW			
Installation factor	γinst	[-]		1,00	

¹⁾ In absence of other national regulations

²⁾ For concrete pryout failure and concrete edge failure see EN 1992-4:2018

Hilti metal expansion anchor HST2 V3

Characteristic shear resistance for seismic performance category C1

Table C6: Characteristic values of resistance under tension load in case of seismic performance category C2

			M10	M12	M16
Effective embedment depth	h _{ef}	[mm]	60	70	85
Steel failure				1	1
HST2 V3, HST2-F V3 and HS	2 V3 BW				
Characteristic resistance	N _{Rk,s,C2}	[kN]	28,0	41,4	82,6
Partial factor	γ _{Ms,C2} 1)	[-]		1,40	
HST2-R V3		4			
Characteristic resistance	N _{Rk,s,C2}	[kN]	30,5	43,1	78,2
Partial factor	γ _{Ms,C2} 1)	[-]		1,40	
Pullout failure					
HST2 V3, HST2-F V3 and HS	2 V3 BW				
Characteristic resistance	N _{Rk,p,C2}	[kN]	5,5	14,0	18,0
HST2-R V3					
Characteristic resistance	N _{Rk,p,C2}	[kN]	3,3	10,0	12,8
Concrete cone failure ²⁾					
HST2 V3, HST2-F V3, HST2-R	V3 and HST	2 V3 BW			
Installation factor	γ̃inst	[-]		1,00	
Splitting failure 2)					
HST2 V3, HST2-F V3, HST2-R	V3 and HS1	2 V3 BW			
Installation factor	γinst	[-]		1,00	

¹⁾ In absence of other national regulations

²⁾ For concrete pryout failure and concrete edge failure see EN 1992-4:2018

Hilti metal expansion anchor HST2 V3

Performances

Characteristic tension resistance for seismic performance category C2

			M10	M12	M16
Effective embedment depth	h _{ef}	[mm]	60	70	85
Displacements under tension	loading	i			
HST2 V3, HST2-F V3 and HST	2 V3 BW				
Displacement DLS	$\delta_{N,C2}$	[mm]	3,55	5,21	5,25
Displacement ULS	$\delta_{N,C2}$	[mm]	13,56	14,93	15,77
HST2-R					
Displacement DLS	$\delta_{N,C2}$	[mm]	1,4	6,7	4,0
Displacement ULS	δ _{N.C2}	[mm]	8,6	15,9	13,3

Hilti metal expansion anchor HST2 V3

Performances

Displacements under tension loads for seismic performance category C2

			M10	M12	M16
Effective embedment depth	h _{ef}	[mm]	60	70	85
Steel failure		·			
HST2 V3, HST2-F V3 and HST	2 V3 BW				
Characteristic resistance	V _{Rk,s,C2}	[kN]	7,4	11,1	25,0
Partial factor	γ _{Ms,C2} 1)	[-]		1,25	
HST2-R V3					
Characteristic resistance	V _{Rk,s,C2}	[kN]	12,0	18,0	37,5
Partial factor	γ _{Ms,C2} 1)	[-]		1,25	
Concrete pryout failure 2)					
HST2 V3, HST2-F V3, HST2-R	V3 and HS	2 V3 BW			
Installation factor	γinst	[-]		1,00	
Concrete edge failure 2)		I			
HST2 V3, HST2-F V3, HST2-R	V3 and HS	2 V3 BW			
Installation factor	γinst	[-]		1,00	

¹⁾ In absence of other national regulations

²⁾ For concrete pryout failure and concrete edge failure see EN 1992-4:2018

Table C9: Displacements under shear loads for seismic performance category C2

			M10	M12	M16
Effective embedment depth	h _{ef}	[mm]	60	70	85
Displacements under shear load	ding				
HST2 V3, HST2-F V3, HST2 V3 E	W				
Displacement DLS	$\delta_{\text{V,C2}}$	[mm]	4,53	4,18	4,42
Displacement ULS	$\delta_{\text{V,C2}}$	[mm]	6,21	5,89	6,68
HST2-R V3					
Displacement DLS	$\delta_{V,C2}$	[mm]	4,2	5,3	5,7
Displacement ULS	$\delta_{V,C2}$	[mm]	7,5	7,9	8,9

Hilti metal expansion anchor HST2 V3

Performances

Characteristic shear resistance and displacements for seismic performance category C2

Table C10: Characteristic tension resistance under fire exposure for HST2 V3,HST2-F V3 and HST2 V3 BW in cracked and uncracked concrete

				M8	M10	M12	M16
Steel failure					1		I
HST2 V3, HST2-F V3 and	HST2 V	'3 BW					
Effective embedment depth		h _{ef,1}	[mm]	30 - 44	40 - 59	50 - 69	65 - 84
	R30	N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
Characteristic resistance	R60	N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120	N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6
Effective embedment depth		h _{ef,2}	[mm]	45 - 70	60 - 80	70 - 100	85 - 120
	R30	N _{Rk,s,fi}	[kN]	1,2	2,6	4,8	9,0
Characteristic resistance	R60	N _{Rk,s,fi}	[kN]	1,0	2,1	3,8	7,0
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0,8	1,5	2,7	5,0
	R120	N _{Rk,s,fi}	[kN]	0,6	1,2	2,1	4,0
Pullout failure							
Effective embedment depth		h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
	R30	N _{Rk,p,fi}	[kN]				
Characteristic resistance	R60	N _{Rk,p,fi}	[kN]		0,25	N _{Rk,p} ¹⁾	
in concrete ≥ C20/25	R90	N _{Rk,p,fi}	[kN]				
	R120	N _{Rk,p,fi}	[kN]		0,20	N _{Rk,p} ¹⁾	

¹⁾ $N_{Rk,p}$ is the characteristic resistance for pull-out failure $N_{Rk,p,cr}$ (see Table C1) in cracked concrete C20/25 under ambient temperature

Hilti metal expansion anchor HST2 V3

Performances

Characteristic values of resistance under tension loading under fire exposure in cracked and uncracked concrete

				M8	M10	M12	M16	
Concrete cone failure								
HST2 V3, HST2-F V3 and	HST2 V	/3 BW						
Effective embedment depth		h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120	
Characteristic resistance in concrete ≥ C20/25	R30	N ⁰ _{Rk,c,fi}	[kN]		•			
	R60	N ⁰ _{Rk,c,fi}	[kN]	h _{ef} / 200 ⋅ N ⁰ _{Rk,c} ≤ N ⁰ _{Rk,c}				
	R90	N ⁰ _{Rk,c,fi}	[kN]					
	R120	N ⁰ _{Rk,c,fi}	[kN]		0,8·h _{ef} / 200·	$0 \cdot N_{Rk,c}^0 \le N_{Rk,c}^0$		
Creating		S _{cr,N}	[mm]		4	h _{ef}		
Spacing		S _{min}	[mm]	40	55	60	70	
		C _{cr,N}	[mm]	2 h _{ef}				
Edge distance		C _{min}	[mm]	Fire attack from one side: 2 h _{ef} Fire attack from more than one side: ≥ 300				

¹⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

Hilti metal expansion anchor HST2 V3

Performances

Characteristic values of resistance under tension loading under fire exposure in cracked and uncracked concrete

Table C11: Characteristic tension resistance under fire exposure for Hilti metalexpansion anchor HST2-R V3 in cracked and uncracked concrete

				M8	M10	M12	M16
Steel failure			I			1	I
HST2-R V3							
Effective embedment depth		h _{ef,1}	[mm]	30 - 44	40 - 59	50 - 69	65 - 84
	R30	N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
Characteristic resistance	R60	N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120	N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6
Effective embedment depth		h _{ef,2}	[mm]	45 - 70	60 - 80	70 - 100	85 - 120
	R30	N _{Rk,s,fi}	[kN]	0,9	2,5	5,0	9,0
Characteristic resistance	R60	N _{Rk,s,fi}	[kN]	0,7	1,5	3,5	6,0
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0,6	1,0	2,0	3,5
	R120	N _{Rk,s,fi}	[kN]	0,5	0,7	1,0	2,0
Pullout failure							
Effective embedment depth		h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
	R30	N _{Rk,p,fi}	[kN]		·		
Characteristic resistance	R60	N _{Rk,p,fi}	[kN]		0,25	N _{Rk,p} ¹⁾	
in concrete ≥ C20/25	R90	N _{Rk,p,fi}	[kN]				
	R120	N _{Rk,p,fi}	[kN]		0,20	N _{Rk,p} ¹⁾	

 $^{(1)}N_{Rk,p}$ is the characteristic resistance for pull-out failure $N_{Rk,p,cr}$ (see Table C1) in cracked concrete C20/25 under ambient temperature

Hilti metal expansion anchor HST2 V3

Performances

Characteristic values of resistance under tension loading under fire exposure in cracked and uncracked concrete

				M8	M10	M12	M16	
Concrete cone failure			·					
HST2-R V3								
Effective embedment depth		h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120	
Characteristic resistance in concrete ≥ C20/25	R30	N ⁰ _{Rk,c,fi}	[kN]					
	R60	N ⁰ _{Rk,c,fi}	[kN]	$h_{ef} / 200 \cdot N^0_{Rk,c} \le N^0_{Rk,c}$				
	R90	N ⁰ _{Rk,c,fi}	[kN]					
	R120	N ⁰ _{Rk,c,fi}	[kN]		0,8·h _{ef} / 200·	$\mathbb{N}^{0}_{\mathrm{Rk,c}} \leq \mathbb{N}^{0}_{\mathrm{Rk,c}}$		
Creating		S _{cr,N}	[mm]		4	h _{ef}		
Spacing		S _{min}	[mm]	40	55	60	70	
		C _{cr,N}	[mm]		2	h _{ef}		
Edge distance		C _{min}	[mm]			n one side: 2 h e than one side		

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

Hilti metal expansion anchor HST2 V3

Performances

Characteristic values of resistance under tension loading under fire exposure in cracked and uncracked concrete

Table C12: Characteristic shear resistance under fire exposure for Hilti metal expansion anchor HST2 V3, HST2-F V3 and HST2 V3 BW in cracked and uncracked concrete

				M8	M10	M12	M16
Steel failure without leve	er arm						
HST2 V3, HST2-F V3 and	HST2 \	/3 BW					
Effective embedment dep	th	h _{ef,1}	[mm]	30 - 44	40 - 59	50 - 69	65 - 84
	R30	V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
Oh ann at anistis na sistema a	R60	V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120	V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6
Effective embedment dep	th	h _{ef,2}	[mm]	45 - 70	60 - 80	70 - 100	85 - 120
	R30	$V_{Rk,s,fi}$	[kN]	1,2	2,6	4,8	9,0
Characteristic registeres	R60	$V_{Rk,s,fi}$	[kN]	1,0	2,1	3,8	7,0
Characteristic resistance	R90	$V_{Rk,s,fi}$	[kN]	0,8	1,5	2,7	5,0
	R120	$V_{Rk,s,fi}$	[kN]	0,6	1,2	2,1	4,0
Steel failure with lever a	rm		·				
HST2 V3, HST2-F V3 and	HST2 \	/3 BW					
Effective embedment dep	th	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
	R30	M ⁰ _{Rk,s,fi}	[Nm]	1,3	3,4	7,5	19,1
Oh ann at anistis na sistema a	R60	M ⁰ _{Rk,s,fi}	[Nm]	1,0	2,7	5,8	14,8
Characteristic resistance	R90	M ⁰ _{Rk,s,fi}	[Nm]	0,8	2,0	4,2	10,6
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0,7	1,6	3,3	8,5
Concrete pryout failure			I		I	1	1
HST2 V3, HST2-F V3 and	HST2 \	/3 BW					
Effective embedment dep	th	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Pryout factor		k ₈	[-]	2,34	2,55	2,57	2,82
	R30	$V_{Rk,cp,fi}$	[kN]				
Characteristic resistance	R60	V _{Rk,cp,fi}	[kN]		$k_8 \cdot N_{Rk}$,c,fi(90) ¹⁾	
in concrete ≥ C20/25	R90	V _{Rk,cp,fi}	[kN]				
	R120	V _{Rk,cp,fi}	[kN]		k ₈ ·N _{Rk}	c,fi(120) ¹⁾	

In absence of other national regulations, the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

Hilti metal expansion anchor HST2 V3

Performances

Characteristic values of resistance under shear loading under fire exposure in cracked and uncracked concrete

Table C12: Continued Concrete edge failure HST2 V3, HST2-F V3, HST2 V3 BW Concrete edge failure in concrete C20/25 to C50/60 under fire exposure

 $V_{Rk,c,fi}^{0} = 0,25 \times V_{Rk,c}^{0} (\le R90)$

$$V_{Rk,c,fi}^{0} = 0,20 \text{ x } V_{Rk,c}^{0}$$
 (R120)

with $V_{Rk,c}^{0}$ = initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature

Table C13: Characteristic shear resistance under fire exposure for Hilti metal expansion anchor HST2-R V3 in cracked and uncracked concrete

				M8	M10	M12	M16
Steel failure without leve	er arm		I		1	•	
HST2-R V3							
Effective embedment dep	th	h _{ef,1}	[mm]	30 - 44	40 - 59	50 - 69	65 - 84
	R30	V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
Characteristic resistance	R60	V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120	V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6
Effective embedment depth		h _{ef,2}	[mm]	45 - 70	60 - 80	70 - 100	85 - 120
	R30	V _{Rk,s,fi}	[kN]	0,9	2,5	5,0	9,0
	R60	$V_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	0,6	1,0	2,0	3,5
	R120	V _{Rk,s,fi}	[kN]	0,5	0,7	1,0	2,0
Steel failure with lever a	rm		·				
HST2-R V3							
Effective embedment dep	th	h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
	R30	M ⁰ _{Rk,s,fi}	[Nm]	1,0	3,3	8,1	20,6
Ob and attacking the single of the second	R60	М ⁰ _{Rk,s,fi}	[Nm]	0,8	2,4	5,7	14,4
Characteristic resistance	R90	М ⁰ _{Rk,s,fi}	[Nm]	0,7	1,6	3,2	8,2
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0,6	1,2	2,0	5,1

Hilti metal expansion anchor HST2 V3

Performances

Characteristic values of resistance under shear loading under fire exposure in cracked and uncracked concrete

				M8	M10	M12	M16
Concrete pryout failure						1	
HST2-R V3							
Effective embedment depth		h _{ef}	[mm]	30 - 70	40 - 80	50 - 100	65 - 120
Pryout factor		k ₈	[-]	2,34	2,55	2,57	2,82
Characteristic resistance in concrete ≥ C20/25	R30	V _{Rk,cp,fi}	[kN]				
	R60	V _{Rk,cp,fi}	[kN]	$k_8 \cdot N_{Rk,c,fi(90)}$ 1)			
	R90	V _{Rk,cp,fi}	[kN]				
	R120	V _{Rk,cp,fi}	[kN]	k ₈ ⋅N _{Rk,c,fi(120)} ¹⁾			
Concrete edge failure							
HST2-R V3							
Concrete edge failure in co	oncrete (C20/25 to	C50/60	under fire ex	posure		
	V ⁰ _{Rk,c,fi}	= 0,25 x \	/º _{Rk,c} (≤	≤ R90)			
	V ⁰ _{Rk,c,fi}	= 0,20 x ∖	/º _{Rk,c} (F	R120)			
with $V_{Rk,c}^{0}$ = initial value of	the cha	racteristic	resistan	ce in cracked	d concrete C20	0/25 under nor	mal
temperature							
¹⁾ $N_{Rk,c,fi(90)}$ and $N_{Rk,c,fi(120)}$ s	ee Anne	x C15 with	n N ⁰ _{Rk.c.fi}	under fire ex	posure for 90	or 120 minutes	s respective

is recommended.

Hilti metal expansion anchor HST2 V3

Annex C18

Performances Characteristic values of resistance under shear loading under fire exposure in cracked and uncracked concrete