

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-22/0502

of 10 June 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Rebar connection with injection system FIS RC II
Product family to which the construction product belongs	Systems for post-installed rebar connections with mortar
Manufacturer	fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND
Manufacturing plant	fischerwerke
This European Technical Assessment contains	27 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330087-01-0601, Edition 06/2021
This version replaces	ETA-22/0502 issued on 20 July 2023

Page 2 of 27 | 10 June 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with injection system FIS RC II" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm or the fischer rebar anchor FRA or FRA HCR of sizes M12 to M24 according to Annex A and injection mortar FIS RC II are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1, C 2 and C 5
Characteristic resistance under seismic loading	See Annex B 5, C 3 and C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5 and C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

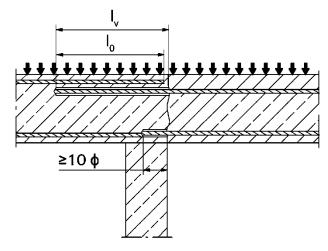
The system to be applied is: 1

Page 4 of 27 | 10 June 2024

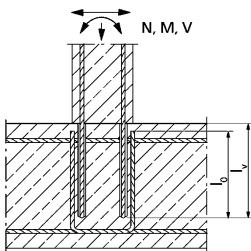
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

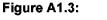
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

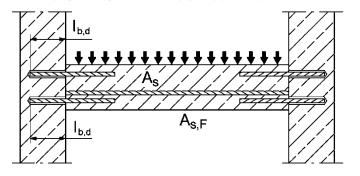
Issued in Berlin on 10 June 2024 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:


Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

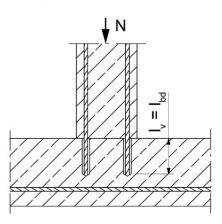
End anchoring of slabs or beams (e.g. designed as simply supported)

Figures not to scale

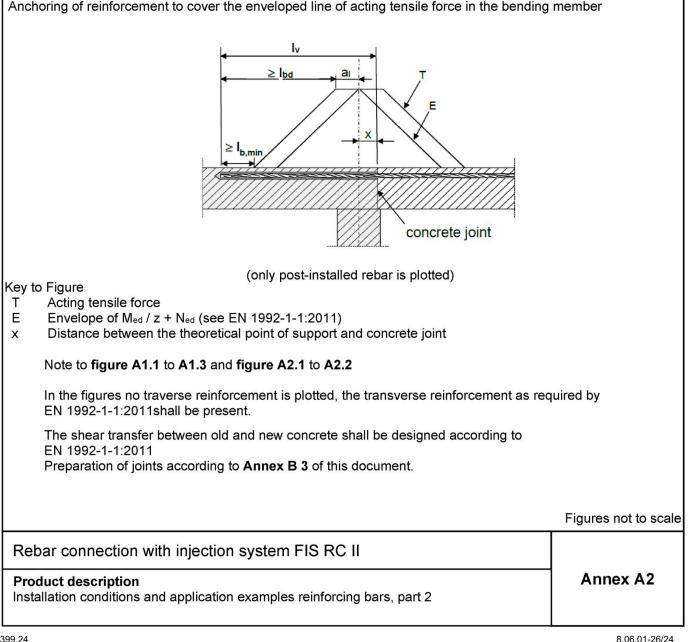
Rebar connection with injection system FIS RC II

Product description

Installation conditions and application examples reinforcing bars, part 1


Annex A1

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

Rebar connection for stressed primarily in compression

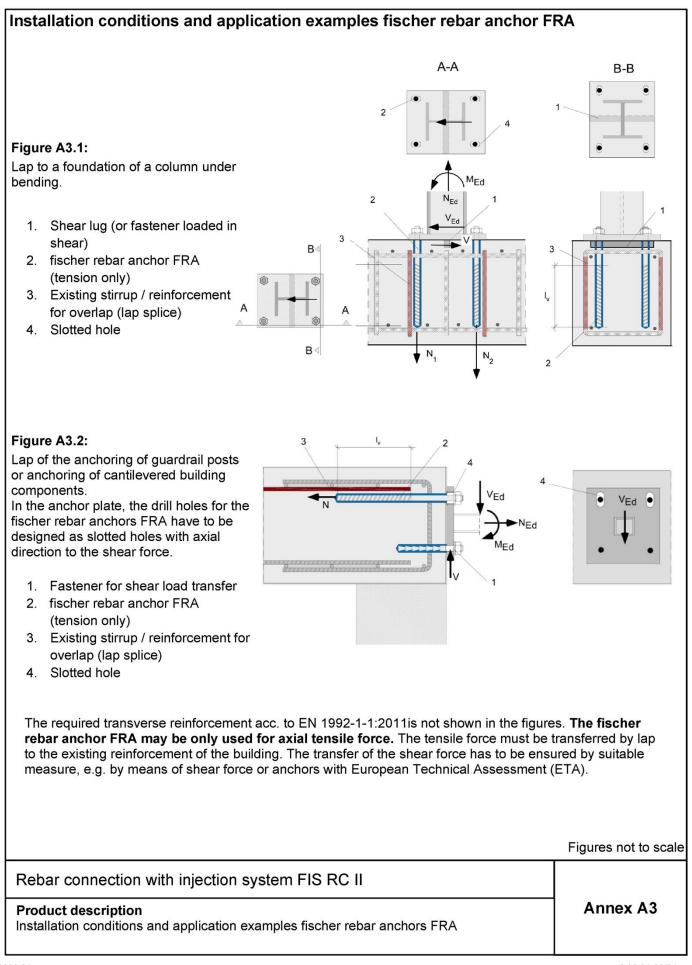


Figure A2.2:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

Overview system components						
Injection cartridge (shuttle cartridge) FIS RC II with sealing cap; Sizes: 360 ml, 825 ml						
Imprint: fischer FIS RC II, processing notes, shelf-life, hazard code times and processing times (depending on temperature), piston tra- (optional), size, volume	vel scale					
Injection cartridge (coaxial cartridge) FIS RC II with sealing cap; Sizes: 300 ml, 380 ml,	400 ml, 410 ml					
Imprint: fischer FIS RC II, processing notes, shelf-life, hazard co times and processing times (depending on temperature), piston tr (optional), size, volume	avel scale					
Static mixer FIS MR Plus for injection cartridges up to 410 ml						
Static mixer FIS JMR for injection cartridges 825 ml	<u>-</u> 141					
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS JMR						
Reinforcing bar (rebar) Sizes: \$\$, \$10, \$12, \$14, \$16, \$18, \$20, \$22, \$24, \$25, \$28, \$30, \$ mark	o32, φ40 ing setting depth					
fischer rebar anchor FRA / FRA HCR Sizes: M12, M16, M20, M24						
Blow out pump AB G Compressed-air cleaning tool ABP with fischer cor	npressed-air nozzle					
	Figures not to scale					
Rebar connection with injection system FIS RC II						
Product description Overview system components; Injection mortar, static mixer, injection adapter, reinforcing bar, fischer rebar anchor FRA, cleaning tools	Annex A4					

Properties of reinforcing bars (rebar)																		
Figure A5.1:																		
 The minimum val The maximum ou The nominal (φ: Nominal of the second second	iter reb diame	ear dian	heter o he bar	over the with ri	erib ibφ	oss +2	hall b • h (h	e: า ≤ 0),07 ·		1:20	11						
Table A5.1: Insta	Ilatio	n con	ditio	ons fo	or re	eba	ars											
Nominal diameter of the	e bar	ф	8 ¹⁾	10 ¹⁾	12	1)	14	16	18	20	22	24		25 ¹⁾	28	30	32	40
Nominal drill hole diameter	do		10 12	12 14	14	16	18	20	25	25	30	30	30	35	35	40	40	55
Drill hole depth	h ₀									h₀	= I _v							
Effective embedment depth	lv	[mm]		acc. to static calculation														
Minimum thickness of concrete member	h min			l _v + 30 (≥ 100) l _v + 2d₀														
		can be of reb	ars															
Designation				einforc				-			<u> </u>	.:41.						
Reinforcing bar EN 1992-1-1:2011, Anne	x C		f _{yk}	rs and and k = f _{tk} =	acco	ordi							92-1-	-1/NA	۱.			
															Figur	es no	ot to s	cale
Rebar connection w	vith inj	ection	ı syst	em F	IS F	RC	II											
Rebar connection with injection system FIS RC II Product description Properties and materials of reinforcing bars (rebar)																		

Properties of fischer rebar anchors FRA										
Fig	Figure A6.1: 2 3 4									
	head marking									
	-	ار ب								
	-	l _{e,ges}								
						·				
He	ad marking e.g.:	FRA (for stain	less ste	el)						
		FRA HCR (for	hiah ca	orrasian	-resist	ant steel)				
Tabl	e A6.1: Insta	llation conditions	-				A			
Thre	ad diameter			M1	2 ²⁾	M16	N	20	M2	4 ²⁾
	nal diameter	ф	[mm]		2	16		20	2	
	nal drill bit diameter		[mm]	14	16	20		25	30	35
	nole depth ($h_0 = I_{e,ges}$		[mm]			_v +	-	loulation	<u> </u>	
	tive embedment der nce concrete surfac	e to	[mm]			according to st		iculation	1	
welde	ed join	le	[mm]			10				
	mum Diameter of ance hole in the	Pre-positioned d _f	[mm]	1	4	18		22	2	6
fixtur	e ¹⁾	Push through d _f	[mm]	16	18	22	2	26	32	40
	num thickness of rete member	h _{min}	[mm]	h₀⊣	- 30		h₀ -	⊦ 2d ₀		
Maxi	num torque momen	t for max T _{inst}	[Nm]	5	0	100	1	50	15	50
		e holes in the fixture see	e EN 19	92-4:20	18.					
2)	Both drill bit diamete	ers can be used.								
Tabl	e A6.2: Mate	rials of fischer reb	ar and	hors	FRA					
Part	Description				Mate	erials				
		FRA Corrosion resistand acc. to EN 1993-1-4	ce class			Corrosion r acc. to EN 1		nce clas		
1	Reinforcing bar	Bars and de-coiled rod:	s class I	3 or C w	rith f _{yk} a	and k according t				
	Round bar with	EN 1992-1-1:NA; f _{uk} = 1								
2	partial or full thread	Stainless steel, str according to EN			,	Stainless s according	•	•),
3	3 Washer Stainless steel, Stainless steel,									
	S ISO 7089:2000 according to EN 10088-1:2014 according to EN 10088-1:2014 Stainless steel, strength class 80, Stainless steel, strength class 80, Stainless steel, strength class 80,),			
4 Hexagon nut acc. to EN ISO 3506-2:2020, according to EN 10088-1:2014 acc. to EN ISO 3506-2:2020, according to EN 10088-1:2014										
	Figures not to scale									
Rebar connection with injection system FIS RC II										
Proc	luct description							A 1	nnex A	16
		of fischer rebar anchor	s FRA							-

Specifications of intended	-						
Table B1.1: Overview use Anchorages subject to Image: Subject to	e and performan		RC II with				
Anchorages subject to	Reinfor	cing bar	1	r anchor FRA			
Hammer drilling or compressed air drilling with standard drill bit	all sizes						
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert", Bosch "Speed Clean", Hilti "TE-CD, TE-YD")	Nominal drill bit diameter (d₀) 12 mm to 35 mm						
Use category I1 dry or wet concrete	all sizes						
uncracked Characteristic resistance under static and quasi static loading, in cracked concrete	all sizes	Tables: C1.1 C1.2 C1.3 C2.1 C2.2 C2.3	all sizes	Tables: C1.1 C1.2 C1.3 C2.1 C2.2 C2.3 C5.1 C5.2			
Characteristic resistance under seismic loading	all sizes	Tables: C3.1 C3.2 C3.3 C4.1 C4.2 C4.3	No performa	nce assessed			
Installation direction	D3 (down	ward and horizontal	and upwards (e.g. o	overhead))			
Installation temperature		T _{i,min} = -10 °C to	o T _{i,max} = +40 °C				
Service Temperature temperature range	-40 °C to	o +80 °C		emperature +80 °C; mperature +50 °C)			
Resistance to fire	all sizes	Annex C6	all sizes	Table C5.3			
Rebar connection with inject Intended use Specifications part 1		Annex B1					

Specifications of intended use part 2

Anchorages subject to:

- Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 40 mm; FRA M12 to M24.
- Characteristic resistance under seismic loading: reinforcing bar (rebar) size 8 mm to 40 mm.
- 50 and 100 years working life under seismic loading: reinforcing bar (rebar) size 8 mm to 40 mm.
- Resistance to fire: reinforcing bar (rebar) size 8 mm to 40 mm; FRA M12 to M24.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Concrete strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016.
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content
- according to EN 206:2013+A1:2016.
- Non-carbonated concrete Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2011. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions) for fischer rebar anchors FRA

 For all conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A6 Table A6.2.

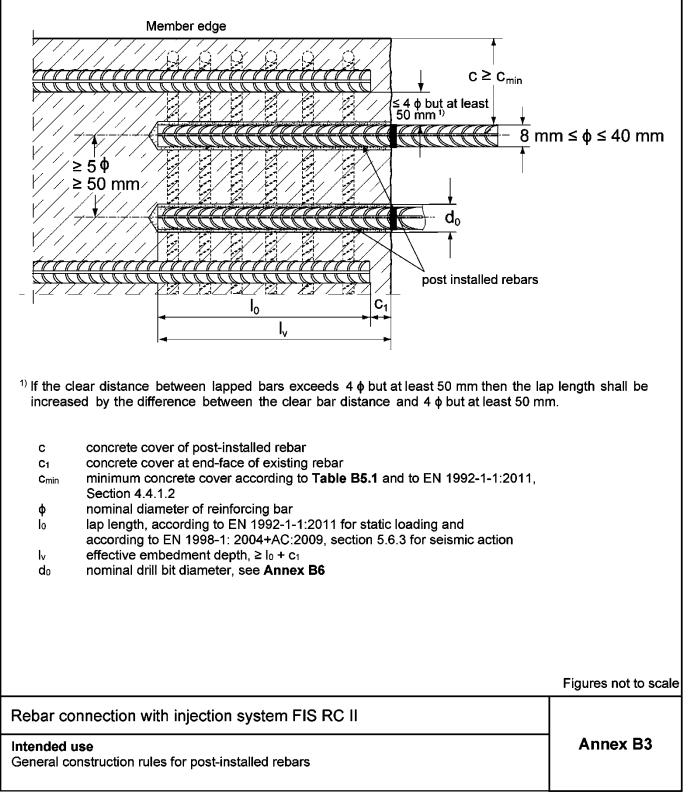
Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2011; EN 1992-1-2:2011 and Annex B3 and B4.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- The installation of post-installed rebar respectively fischer rebar anchor FRA shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

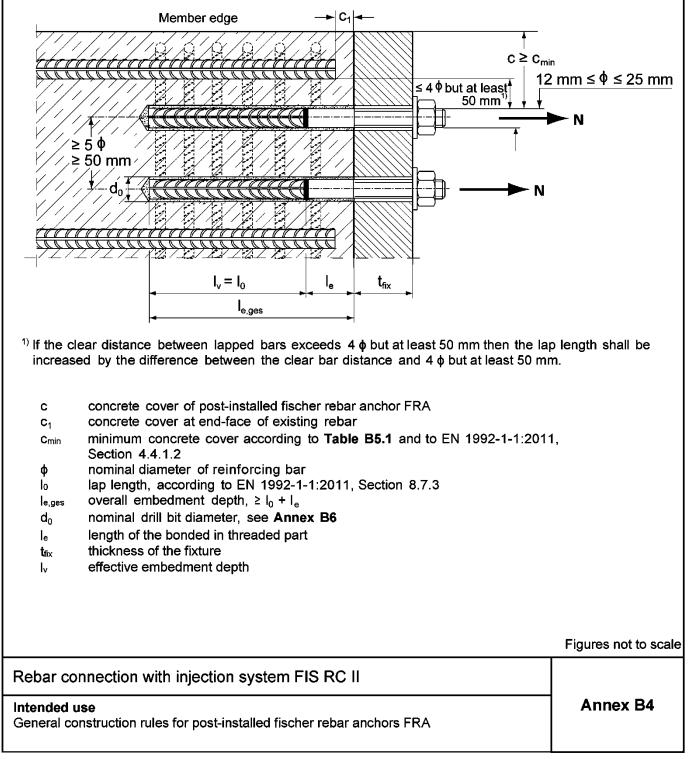
Rebar connection with injection system FIS RC II


Intended use Specifications part 2 Annex B2

General construction rules for post-installed rebars

Figure B3.1:

- · Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2011.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.



General construction rules for post-installed fischer rebar anchors FRA

Figure B4.1:

- · Only tension forces in the axis of the fischer rebar anchor FRA may be transmitted.
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with a European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as slotted holes with the axis in the direction of the shear force.

Table B5.1		//inimun Irilling to		ete cover _{Cmin} 1	⁾ depe	nding of the drillir	ng method a	nd the
Drilling me	thod	nominal o of reinf bar ø		cing Without drilling aid ²⁾				
Hammer dr		<		30 mm + 0,06 l	, ≥ 2 ¢	30 mm + 0,02 l _v ≥ 2	¢	
with standar bit or hollow		≥ 2	25	40 mm + 0,06 l _v ≥ 2		40 mm + 0,02 l _v ≥ 2	φ	
Compresse	ed air	< 2	25	50 mm + 0,08 l _v		50 mm + 0,02 l _v		
drilling		≥∶	25	60 mm + 0,08 l _v ≥ 2 φ		60 mm + 0,02 l _v ≥ 2	ф 	Drilling aid
 ¹⁾ See Annex B3, figure B3.1 and Annex B4, figure B4.1 Note: The minimum concrete cover as specified in EN 1992-1-1:2011 must be observed. The same minimum concrete covers apply to rebar elements in case of seismic loading. c_{min,seis} = 2 φ. ²⁾ For FRA (HCR) l_{e,ges} instead of l_v. Table B5.2: Dispensers and cartridge sizes corresponding to maximum embedment depth l_{v,max} 								
reinforcing bars (rebar)		cher ebar	Manı	ual dispenser		u and pneumatic spenser (small)		pneumatic er (large)
Nais (ichai)		or FRA				Cartridge size		
			< 500 ml > 500 ml				ml	

bars (rebar)	rebar		dispenser (large)			
	anchor FRA					
		< 5	00 ml	> 500 ml		
φ [mm]	thread [-]	lv,max / le,g	ges,max [mm]	l _{v,max} / l _{e,ges,max} [mm]		
8			1000			
10			1000			
12	FRA M12	1200				
	FRA HCR M12	1000				
14				1800		
16	FRA M16		1500			
10	FRA HCR M16		1500			
18, 20, 22,	FRA M20		1300			
24	FRA HCR M20	700	1500			
25	FRA M24	700	1000			
20	FRA HCR M24		1000	2000		
28		700	700			
30.32		700	700	Ti, > 0 °C: 1500		
30, 32		700	700	T _i , ≤ 0 °C: 2000		
40		700	700	1200		

Table B5.3: Conditions for use static mixer without an extension tube

Nominal drill hole diameter	do		10	12	14	16	18	20	24	25	30	35	40	55
Drill hole depth ho	FIS MR Plus	[mm]	N	90	≤ 120	≤ 140	≤ 150	≤ 160	≤ 190			≤ 210		
by using	FIS JMR		-	-	≤ 90	≤ 160	≤ 180	≤ 190	≤ 2	20		≤2	250	

Rebar connection with injection system FIS RC II

Intended use Annex B5 Minimum concrete cover; dispenser and cartridge sizes corresponding to maximum embedment depth

Z89399.24

Temperature in the anchorage base	Maximum working time ¹⁾ t _{work}	Minimum curing time ²⁾ t _{cure}				
[°Č]	FIS RC II	FIS RC II				
-10 to 0	20 min ³⁾	12 h				
>0 to 5	13 min ³⁾	3 h				
> 5 to 10	9 min ³⁾	90 min				
> 10 to 20	5 min	60 min				
> 20 to 30	4 min	45 min				
> 30 to 40	2 min ⁴⁾	35 min				

¹⁾ Maximum time from the beginning of the injection to rebar / fischer rebar anchor FRA setting and positioning.

²⁾ For wet concrete the curing time must be doubled.

³⁾ If the temperature in the concrete falls below 10 °C the cartridge must be warmed up to +15 °C.

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge must be cooled down to +15 °C up to 20 °C.

Table B6.2:	Installation tools for drilling and cleaning the bore hole and injection of the
	mortar

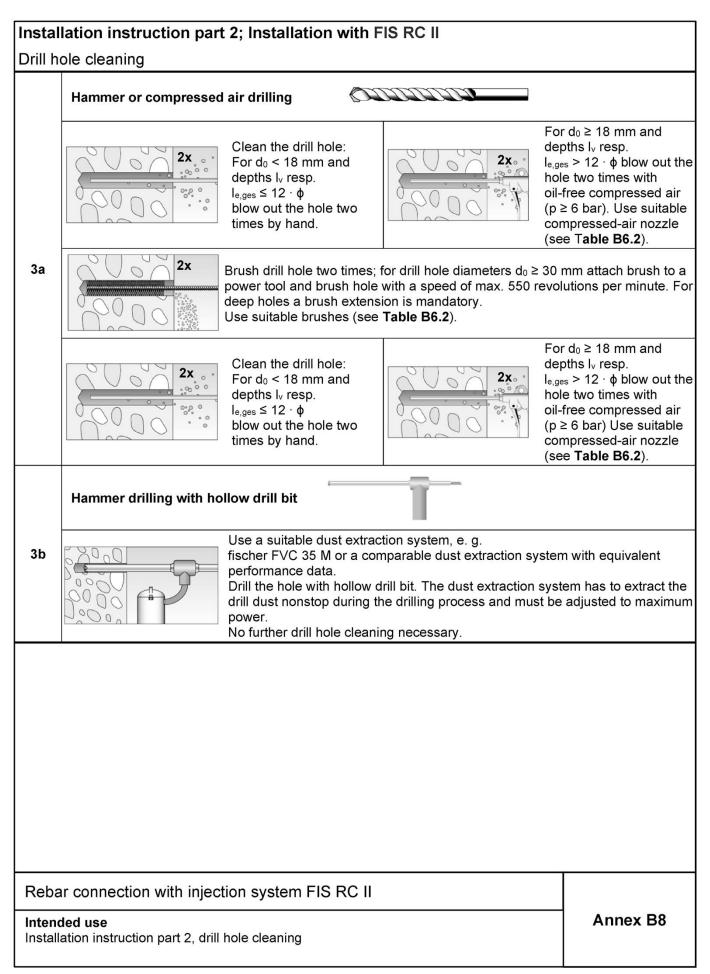
reinforcing			Drilling and	cleaning		Inie	ction
bars (rebar)	fischer rebar anchor FRA	Nominal drill bit diameter	Diameter of cutting edge	Steel brush diameter	Diameter of fischer compressed- air nozzle	Diameter of extension tube	Injection adapter
φ [mm]	Designation	d₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[colour]
8 ¹⁾		10	≤ 10,50	11			
0 ''		12	≤ 12,50	12,5			nature
10 ¹⁾		12	≤ 12,50	12,5	11	9	nature
10 -		14	≤ 14,50	15			blue
12 ¹⁾	FRA M12	14	≤ 14,50	15			500
	FRA HCR M12	16	≤ 16,50	17	15		red
14		18	≤ 18,50	19			yellow
16	FRA M16 FRA HCR M16	20	≤ 20,55	21,5	19		green
18	FRA M20	25	≤ 25,55	26,5	19		black
20	FRA HCR M20	25	3 20,00	20,0			DIACK
22		30	≤ 30,55	32		9 or 15	
24			3 00,00	52		30113	grey
25 ¹⁾	FRA M24	30	≤ 30,55	32	28		
20 /	FRA HCR M2	35	≤ 35,70	37			brown
28		35	≤ 35,70	37			brown
30		40	≤ 40,70	42	38		red
32		40	<u> </u>	42	50		
40		55	≤ 55,80	58	50	15	nature

¹⁾ Both drill bit diameters can be used

Rebar connection with injection system FIS RC II

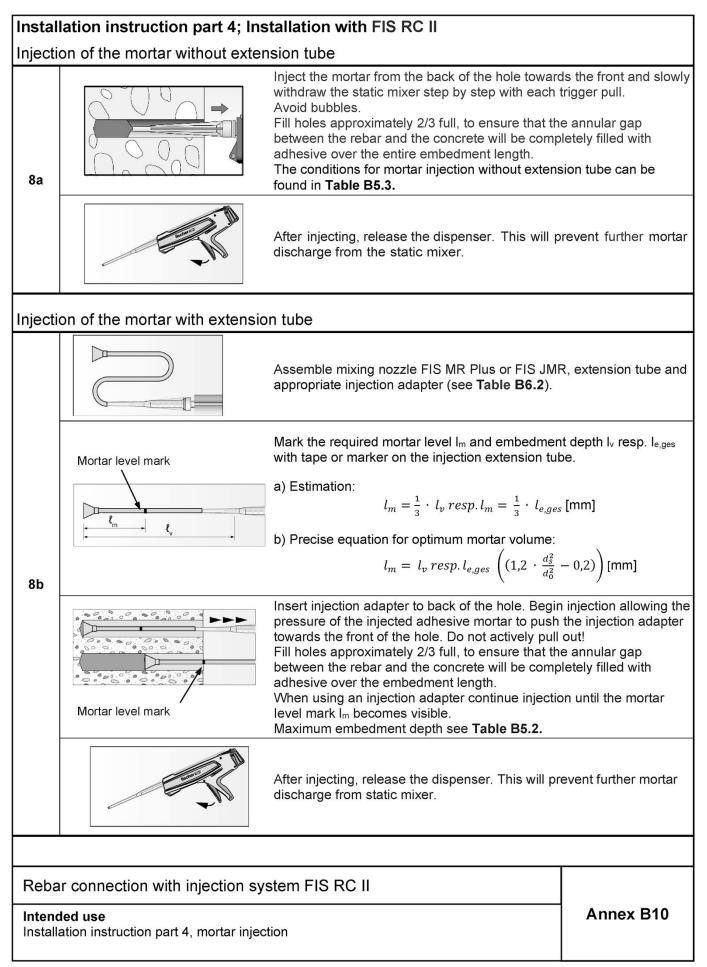
Intended use

Working times and curing times;


Installation tools for drilling and cleaning the bore hole and injection of the mortar

Annex B6

		Wear well-fitting p mortar FIS RC II.	y Data Sheet (SDS) before use for proper a protective goggles and protective gloves wh ve the instructions for use provided with ea	nen working with
lole (Note	llation instruction drilling e: Before drilling, remove ase of aborted drill holes	e carbonized concre	ete; clean contact areas (see Annex B 2)	
	Hammer drilling or c	ompressed air dril	ling	
1a			Drill the hole to the required embedme hammer drill with carbide drill bit set in mode or a pneumatic drill. Drill bit sizes see Table B6.2 .	
1b	Hammer drilling w	ith hollow drill bit	Drill the hole to the required embedme hammer drill with hollow drill bit in rota Dust extraction conditions see drill ho Annex B8 . Drill bit sizes see Table B6.2 .	ation hammer mode
		C _{drill}	Measure and control concrete cover $(c_{drill} = c + \emptyset / 2)$ Drill parallel to surface edge and to ex Where applicable use drilling aid.	
2			For holes I _v > 20 cm use drilling aid. Three different options can be conside A) drilling aid B) Slat or spirit level C) Visual check	ered:
		<u> </u>	Minimum concrete cover c _{min} see Tab	le B5.1.
Reba	ar connection with in	jection system F	FIS RC II	
	ded use			Annex B7



	Before use, ensure that the rebar or the FRA is dry and free of oil or other residu Mark the embedment depth I_v (e.g. with Insert rebar in borehole, to verify drill hold depth I_v resp. $I_{e,ges.}$	e. tape)
		e depth and setting
	Twist off the sealing cap Twist on the static mixer (the spiral in the clearly visible).	e static mixer must b
fischer EZ	Place the cartridge into a suitable disper	iser.
X		
connection with injection system F	IS RC II	
	connection with injection system F	Connection with injection system FIS RC II

	t rebar / fischer rebar a	t 5; Installation with FIS RC II	
9		Insert the rebar / fischer rebar anchor FRA slowly twisted until the embedment mark is reached. Recommendation: Rotation back and forth of the reinforcement bar or the fis FRA makes pushing easy.	
10		For overhead installation, support the rebar / fischer reba secure it from falling till mortar started to harden, e.g. usir	
11		 After installing the rebar or fischer rebar anchor FRA the completely filled with mortar. Proper installation Desired embedment depth is reached lv, resp. le,ges: embedment mark at concrete surface Excess mortar flows out of the borehole after the reinserted up to the embedment mark. 	
12		Observe the working time " t_{work} " (see Table B6.1), which temperature of base material. Minor adjustments to the reanchor FRA position may be performed during the workin Full load may be applied only after the curing time " t_{cure} " in (see Table B 6.1).	ebar / fischer rebar ig time "t _{work} ".
13	max T _{inst}	Mounting the fixture for fischer rebar anchor FRA, max T _{inst} see T able A6.1.	
Reba	ar connection with injec	tion system FIS RC II	
inten	ded use		Annex B11

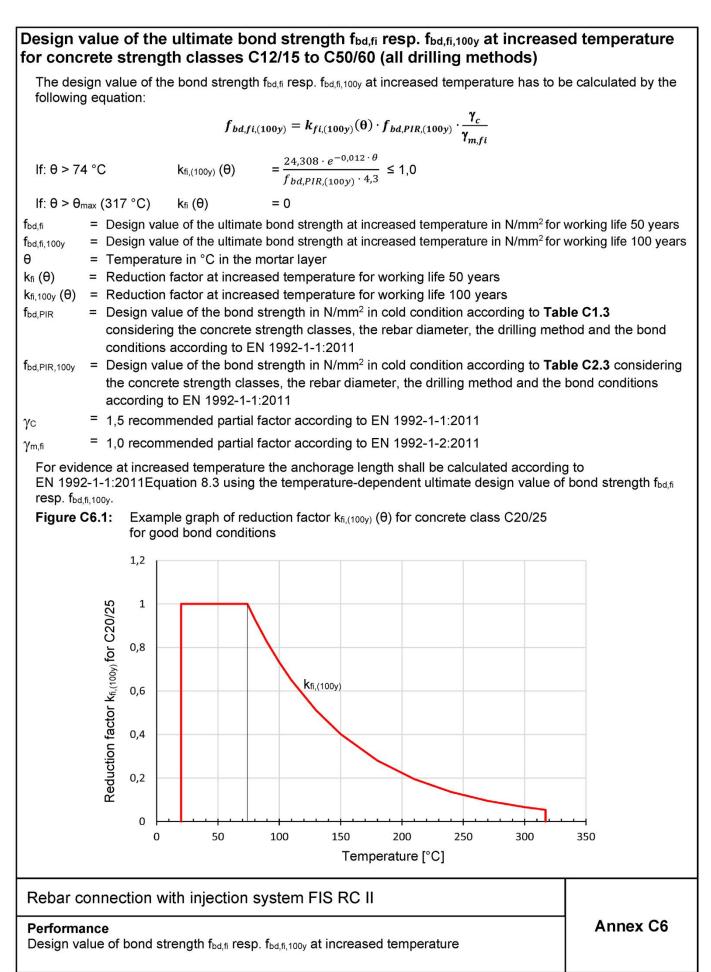
according to Tabl									
	Amplificat					rength cla	ass and o	drilling me	ethod
Hammer drilling, he Rebar / fischer	ollow ariili 	ng and co	mpressec		ig fication fa	ctor au			
rebar anchor FRA					ete strengt				
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 25			1,	00		1	1,	10	1,20
28 - 32					1,00				
40		1,0		1,07	1,22	1,23	1,24	1,26	1,27
	Bond effic method	ciency fac	ctor k₀ re	lated to c	concrete	strength	class and	d drilling	
Hammer drilling, he	ollow drilli	ng and co	mpressec	l air drillin	g				
Rebar / fischer				Bond e	fficiency f	actor k _b			
rebar anchor FRA				1	ete strengt	1	1	1	I
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 25					1,00		1		
28 - 32	1,00 0,91 0,84 0,8							0,84	
20 02			1,	00			0,91	0,04	0,04
40 Table C1.3: [Design va	class and	1,00 he bond :	strength			0,82 lated to d	0,76	0,71
40 Table C1.3: [s f fbd: D th by	-	class and fbd e of the bo ameter for	1,00 he bond a drilling r nd strengtl good bond	strength nethod fo n in N/mm ² condition	or good b considerin (for all othe	N/mm ² re ond cond ng the cond er bond col	0,82 lated to o ditions crete streng nditions mo	0,76 concrete	0,71
40 Table C1.3: [s f fbd: D th by a	Strength c $b_{bd,PIR} = k_b$ vesign value rebar dia y $\eta_1 = 0,7)$	class and fbd e of the bo ameter for nended par	1,00 he bond a drilling r nd strengtl good bond tial factor y	strength nethod fo n in N/mm ^a condition _{/c} = 1,5 aco	or good b considerin (for all othe cording to l	N/mm ² re ond cond ng the cond er bond col	0,82 lated to o ditions crete streng nditions mo	0,76 concrete	0,71
40 Table C1.3: [s f f _{bd} : D th by au k _b : B	strength c $b_{d,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ nd recommond efficient	class and fbd e of the bo ameter for hended par ncy factor a	1,00 he bond a drilling r nd strengtl good bond tial factor g according t	strength nethod fo n in N/mm ² condition _{Ye} = 1,5 aco to Table C	considerin (for all othe cording to 1 1.2	N/mm ² re ond cond ng the cond er bond col	0,82 lated to o ditions crete streng nditions mo	0,76 concrete	0,71
40 Table C1.3: [s f fbd: D th by at kb: B Hammer drilling, ho Rebar / fischer	strength c $b_{d,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ nd recommond efficient	class and fbd e of the bo ameter for hended par ncy factor a	1,00 he bond a drilling r nd strengtl good bond tial factor g according t	strength nethod fo n in N/mm ² condition re = 1,5 act to Table C I air drillin	considerin (for all othe cording to 1 1.2	N/mm ² re ond cond ng the cond er bond col	0,82 lated to o ditions crete streng nditions mu -1:2011	0,76 concrete	0,71
40 Table C1.3: [s f fbd: D th by an kb: B Hammer drilling, ho Rebar / fischer rebar anchor FRA	strength c $b_{d,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ nd recommond efficient	class and fbd e of the bo ameter for hended par ncy factor a	1,00 he bond a drilling r nd strengtl good bond tial factor g according t	strength nethod fo n in N/mm ² condition fo = 1,5 aco to Table C I air drillin Bond stre	considerin (for all othe cording to 1 1.2	N/mm ² re ond cond ong the cond ond cond EN 1992-1 R [N/mm ²]	0,82 lated to o ditions crete streng nditions mu -1:2011	0,76 concrete	0,71
40 Table C1.3: [s f fbd: D th by at kb: B Hammer drilling, ho Rebar / fischer	strength c $b_{d,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ nd recommond efficient	class and fbd e of the bo ameter for hended par ncy factor a	1,00 he bond a drilling r nd strengtl good bond tial factor g according t	strength nethod fo n in N/mm ² condition fo = 1,5 aco to Table C I air drillin Bond stre	considerin (for all othe cording to l 1.2 angth f _{bd,Pl}	N/mm ² re ond cond ong the cond ond cond EN 1992-1 R [N/mm ²]	0,82 lated to o ditions crete streng nditions mu -1:2011	0,76 concrete	0,71
40 Table C1.3: [s f fbd: D th by an kb: B Hammer drilling, ho Rebar / fischer rebar anchor FRA	strength c $b_{d,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ and recommond efficient ollow drilli	class and fbd e of the bo ameter for nended par ncy factor a ng and co	1,00 he bond a drilling r nd strengtl good bond tial factor y according t mpressec	strength nethod fo n in N/mm ² condition $\gamma_c = 1,5$ acc to Table C I air drillin Bond stre Concre	considerin (for all othe cording to 1.2 angth f _{bd,Pl} ete strengt	N/mm ² re ond cond ong the cond ong the cond EN 1992-1 R [N/mm ²] h class	0,82 lated to o ditions crete streng nditions mo -1:2011	0,76 concrete gth classes ultiply the v	0,71 and alues
40 Table C1.3: [s fbd: D th by ai kb: B Hammer drilling, ho Rebar / fischer rebar anchor FRA φ [mm]	strength c $b_{d,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ and recommond efficient ollow drilli C12/15	class and fbd e of the bo ameter for nended par ncy factor a ng and co C16/20	1,00 he bond a drilling r nd strengtl good bond tial factor g according t mpressec C20/25	strength nethod fo n in N/mm ² condition $\gamma_c = 1,5$ acc to Table C I air drillin Bond stre Concre	considerin (for all othe cording to 1.2 angth f _{bd,Pl} ete strengt C30/37	N/mm ² re ond cond ong the cond ong the cond r bond cond EN 1992-1 R [N/mm ²] h class C35/45	0,82 lated to o ditions crete streng nditions mo -1:2011 C40/50	0,76 concrete gth classes ultiply the v	0,71 and alues
40 Table C1.3: [s f fbd: D th by ai kb: B Hammer drilling, ho Rebar / fischer rebar anchor FRA φ [mm] 8 - 25	strength c $_{bd,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ nd recommond efficient ollow drilli C12/15 1,6	class and fbd e of the bo ameter for hended par ncy factor a ng and co C16/20 2,0	1,00 he bond a drilling r nd strengtl good bond tial factor g according t mpressec C20/25 2,3	strength nethod fo n in N/mm ² condition $\gamma_c = 1,5$ acc to Table C I air drillin Bond stre Concre C25/30 2,7	considerin (for all other cording to b 1.2 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	N/mm ² re ond cond er bond cond EN 1992-1 R [N/mm ²] h class C35/45 3,4	0,82 lated to o ditions crete streng nditions mo -1:2011 C40/50 3,7	0,76 concrete gth classes ultiply the v C45/55 4,0	0,71 and ralues C50/60 4,3
40 Table C1.3: [s f fbd: D th by all kb: B Hammer drilling, ho Rebar / fischer rebar anchor FRA φ [mm] 8 - 25 28 - 32	strength c $_{bd,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7)$ nd recommond efficient ollow drilli C12/15 1,6 1,6	Class and fbd e of the bo ameter for hended par ncy factor a ng and co C16/20 2,0 2,0	1,00 he bond a drilling r nd strengtl good bond tial factor g according t mpressec C20/25 2,3 2,3	strength nethod for n in N/mm ² condition $\gamma_c = 1,5$ acc to Table C I air drillin Bond stree Concre C25/30 2,7 2,7	considerin (for all other cording to b 1.2 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	N/mm ² re ond cond er bond cond EN 1992-1 R [N/mm ²] h class C35/45 3,4	0,82 lated to o ditions crete streng nditions mo -1:2011 C40/50 3,7 3,4	0,76 concrete gth classes ultiply the v C45/55 4,0	0,71 and ralues C50/60 4,3
40 Table C1.3: [s f fbd: D th by al kb: B Hammer drilling, ho Rebar / fischer rebar anchor FRA φ [mm] 8 - 25 28 - 32	strength c $_{bd,PIR} = k_b$ vesign value the rebar dia y $\eta_1 = 0,7$) nd recommond efficient collow drilli C12/15 1,6 1,6 1,5	class and fbd e of the bo ameter for nended par ncy factor a ng and co 2,0 2,0 1,8	1,00 he bond a drilling r nd strengtl good bond tial factor y according t mpressed C20/25 2,3 2,3 2,1	strength nethod for n in N/mm ² condition $r_c = 1,5$ acc to Table C l air drillin Bond stree Concre C25/30 2,7 2,7 2,5	considerin (for all other cording to b 1.2 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	N/mm ² re ond cond er bond cond EN 1992-1 R [N/mm ²] h class C35/45 3,4	0,82 lated to o ditions crete streng nditions mo -1:2011 C40/50 3,7 3,4	0,76 concrete gth classes ultiply the v C45/55 4,0	0,71 and ralues C50/60 4,3

to EN 1992-1-1:20	chorage ler 011 shall b	-			•	-	y according	g to Table	C2.1.
	Amplificat nethod	tion facto	ľ (Xib,100y	related to	concret	e strengt	h class a	nd drilling	9
Hammer drilling, ho	ollow drilli	ng and co	mpressed	l air drillin	g				
Rebar / fischer				Amplific	ation fact	Οľ α lb,100y			
rebar anchor FRA				Concre	ete strengt	h class			
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 12			1,00			1,10	1,20	1,20	1,30
14 - 25	1,00					1,10	1,20	1,20	1,20
28 - 32				1,	00				1,10
40	1,	,0	1,02	1,19	1,20	1,21	1,22	1,23	1,25
ń	Bond effic nethod			•		ete strenç	gth class	and drilli	ng
Hammer drilling, ho	ollow drilli	ng and co	mpressed		-				
Rebar / fischer rebar anchor FRA					ciency fac				
	040445	0.4.0.00	000/05	1	ete strengt	r	0.40/50	045/55	050/04
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 12				4.00	1,00			0.00	0.00
14 - 25 28 - 32			~~	1,00	0.00	0.00		0,92	0,86
/X = 3/	1,00 0,90								
					-	0,90	0,82	0,76	0,76
40 Table C2.3: [Design va strength o	1,0 alues of t	⁰⁰ he bond	-	0,89 fbd,PIR,100y	0,80 in N/m m	0,73 1² related	0,67	0,63
40 Table C2.3: E s fi f _{bd} : D th by ar	strength c ba,PIR,100y = vesign value ne rebar dia y $\eta_1 = 0,7)$ nd recomm	1, alues of t class and k _{b,100y} · f _{bc} e of the bo ameter for hended par	he bond drilling r nd strengtl good bond tial factor	nethod for n in N/mm ² condition $y_c = 1,5$ acc	0,89 fbd,PIR,100y or good b considerir (for all othe	0,80 in N/mm ond cond ng the cond er bond cond	0,73 1 ² related ditions crete streng nditions mu	0,67 to concre gth classes	0,63 ete
40 Table C2.3: E S fi fbd: D th by ar kb,100y: Br	strength c bd,PIR,100y = vesign value ne rebar dia y $\eta_1 = 0,7)$ nd recommond efficien	1, alues of t class and k _{b,100y} · f _{bc} e of the bo ameter for hended par	he bond drilling r nd strengti good bond tial factor	nethod for n in N/mm ² condition $r_c = 1,5$ aco to Table C	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2	0,80 in N/mm ond cond ng the cond er bond cond	0,73 1 ² related ditions crete streng nditions mu	0,67 to concre gth classes	0,63 ete
40 Table C2.3: [S fbd: D fbd: D th by ан kb,100y: В	strength c bd,PIR,100y = vesign value ne rebar dia y $\eta_1 = 0,7)$ nd recommond efficien	1, alues of t class and k _{b,100y} · f _{bc} e of the bo ameter for hended par	he bond drilling r nd strengtl good bond tial factor according	method for in N/mm ² condition $r_c = 1,5 acc to Table C I air drillin$	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2 g	0,80 in N/mm ond cond ng the cond er bond cond EN 1992-1	0,73 1 ² related ditions crete streng nditions mu -1:2011	0,67 to concre gth classes	0,63 ete
40 Table C2.3: E S fbd: D th by ar kb,100y: Br Hammer drilling, ho	strength c bd,PIR,100y = vesign value ne rebar dia y $\eta_1 = 0,7)$ nd recommond efficien	1, alues of t class and k _{b,100y} · f _{bc} e of the bo ameter for hended par	he bond drilling r nd strengtl good bond tial factor according	nethod for n in N/mm ² condition $\gamma_c = 1,5 accto Table Cl air drillincond stren$	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2 g	0,80 in N/mm ond cond ong the cond er bond cond EN 1992-1	0,73 1 ² related ditions crete streng nditions mu -1:2011	0,67 to concre gth classes	0,63 ete
40 Table C2.3: 5 fi fbd: D th by ar kb, 100y: Bu Hammer drilling, ho Rebar / fischer	strength c bd,PIR,100y = vesign value ne rebar dia y $\eta_1 = 0,7)$ nd recommond efficien	1, alues of t class and k _{b,100y} · f _{bc} e of the bo ameter for hended par	he bond drilling r nd strengtl good bond tial factor according	nethod for n in N/mm ² condition $\gamma_c = 1,5 accto Table Cl air drillincond stren$	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2 g gth fbd,PIR, ²	0,80 in N/mm ond cond ong the cond er bond cond EN 1992-1	0,73 1 ² related ditions crete streng nditions mu -1:2011	0,67 to concre gth classes	0,63 ete and ralues
40 Table C2.3: [s fbd: D th by ar <u>k_{b,100y}: Br Hammer drilling, hor</u> Rebar / fischer rebar anchor FRA	strength c bd,PIR,100y = vesign value ne rebar dia y $\eta_1 = 0,7)$ nd recommond efficien ond efficien	1, alues of t blass and kb,100y • fbc e of the bo ameter for hended par ncy factor a ng and co	he bond drilling r nd strengtl good bond tial factor according mpressec E	nethod for n in N/mm ² condition $\gamma_c = 1,5 \text{ acc}$ to Table C l air drillin cond stren Concret	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2 g gth fbd,PIR, ete strengt	0,80 in N/mm ond cond ong the cond er bond cond EN 1992-1	0,73 1 ² related ditions crete streng nditions mu -1:2011 2]	0,67 to concre of classes ultiply the v	0,63 ete and ralues
40 Table C2.3: [S fi fbd: D th by ar k _{b,100y} : Br Hammer drilling, ho Rebar / fischer rebar anchor FRA φ [mm]	strength c bd,PIR,100y = vesign value the rebar dia y $\eta_1 = 0,7)$ and recommon ond efficient ollow drilli	1, alues of t class and k _{b,100y} • fbc e of the bo ameter for hended par ncy factor a ng and co C16/20	he bond drilling r nd strengtl good bond tial factor mpressec E C20/25	nethod for n in N/mm ² condition $f_c = 1,5$ acc to Table C I air drillin Cond stren Concre	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2 g gth fьd,PIR, ² ete strengt C30/37	0,80 in N/mm ond cond ong the c	0,73 ² related ditions crete streng nditions mu -1:2011 ²] C40/50	0,67 to concre gth classes ultiply the v	0,63 ete and alues C50/60
40 Table C2.3: F f _{bd} : D f _{bd} : D t f _{bd} : D t f _{bd} : D t t t b y a k _{b,100y} : B Hammer drilling, ho Rebar / fischer rebar anchor FRA φ [mm] 8 - 12	strength c bd,PIR,100y = vesign value the rebar dia y $\eta_1 = 0,7$) nd recomm ond efficien ollow drilli C12/15 1,6	1, alues of t class and k _{b,100y} · f _{bc} e of the bo ameter for hended par ncy factor a ng and co C16/20 2,0	he bond drilling r drilling r d drilling r d d d d d d d d d d d d d d d d d d d	nethod for n in N/mm ² condition $f_c = 1,5$ acd to Table C l air drillin cond stren Concre C25/30 2,7	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2 g gth fbd,PIR, ete strengt C30/37 3,0	0,80 in N/mm ond cond ong the cond er bond cond EN 1992-1 100y [N/mm h class C35/45 3,4	0,73 1 ² related ditions crete streng nditions mu -1:2011 2] C40/50 3,7	0,67 to concre oth classes ultiply the v C45/55 4,0	0,63 ete and alues C50/60 4,3
40 Table C2.3: f f _{bd} : D th by ar k _{b,100y} : Br Hammer drilling, ho Rebar / fischer rebar anchor FRA φ [mm] 8 - 12 14 - 25	strength c bd,PIR,100y = vesign value the rebar dia y $\eta_1 = 0,7)$ nd recomm ond efficien ollow drilli C12/15 1,6 1,6	1, alues of t class and k _{b,100y} · fbc e of the bo ameter for nended par ncy factor a ng and co C16/20 2,0 2,0	he bond drilling r nd strengt good bond tial factor mpressed C20/25 2,3 2,3	nethod for n in N/mm ² condition $r_c = 1,5$ acc to Table C l air drillin concre C25/30 2,7 2,7	0,89 fbd,PIR,100y or good b considerir (for all othe cording to l 2.2 g gth fbd,PIR, ete strengt C30/37 3,0 3,0	0,80 in N/mm ond cond ong the cond er bond cond EN 1992-1 100y [N/mm h class C35/45 3,4 3,4 3,0	0,73 ² related ditions crete streng nditions mu -1:2011 ²] C40/50 3,7 3,7	0,67 to concre oth classes ultiply the v C45/55 4,0 3,7	0,63 ete and alues C50/60 4,3 3,7

The minimum ato EN 1992-1-1	anchorage len 1:2011 shall be						ing to Table	C3.1.
Table C3.1:	Amplificati method	ion factor	α _{lb,seis} relat	ed to con	crete strer	igth class	and drilling	g
Hammer drilling	, hollow drillir	ng and com	pressed air	drilling				
Rebar			An	nplification	factor Calb, se	is		
φ [mm]	Concrete strength class							
4 []	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 25		·	1,0			1,	1	1,2
28 - 32				1,	0			
40	_1)	1,0	1,07	1,22	1,23	1,24	1,26	1,27
¹⁾ No per	formance ass	essed		I		I		
Table C3.2:	Bond effic		•		.		ng and	
lammer drilling	, hollow drillir	ng and com	pressed air	drilling				
Rebar			Во	nd efficiend	cy factor kb,	seis		
φ [mm]			1	Concrete st	rength class			
+ [·····]	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 25				1,0	00			
28 - 32			1,00			0,91	0,84	0,84
40	_1)	1,00	0,86	0,76	0.60	0,63	0,58	
¹⁾ No per	formance ass		0,86	0,10	0,69	0,00	0,58	0,54
		essed lues of the ling and c l condition	e bond stre ompressed	ength f _{bd,Pl} d air drillin	_{R,seis} in N/r g under s	nm² for ha eismic ac	ammer dril	ling,
Table C3.3:	formance asse Design va hollow dril good bonc f _{bd,PIR,seis} =	essed lues of the ling and co l condition k _{b,seis} • f _{bd}	e bond stre ompressed as with a so	ength f _{bd,Pl} d air drillin ervice life	_{R,seis} in N/r g under s	nm² for ha eismic ac	ammer dril	ling,
Table C3.3:	formance asse Design va hollow dril good bonc f _{bd,PIR,seis} =	essed lues of the ling and co l condition k _{b,seis} • f _{bd}	e bond stre ompressed is with a se opressed air bond	ength f _{bd,Pl} d air drillin ervice life r drilling d strength f	R,seis in N/r g under s of 50 year bd,PIR,seis [N/ 1	nm² for ha eismic ac s mm²]	ammer dril	ling,
Table C3.3:	formance ass Design va hollow dril good bonc f _{bd,PIR,seis} =	essed lues of the ling and co l condition k _{b,seis} • f _{bd}	e bond stre ompressed is with a se opressed air bond	ength f _{bd,Pl} d air drillin ervice life r drilling d strength f	R,seis in N/r g under s of 50 year bd,PIR,seis [N/ i rength class	nm² for ha eismic ac s mm²]	ammer dril	ling, for
Table C3.3: Hammer drilling Rebar	formance asse Design va hollow dril good bonc f _{bd,PIR,seis} =	essed lues of the ling and co l condition k _{b,seis} • f _{bd} ng and com	e bond stre ompressed is with a se opressed air bond	ength f _{bd,Pl} d air drillin ervice life r drilling d strength f Concrete st	R,seis in N/r g under s of 50 year bd,PIR,seis [N/ 1	nm² for ha eismic ac s mm²]	ammer dril ction and f	ling, for
Table C3.3: Hammer drilling Rebar φ [mm]	formance ass Design va hollow dril good bonc fbd,PIR,seis =	essed lues of the ling and co l condition k _{b,seis} • f _{bd} ng and com	e bond stre ompressed is with a so pressed air bond C25/30	ength f _{bd,Pl} d air drillin ervice life d drilling d strength f Concrete st C30/37	R,seis in N/r g under s of 50 year bd,PIR,seis [N/ /i rength class C35/45	nm² for ha eismic ac s mm²] C40/50	ammer dril ction and f	ling, for C50/60
Table C3.3: Hammer drilling Rebar φ [mm] 8 - 25	formance asse Design va hollow dril good bonc fbd,PIR,sels =	essed lues of the ling and co l condition k _{b,seis} • f _{bd} ng and com <u>C20/25</u> 2,3	bond stree ompressed s with a se pressed air bond C25/30 2,7	ength f _{bd,Pl} d air drillin ervice life <u>d strength f</u> <u>Concrete st</u> <u>C30/37</u> 3,0	R,seis in N/r g under s of 50 year of 50 year <u>bd,PIR,seis</u> [N/r rength class C35/45 3,4	nm² for ha eismic ac s mm²] C40/50 3,7	C45/55 4,0	ling, for <u>C50/60</u> 4,3
Table C3.3: Hammer drilling Rebar φ [mm] 8 - 25 28 - 32 40	formance ass Design va hollow dril good bonc fbd,PIR,seis = , hollow drillin C16/20 2,0 2,0	essed lues of the ling and co l condition k _{b,seis} • f _{bd} ng and com C20/25 2,3 2,3	bond stree ompressed s with a se pressed air bond C25/30 2,7	ength f _{bd,Pl} d air drillin ervice life <u>d strength f</u> <u>Concrete st</u> <u>C30/37</u> 3,0	R,seis in N/r g under s of 50 year of 50 year <u>bd,PIR,seis</u> [N/r rength class C35/45 3,4 3,4	nm² for ha eismic ac s mm²] C40/50 3,7	C45/55 4,0	ling, for <u>C50/60</u> 4,3

Z89399.24

Minimum anc for 100 years The minimum a	working life	;					Initions			
to EN 1992-1-1 C4.1.	1:2011 shall be	e multiplied I	by the releva	ant amplifica	ation factor o	(Ib,seis, 100y ac	cording to T	able		
Table C4.1:	Amplificati method	on factor o	Xlb,seis100y ľ	elated to	concrete s	trength cla	ass and dr	illing		
lammer drilling,	hollow drillin	a and com	pressed air	drilling						
•		<u>g ana oom</u>	-		actor α _{lb,seis}	100v				
Rebar		Concrete strength class								
φ [mm]	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 -12		1,00 1,10 1,20								
14 - 25		1,0	0		1,10	1,20	1,20	1,20		
28 - 32				1,0				1,10		
40	_1)	1,02	1,19	1,20	1,21	1,22	1,23	1,25		
¹⁾ No per	formance asse	essed								
Table C4.2: Iammer drilling;	Bond effici compresse , hollow drillin	ed air drilli	ng with a	service life						
Rebar			Bon	d efficiency	/ factor k _{b,se}	eis,100y				
φ [mm]				Concrete st	trength class	;				
Ψ []	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 12				1,	,00					
14 - 25			1,	00			0,92	0,86		
28 - 32		1,00		0,90	0,90	0,82	0,76	0,76		
40	_1)	0,86	0,74	0,66	0,59	0,54	0,50	0,47		
¹⁾ No per Fable C4.3:	formance asse Design val drilling, ho for good be fod,PIR,seis,10	ues of the llow drillin ond condi	g and con tions with	npressed a	air drilling	unde <mark>r s</mark> ei				
lammer drilling	, hollow drillir	ng and com								
Rebar			bond		I,PIR,seis,100y					
φ [mm]	C16/20	C20/25	C25/30	Concrete si C30/37	trength class C35/45	C40/50	C45/55	C50/60		
8 - 12	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		
14 - 25	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7		
28 - 32	2,0	2,3	2,7	2,7	3,0	3,0	3,0	3,4		
40	_1)		I		1,8					
¹⁾ No per	formance asse	essed								
Rebar connec	ction with inj	ection sys	tem FIS R	RC II						
Performance Amplification fac bond strength fb		oond efficier	ncy factor k₀	,seis,100y, Des	ign values o	f the	Ann	ex C4		



fischer rebar anc			nchors F		for rebar part		
	hor FRA /	RA HCR		M12	M16	M20	M24
Characteristic ter	nsile yield	strength	for rebar	part	2	2	·
Rebar diameter	1995. 	ф	[mm]	12	16	20	25
Characteristic tens yield strength for r		f _{yk}	[N/mm ²]	500	500	500	500
Partial factor for re	ebar part	$\gamma_{Ms,N}^{1)}$	[-]		1,	15	
¹⁾ In absence of Table C5.2:		eristic re		e to steel failu	ire under tens	ion loading o	ffischer
fischer rebar anc	hor FRA /	RA HCR		M12	M16	M20	M24
Characteristic res							
Characteristic resi	stance	N _{Rk,s}	[kN]	62	111	173	263
Partial factor					÷		
Partial factor		$\gamma_{Ms,N}^{1)}$	[-]		1	,4	
fischer rebar anc	hor FRA /	RAHCR		M12	M16	M20	
	a sana a san a san a sana ang a	1			1000 CONTROL (1000)		M24
Characteristic resi	R3	0		2,5	4,7	7,4	M24 10,6
Characteristic resi ance to steel failu	s- re R6	0	[kN]	2,5 2,1		7,4 6,1	0.000.000-0.000.000
	s- re R6	0 NRksfi	[kN]		4,7	24	10,6
ischer rebar anc				nd fire exposur	1	1	1

bearing capacity $N_{Rk,s,fi}$ under fire exposure for fischer rebar anchor FRA

8.06.01-26/24

