

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0078 of 9 August 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

MULTI-MONTI-plus

Bonded screw fasteners for use in concrete

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Werk 1, HECO-Werk 2

16 pages including 3 annexes which form an integral part of this assessment

EAD 332795-00-0601, Edition 03/2023

European Technical Assessment ETA-23/0078

Page 2 of 16 | 9 August 2024

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-23/0078

Page 3 of 16 | 9 August 2024

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The bonded screw fastener MULTI-MONTI-plus is a combination of a screw anchor in size 10 and 12 mm made of galvanised steel and the injection mortar HEP-1000. The anchor is screwed into a predrilled cylindrical drill hole filled with mortar HEP-1000. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterized by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 and B3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1
Displacements (static and quasi-static loading)	See Annex C5
Characteristic resistance for seismic performance category C1	See Annex C2
Characteristic resistance and displacements for seismic performance category C2	See Annex C3 and C5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance	
Durability	See Annex B1	

European Technical Assessment ETA-23/0078

Page 4 of 16 | 9 August 2024

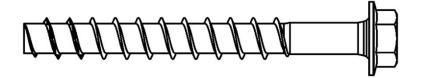
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

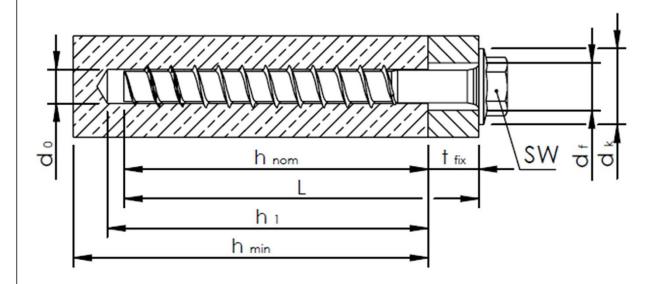
In accordance with the European Assessment Document EAD 332795-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 August 2024 by Deutsches Institut für Bautechnik


Beatrix Wittstock beglaubigt:
Head of Section Tempel

Product and installed condition

MMS-plus SS

MMS-plus SS, type hexagonal head with washer

 d_0 = nominal drill hole diameter h_{nom} = nominal embedment depth

h₁ = Drill Hole Depth

h_{min} = minimum thickness of concrete member

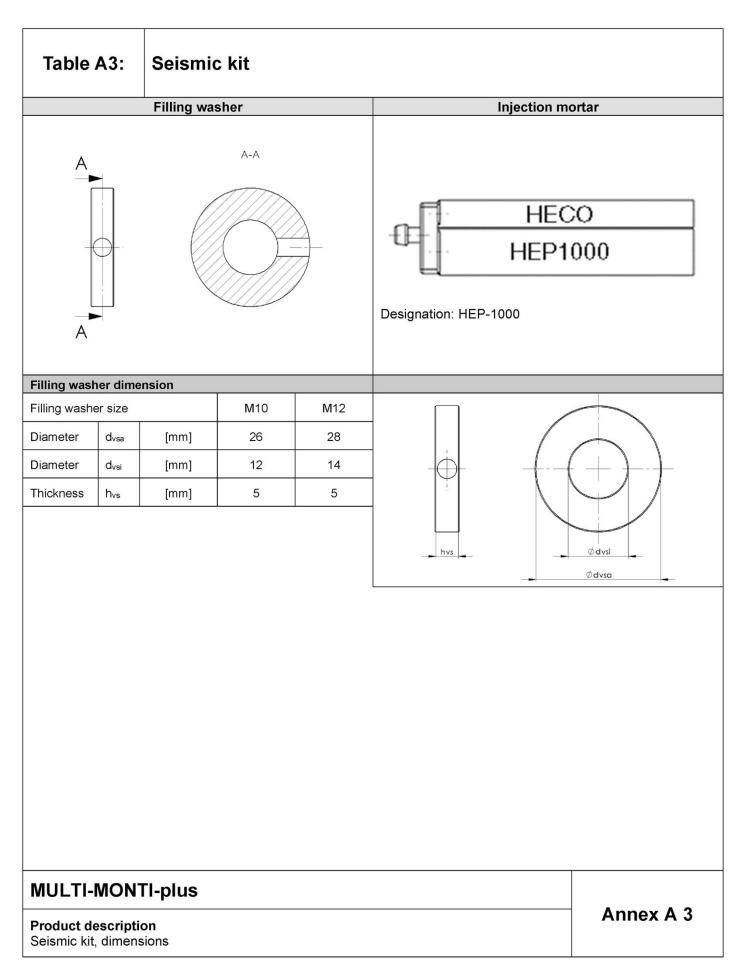
 t_{fix} = thickness of fixture

 d_f = diameter of clearance hole L = nominal screw length

MULTI-MONTI-plus	
Product description Product and installed condition	Annex A 1

Table A2.1:	Screw types			
	Head types			Designation
		The state of the s	1)	Hexagonal head with and without insert washer (alternative version with cone under the head) (S)
		(2002) (2002)	2)	Hexagonal head and pressed washer (SS)
		The sale	3)	Hexagonal head with pressed wsher and cone under the disc (SSK)
		ST SWALE	4)	Pan head with small round head (P)
	attitititi)	XX O XX HILL YANG X	5)	Mounting rail screw with large round head (MS)

Table A2.2: Dimensions, material and marking


Carbon steel 1)		Ø		
		10	12	
External diameter	ds	[mm]	10,5	12,6
Core Diameter	dk	[mm]	7,3	9,05
Longth	L≥	[mm]	50	75
Length	L≤	[mm]	500	600
Ultimate strain	A5	[%]		≤ 8

1) galvanized steel according to EN 10263-4:2017 (multi-layer coating systems are possible)

The state of the s	Stamping	Feature
	H MMS+ e.g. 7.5 e.g. 75	Factory sign Screw type screw size screw length
Materials	Stamping	
Carbon steel	MMS+	

MULTI-MONTI-plus	
Product description Screw designs, dimensions, material and marking	Annex A 2

Table B1: Speci	ficatio	on of	the intended use		
Table B1: Anchorage s	ubject t	o:			
Size MMS-plus			10	12	
Nominal embedment depth	h _{nom}	[mm]	65	90	
Head Shapes		1-5			
Static and quasi-static loads i	n cracke	d and			
uncracked concrete		ok			
Fire exposure					
Size MMS-plus			10	12	
Nominal embedment depth	h _{nom}	[mm]	10	90	
Head Shapes		1-	-5		
Sciencia action C1		0	k		
Seismic action		C2	ok		

Base material:

- Reinforced or unreinforced normal concrete without fibres according to EN 206-1:2013 + A1:2016
- Strength class C20/25 to C50/60 according to EN 206-1:2013 + A1:2016
- · Cracked or uncracked concrete.

Temperature in base material:

· at installation:

+0°C to + 40°C

· in-service

-40°C to +72°C

(max. long-term temperature +50°C and max. short-term temperature +72°C)

Application conditions (environmental conditions):

· Components in dry indoor conditions: all types of screws

Design:

- The design of the anchors is carried out under the responsibility of an engineer experienced in the field of anchoring and concrete construction.
- Taking into account the loads to be anchored, verifiable calculations and design drawings must be made. The position of the dowel is indicated on the design drawings (e.g. position of the dowel in relation to the reinforcement or supports, etc.).
- The design of the anchorage under static and quasi-static stress and under fire stress is carried out in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.
- The design under transverse stress according to EN 1992-4:2018, clause 6.2.2 applies to all diameters d f of the through-hole in the attachment specified in Annex B2, Table B1 and Annex B3, Table B2.

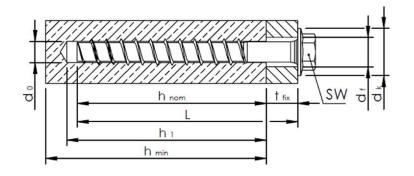
Installation:

- Borehole production only by hammer drilling.
- Installation by appropriately trained personnel under the supervision of the site manager.
- It is not possible to continue turning the dowel slightly.
- The dowel head rests against the attachment and is not damaged, or the required screw-in depth has been reached.

MULTI-MONTI-plus	
Intended Use Specification	Annex B 1

Table B2: Working and curing time

Temperature in base material		naterial	Maximum working time	Minimum curing time ¹⁾
	Т		t work	t cure
+0°C	to	+4°C	90 min	144 h
+5°C	to	+9°C	80 min	48 h
+10°C	to	+14°C	60 min	28 h
+15°C	to	+19°C	40 min	18 h
+20°C	to	+24°C	30 min	12 h
+25°C	to	+34°C	12 min	9 h
+35°C	to	+39°C	8 min	6 h
	+40°C		8 min	4 h
Cartr	ige tempe	rature	+5°C to +40°C	


The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

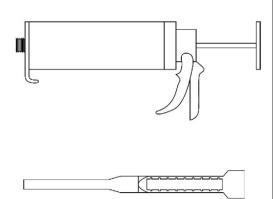

MULTI-MONTI-plus	
Intended Use Working time and curing time	Annex B 2

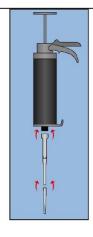
Table B3:	Installation	parameter	MMS-plus
-----------	--------------	-----------	----------

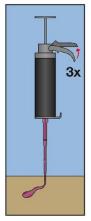
Size MMS-plus			e e	10	12
Nominal embedment	depth	h _{nom}	[mm]	65	90
Nominal drill diamete	r	d ₀	[mm]	8	10
Drill Cutting Ø		d _{cut} ≤	[mm]	8,45	10,45
Borehole depth with	cleaning	h₁ ≥	[mm]	75	100
Through-hole attach	nent	d _f ≤	[mm]	12,5	14,5
Minimum component thickness h _{min} [[mm]	115	150	
	inimum acing	Smin	[mm]	35	35
e	inimum Ige sance	C _{min}	[mm]	60	60
Recommended installation tool [Nm]			[Nm]	Impact screw driver, max. power output T _{max} according to manufacturer's specifications	
				400	650

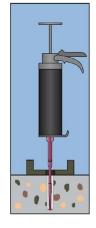

MULTI-MONTI-plus

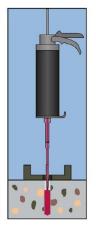
Intended Use Installation parameter Annex B 3

Table B4:

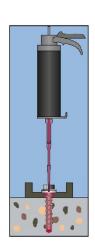

Installation instruction MMS-plus

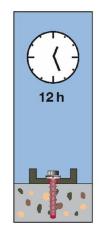

Create drill hole


Clean drill hole


Mounting the mixing nozzle onto the cartridge

Discard 3 strokes of motar until an evenly mixed mortar purr is obtained


Fill the drill hole with mortar from the bottom of the drill hole


Fill the drill hole with mortar using at least 2-3 full strokes

Screw the screw with the filling washer into the drill hole. When the required setting depth is reached, mortar must emerge at the top of the drill hole. Otherwise, the attachment point may not be used.

Fill the backfill disc with mortar

Leave the mortar with the screw in place for at least 12 hours. Observe the curing time depending on the concrete temperature – see mortar cartridge

MULTI-MONTI-plus

Intendend Use Installation instruction

Annex B 4

Size MMS-plus				10	12
Nominal embedmen	t depth	h _{nom}	[mm]	65	90
Steel failure for ten	sile and shear	loads			
Characteristic resist	ance	N _{Rk,s}	[kN]	32,1	49,9
Partial safety factor		γMs,N	[-]	1,50	
Characteristic resist	ance	$V^0_{Rk,s}$	[kN]	13,7	24,1
Partial safety factor		γMs,V	[-]	1,25	
Ductility factor		k ₇	[-]	0,8	
Characteristic resist	ance	M ⁰ Rk,s	[Nm]	34,5	66,8
Pullout					
Characteristic resist	ance in	N _{Rk,p}	[kN]	≥ N ^o rk.	
uncracked concrete	C20/25	INRK,p	[VIA]	≥ IV Rk,	·
Characteristic resist	ance in	N _{Rk,p}	[kN]	9	16
cracked concrete C2		INKK,P	[KIA]		10
Increasing factor for	ncreasing factor for C30/37			1,22	
$N_{Rk,p} = N_{Rk,p(C20/25)} * \iota$		Ψс	[-]	1,41	
C50/60				1,58	
Concrete cone fail	ure and splittir	ng failu	re		
Effective anchoring	depth	h _{ef}	[mm]	50	70
Factor for	cracked	k cr,N	[-]	7,7	
1 40101 101	uncracked	k urc,N	[-]	11,0	
Concrete cone	edge distance	Ccr,N	[mm]	1.5 h _{ef}	
	spacing	S _{cr,N}	[mm]	3 h _{ef}	
Splitting	edge distance	C _{cr,sp}	[mm]	1.5 h _{ef}	
spacing		S _{cr,sp}	[mm]	3 h _{ef}	
Installation factor Yinst		[-]	1,0		
Concrete pryout failu	ire				
k-factor		k ₈	[-]	1,0	2,0
Concrete edge bre	akage				
Effective length of th		$I_f = h_{ef}$	[mm]	50	70
Effective diameter of the anchor		d _{nom}	[mm]	8	10

MULTI-MONTI-plus	
Performances Characteristic values for static and quasi-static loading	Annex C 1

Table C2	Perfo	rmance	for se	eismic category C1 I	MMS-plus
Size MMS-plus				10	12
Nominal embedn	nent depth	h _{nom}	[mm]	65	90
Steel failure for	tensile and she	ar loads			
		N _{Rk,s,C1}	[kN]	24,1	37,4
Characteristic re-	niotonoo	γMs,N	[-]		1,5
Characteristic resistance		V _{Rk,s,C1}	[kN]	9,6	16,9
		γMs,V	[-]		1,25
Factor for annular gap α _{gap}		[-]		0,5	
Pullout					
Characteristic resistance		N _{Rk,p,C1}	[kN]	6,8	12
Concrete cone f	ailure				
Effective anchori	ng depth	h _{ef}	[mm]	50	70
Concrete cone	edge distance	C _{cr,N}	[mm]	1.5 h _{ef}	
Concrete cone	spacing	S _{cr,N}	[mm]		3 h _{ef}
Installation factor	•	Y inst	[-]		1,0
Concrete pryou	t failure				
k-factor		k ₈	[-]	1,0	2,0
Concrete edge f	ailure				
Effective length of	of the anchor	$I_f = h_{ef}$	[mm]	50	70
Effective diameter	er of the anchor	d _{nom}	[mm]	8	10

MULTI-MONTI-plus	
Performances Characteristic values for seismic action C1	Annex C 2

Table C3: Perform	ance for s	eismic c	ategory C2 MMS-	plus
Size MMS-plus			10	12
Nominal embedment depth	h _{nom}	[mm]	65	90
Steel failure for tensile and shear	loads			
	N _{Rk,s,C2}	[kN]	24,1	37,4
Characteristic resistance	γMs,N			1,5
Characteristic resistance	V _{Rk,s,C2}	[kN]	8,57	15,25
	γMs,V		1	,25
Factor for annular gap	$lpha_{\sf gap}$	[-]		0,5
Pullout	N. William			
Characteristic resistance	N _{Rk,p,C2}	[kN]	1,37	4,48
Concrete cone failure				
Effective anchoring depth	h _{ef}	[mm]	50	70
Concrete cone edge distance	C cr,N	[mm]	1.	5 h _{ef}
spacing	S _{cr,N}	[mm]	3	h _{ef}
Installation factor	Y inst	[-]		1,0
Concrete pryout failure				
k-factor	k ₈	[-]		2,0
Concrete edge failure				
Effective length of the anchor	I _f = h _{ef}	[mm]	50	70
Effective diameter of the anchor	d _{nom}	[mm]	8	10

MULTI-MONTI-plus	
Performances Characteristic values for seismic action C2	Annex C 3

Table C4:	Performa	ance ι	ınder	fire exposure MMS-plu	s
Size MMS-plus	,			10	12
Nominal embedmer	nt depth	h _{nom}	[mm]	65	90
Characteristic resi	stance under t	ension a	and she	ar load / $F_{Rk,fi} = N_{Rk,s,fi} = N_{Rk,p,fi} = V$	/ _{Rk,s,fi}
	R30	F _{Rk,fi}	[kN]	2,3	3,9
	R60	F _{Rk,fi}	[kN]	1,4	2,1
	R90	F _{Rk,fi}	[kN]	1,0	1,5
Characteristic	R120	F _{Rk,fi}	[kN]	0,8	1,2
resistance	R30	M ⁰ Rk,s,fi	[Nm]	2,7	5,3
	R60	M ⁰ Rk,s,fi	[Nm]	1,5	2,8
	R90	M^0 _{Rk,s,fi}	[Nm]	1,1	2,0
	R120	M ⁰ Rk,s,fi	[Nm]	0,9	1,6
Edge distance					
	R30 to R120	C _{cr,fi}	[mm]	2 h	ef
Spacing					
	R30 to R120	S _{cr,fi}	[mm]	2 C _{cr}	r,fi

MULTI-MONTI-plus	
Performances Characteristic values under fire exposure	Annex C 4

Table C5.1:	Displac	cement	s under tensile load Mi	MS-plus		
Size MMS-plus			10	12		
Nominal embedment depth	h _{nom}	[mm]	65	90		
Tensile load	N	[kN]	7,9	12,8		
Dienlagement	δησ	[mm]	0,1	0,2		
Displacement	δ _{N∞}	[mm]	0,7	0,6		
Tensile load	N	[kN]	4,3	6,4		
Displacement	δηο	[mm]	0,1	0,1		
Displacement	δ _{N∞}	[mm]	0,1	0,2		
Table C5.2:	Displac	cement	s under shear load MM	-		
Size MMS-plus	1.	T	10	12		
Nominal embedment depth	h _{nom} V	m[m]	65	90		
Shear load		[kN]	8,0	12,0		
Displacement	δ _{V0}	[mm]	0,1	0,2		
Table C5.3:	Displacements under tensile and shear load for seismic					
Size MMS-plus			10	12		
Nominal embedment depth	h _{nom}	[mm]	65	90		
Tensile load						
Displacement	δ _{N,C2(DLS)}	[mm]	0,08	0,14		
	δ _{N,C2(ULS)}	[mm]	0,75	1,29		
Shear Load		_				
Displacement	δv,c2(DLS)	[mm]	0,50	0,68		
Displacement	δv,c2(ULS)	[mm]	1,85	2,27		

MULTI-MONTI-plus	A
Performances Displacements for static, quasi-static and seismic tensile and shear loads	Annex C 5