

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-23/0842 of 11 June 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer FIS EM Plus dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen

fischerwerke

21 pages including 3 annexes which form an integral part of this assessment

EAD 330250-01-0601, Edition 10/2023

European Technical Assessment ETA-23/0842

English translation prepared by DIBt

Page 2 of 21 | 11 June 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z44375.24 8.06.01-230/23

Page 3 of 21 | 11 June 2024

Specific Part

1 Technical description of the product

The "fischer injection system FIS EM Plus" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS EM Plus and a steel element according to Annex A3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (Assessment method C: Linearized function)	Performance
Characteristic fatigue resistance under cyclic tension loading	
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)	
Characteristic concrete cone and splitting fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,sp,0,n}$ $(n = 1 \text{ to } n = \infty)$	See Annex C1, C3 and C4
Characteristic combined pull-out /concrete cone fatigue resistance $\Delta \tau_{Rk,p,0,n}$ (n = 1 to n = ∞)	
Characteristic fatigue resistance under cyclic shear loading	
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ $(n = 1 \text{ to } n = \infty)$	
Characteristic concrete edge fatigue resistance $\Delta V_{Rk,c,0,n}$ ($n=1$ to $n=\infty$)	See Annex
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ (n = 1 to n = ∞)	C2, C3 and C4

Z44375.24 8.06.01-230/23

Page 4 of 21 | 11 June 2024

Essential characteristic (Assessment method C: Linearized function)	Performance			
Characteristic fatigue resistance under cyclic combined tension and shear loading				
Characteristic steel fatigue resistance a_s ($n = 1$ to $n = \infty$)	See Annex C1 to C4			
Load transfer factor for cyclic tension and shear loading				
Load transfer factor ψ_{FN}, ψ_{FV}	See Annex C1 to C4			

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

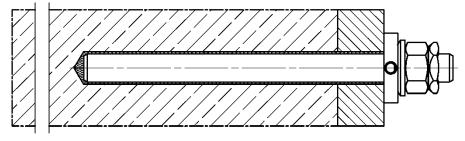
Issued in Berlin on 11 June 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section

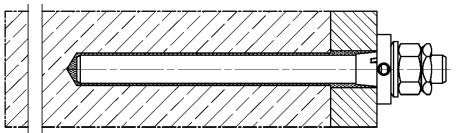
Stiller

Z44375.24 8.06.01-230/23

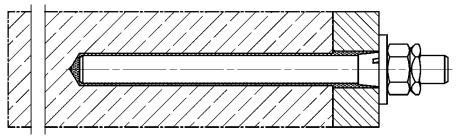


Installation conditions

fischer anchor rod FIS A or RG M with fischer injection system FIS EM Plus


Pre-positioned installation with dynamic set (annular gap filled with mortar)

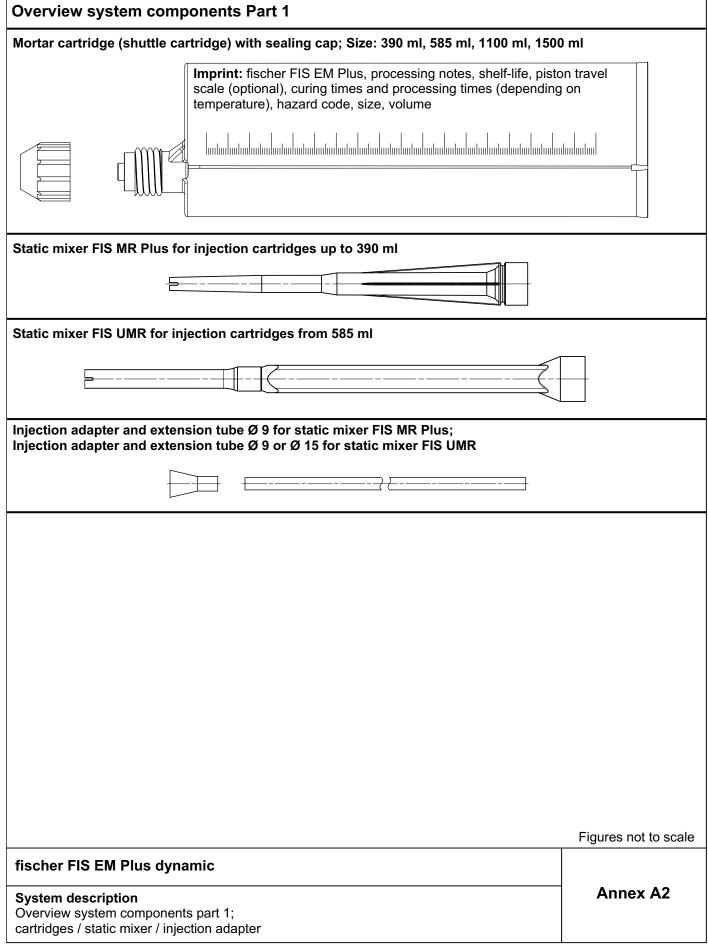
Size: M12, M16, M20, M24


Push through installation with dynamic set (annular gap filled with mortar)

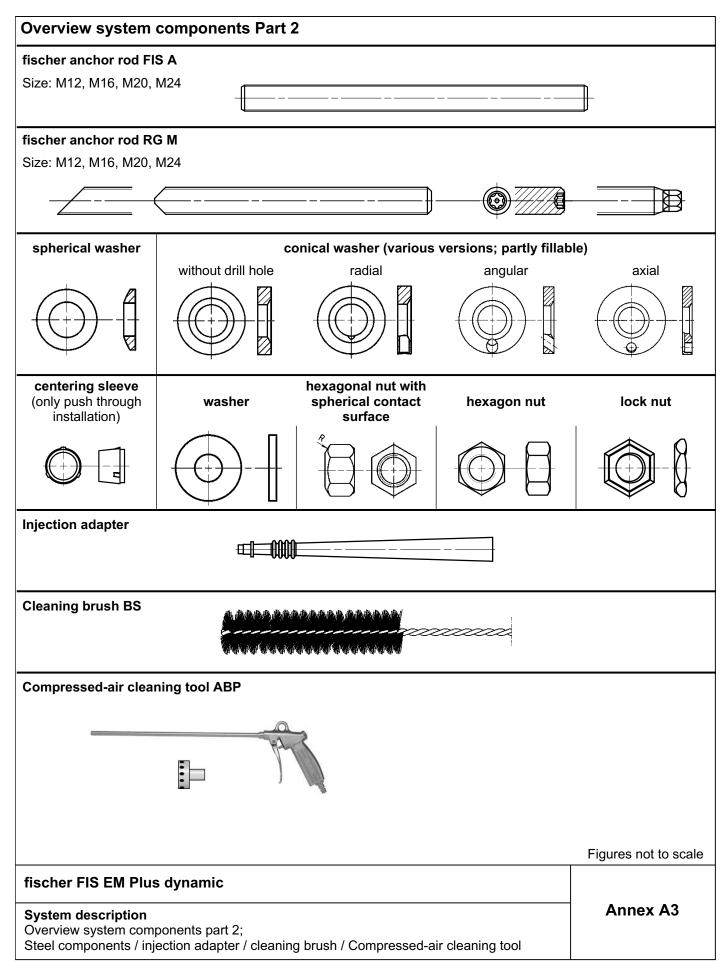
Size: M12, M16, M20, M24

Push through installation with washer and centering sleeve (annular gap filled with mortar)

Size: M12, M16, M20, M24



Figures not to scale


Froduct description Installed condition

Annex A1

Part	Designation	Material				
1 Injection cartridge		Mortar, hardener, filler				
		Steel	Stainless steel R			
	Steel grade	zinc plated	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015			
2	fischer anchor rod FIS A or RG M	Property class 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m EN ISO 4042:2022 $f_{uk} \leq$ 1000 N/mm ²	Property class 70 EN ISO 3506-1:2020 1.4401 (M12 to M24) 1.4062 (M12 and M16) 1.4362 (M12 and M16) EN 10088-1:2023 f _{uk} ≤ 1000 N/mm²			
3	Centering sleeve	Plastic				
4a	Washer ISO 7089:2000		1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023			
4b	Fillable conical washer similar to DIN 6319-G	zinc plated ≥ 5 μm, EN ISO 4042: 2022	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023			
5	Spherical washer	zinc plated ≥ 5 μm, EN ISO 4042: 2022	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023			
6a	Hexagon nut	Property class 8;	Property class 80			
6b	Hexagonal nut with spherical contact surface	EN ISO 898-2:2022 zinc plated ≥ 5 μm, EN ISO 4042: 2022	EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023			
7	Lock nut	zinc plated ≥ 5 μm, EN ISO 4042: 2022	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023			

fischer FIS EM Plus dynamic	
Product description Materials	Annex A4

Intended use Specifications part 1

Specifications of intended use part 1

Table B1.1: Overview use and performance categories injection mortar system

		se and performance categories injection mortar system					
		FIS EM Plus with					
		fischer anchor rod FIS A c	or fischer anchor rod RG M				
		Steel, zinc plated M12 + M16	Stainless steel R M12 - M24				
Hammer drilling with standard dr Hammer drilling with hollow drill (fischer "FHD", I Expert"; Bosch ' Hilti "TE-CD, TE DreBo "D-Plus";	bit Heller "Duster 'Speed Clean";	Nominal drill bit diameter (d ₀) 14 mm to 18 mm	Nominal drill bit diameter (d ₀) 14 mm to 28 mm				
Diamond drilling		no performance assessed					
Fatigue load, in	uncracked concrete cracked concrete	Steel, zinc plated: M12 and M16	Stainless steel R: M12, M16, M20 and M24				
Design method acc. to EOTA TI		n = 1 to n = ∞					
Design method acc. to EOTA T		n = ∞					
Use I1 c	Iry or wet concrete	M12, M16, M20 and M24					
Installation direc	etion	D3 Downwards, horizontal and upwards (overhead) installation					
Installation meth	nod		sh through installation				
Installation temp	perature		5 °C to T _{i,max} = +40 °C				
	Temperature range I:		ax. short term temperature +40 °C; nax. long term temperature +24 °C)				
In-service	Temperature range II:		ax. short term temperature +60 °C; nax. long term temperature +35 °C)				
temperature	Temperature	-40 °C to +72 °C (max. short term temperature +72 °C; max. long term temperature +50 °C)					

Z96600.24 8.06.01-230/23

Annex B1

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibers of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

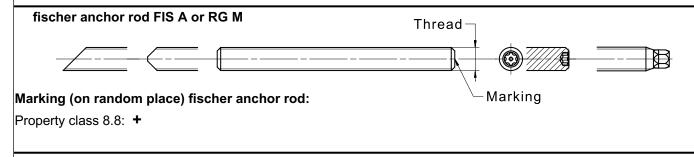
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel R).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A4 Table A4.1.

Design:

- Fastenings have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages have to be designed in accordance with:
 - EN 1992-4:2018 and
 - EOTA Technical Report TR 061 "Design method for fasteners in concrete under fatigue cyclic loading", Edition 2023.
- Static and quasi-static loading see ETA-17/0979 of 22.04.2024.
- Fastenings shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
- Fastenings in stand-off installation or with a grout layer are not covered by this European Technical Assessment (ETA).

Installation:


- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: The hole shall be filled with mortar.
- Fastening depth should be marked and adhered to on installation.
- If only tension loads are involved in the application, the annular gap does not need to be filled.
- Overhead installation is allowed.
- Setting the fastener with clearance between concrete and anchor plate (only if the fastener is loaded in axial direction)

fischer FIS EM Plus dynamic	
Intended use Specifications part 2	Annex B2

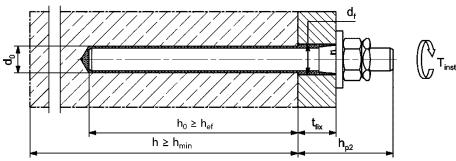
Table B3.1: Installation parameters for fischer anchor rods in combination with injection mortar system FIS EM Plus

fischer anchor rods			Thread	M12	M16	M20	M24	
Material			zinc plated steel or stainless steel R stainless steel		s steel R			
Nominal drill hole dia	ameter	d_0		14	18	24	28	
Drill hole depth		h ₀			h ₀ =	= h _{ef}		
Effective embedmen	nt depth	h _{ef, min}		70	80	90	96	
Design method I		h _{ef, max}		240	320	400	480	
Effective embedmen	nt depth	h _{ef, min}		95	125	160	190	
Design method II	·	h _{ef, max}		240	320	400	480	
Minimum spacing ar edge distance	nd minimum	S _{min} = C _{min}	[mm]	55	65	85	105	
Diameter of the clearance hole of the fixture	pre-positioned installation	d_f		14-16	18-20	22-26	26-30	
	push through installation	d_f		15-16	19-20	25-26	29-30	
E		t _{fix,min}		6	8	10	12	
Fixture thickness		t _{fix,max}		200				
Minimum thickness of concrete member		h _{min}		h _{ef} + 30	h _{ef} + 2d ₀	h _{ef} + 2d ₀	h _{ef} + 2d ₀	
Installation with dy	namic set							
Protrusion anchor ro		$h_{\text{p,min}}$	[mana]	25 + t _{fix}	30 + t _{fix}	36 + t _{fix}	43 + t _{fix}	
Protrusion anchor rod RG M (with hexagon head)		h _{p,min}	[mm]	32 + t _{fix}	38 + t _{fix}	43 + t _{fix}		
Installation with wa	asher (only with	stainles	s steel l	₹)				
Protrusion anchor rod FIS A or RG M without hexagon head		h _{p2,min}		19 + t _{fix}	23 + t _{fix}	27 + t _{fix}	32 + t _{fix}	
Protrusion anchor rod RG M		h _{p2,min}	[mm]	26 + t _{fix}	31 + t _{fix}	34 + t _{fix}		
Required installation	torque	T _{inst}	[Nm]	40	60	120	150	

Installation conditions see Annex B4

Figures not to scale

fischer FIS EM Plus dynamic	
Intended use Installation parameters fischer anchor rods FIS A and RG M in combination with injection mortar system FIS EM Plus	Annex B3



Installation conditions FIS A or RG M with dynamic set or washer with centering sleeve

Installation conditions FIS A or RG M with dynamic set

Installation conditions FIS A R or RG M R with washer and centering sleeve

Figures not to scale

fischer FIS EM Plus dynamic	
Intended use Installation conditions FIS A or RG M with dynamic set or washer with centering sleeve	Annex B4

Table B5.1:	Parameters of the cleaning brush BS (steel brush with steel bristles)							
	The si	The size of the cleaning brush refers to the drill hole diameter						
Nominal drill hole diameter	d_0	[mm]	14	18	24	28		
Steel brush diameter	d _b	[mm]	16	20	26	30		

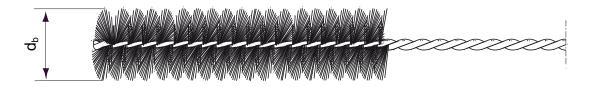


Table B5.2: Conditions for use static mixer without an extension tube

Nominal drill hole	d_0	[mm]	14	18	24	28
diameter	u ₀	[111111]	<u> </u>	10	24	20
Drill hole depth h ₀ by using	FIS MR Plus	[mm]	≤ 120	≤ 150	≤ 190	≤ 210
	FIS UMR	[mm]	≤ 90	≤ 180	≤ 220	≤ 250

Table B5.3: Maximum processing time of the mortar and minimum curing time

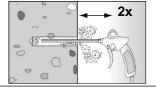
During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature.

Temperature at anchoring base [°C]	Maximum processing time t_{work}	Minimum curing time 1) t _{cure}
> -5 to ±0 ²	240 min	200 h
> ±0 to +5 ²	150 min	90 h
> +5 to +10	120 min	40 h
> +10 to +20	30 min	18 h
> +20 to +30	14 min	10 h
> +30 to +40	7 min	5 h

¹⁾ In wet concrete the curing times must be doubled

fischer FIS EM Plus dynamic	
Intended use Cleaning brush (steel brush) Processing time and curing time	Annex B5

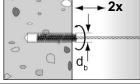
²⁾ Minimal cartridge temperature +5°C



Installation instructions part 1; injection mortar system FIS EM Plus

Drilling and cleaning the hole (hammer drilling with standard drill bit)

Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0 see **Table B3.1**.


2

Cleaning the drill hole: Blow out the drill hole twice, with oil free compressed air ($p \ge 6$ bar).



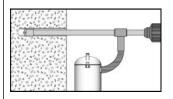
3

Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **Table B5.1**.

4

Cleaning the drill hole: Blow out the drill hole twice, with oil free compressed air ($p \ge 6$ bar).

Go to step 5 Annex B7


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

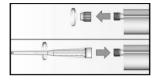
Check a suitable hollow drill (see **Table B1.1**) for correct operation of the dust extraction.

2

Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Table B3.1**.

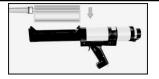
Go to step 5 Annex B7.


fischer FIS EM Plus dynamic	
Intended use Installation instructions part 1; injection mortar system FIS EM Plus	Annex B6

Installation instructions part 2; injection mortar system FIS EM Plus

Preparing the cartridge

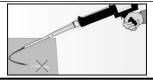

5



Remove the sealing cap.

Screw on the static mixer (the spiral in the static mixer must be clearly visible).

6



Place the cartridge into the dispenser.

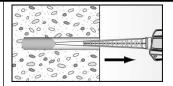
7

Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

Go to step 8 (Pre-positioned installation Annex B8 or push through installation Annex B9).

fische	er FIS	EM P	'lus c	lynamic

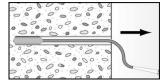
Intended use


Installation instructions part 2; injection mortar system FIS EM Plus

Annex B7

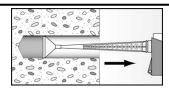
Installation instructions part 3, injection mortar system FIS EM Plus

Pre-positioned installation

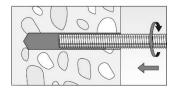

8

9

11

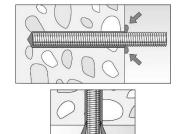

12

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.

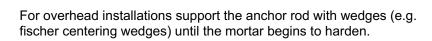


The conditions for mortar injection without extension tube can be found in **Table B5.2**

For deeper drill holes, than those mentioned in **Table B5.2**, use a suitable extension tube.

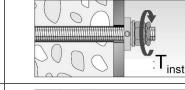


For overhead installation or deep holes ($h_0 > 250$ mm) use an injection-adapter.

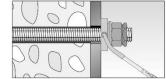


Only use clean and oil-free metal parts.

Mark the setting depth of the anchor rod. Push the fischer anchor rod down to the bottom of the hole, turning it slightly while doing so.



After inserting the anchor rod, excess mortar must be emerged around the anchor element. If not, pull out the anchor element immediately and reinject mortar.



Wait for the specified curing time t_{cure} see **Table B5.3**.

Attach the component and install the washer and nuts - without centering sleeve.

Tighten the hexagon nut with torque wrench, T_{inst} see **Table B3.1**. Tighten lock nut manually, then use wrench to give another quarter or half turn.

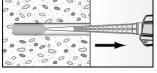
The gap between anchor and fixture (annular clearance) has to be filled with mortar (FIS HB, FIS SB, FIS V Plus or FIS EM Plus) via the fillable conical washer.

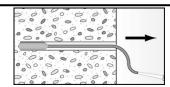
If only tension loads are involved in the application, the annular gap does not necessarily have to be filled.

Intended use Installation instructions part 3; pre-positioned installation; injection mortar system FIS EM Plus Annex B8

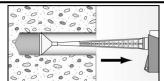
Installation instructions part 4, injection mortar system FIS EM Plus

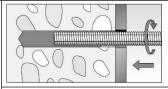
Push through installation


8


Pre-assemble the anchor!

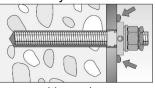
(Position of the conical washer or washer = embedment depth + fixture thickness)


9


Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.

The conditions for mortar injection without extension tube can be found in Table B5.2 For deeper drill holes, than those mentioned in Table B5.2, use a suitable extension tube.

For overhead installation or deep holes $(h_0 > 250 mm)$ use an injection-adapter.



Only use clean and oil-free metal parts.

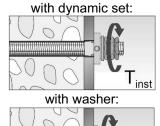
Push the pre-assembled fischer anchor rod into the drill hole until the conical washer or washer is in full contact with the surface, turning it slightly while doing so.

with dynamic set:

10

with washer:

After inserting the anchor rod with pre-assembled components, excess mortar must be emerged around the anchor element (minimum on one point of the conical washer or washer).


If not, pull out the anchor element immediately and reinject mortar.

11

Wait for the specified curing time t_{cure} see Table B5.3.

12

Tighten the hexagon nut with torque wrench, T_{inst} see **Table B3.1**. Tighten lock nut manually, then use wrench to give another quarter or half turn.

fischer FIS EM Plus dynamic

Intended use

Installation instructions part 4; push through installation; injection mortar system FIS EM Plus

 $\mathsf{T}_{\mathsf{inst}}$

Annex B9

		Required	d evidence			
		Number of le				
n ≤ 10 ⁴	10 ⁴ < n ≤			$5 \cdot 10^6 < n \le 10^8$	n > 10 ⁸	
	,	Tensio	n loading			
	Characteristic	•	esistance ((8.8) [kN]	zinc plated steel 8.8)		
$0.75 \cdot N_{Rk,s,(8.8)} \cdot 0.33 \qquad 0.75 \cdot N_{Rk,s,(8.8)} \cdot 10^{(-0.12 \cdot \log(n))} \\ \leq 0.75 \cdot N_{Rk,s,(8.8)} \cdot 0.33 \qquad 0.75 \cdot N_{Rk,s,(8.8)} \cdot 10^{(-0.438 - 0.057 \cdot \log(n))}$				$_{(8.8)} \cdot 10^{(-0.438 - 0.057 \cdot \log(n))}$	0,75·N _{Rk,s,(8.8)} ·0,1	
Char	acteristic steel fat	-	e (stainles (R-70) [kN]	s steel R, property class	70)	
0,75·N _{Rk,s,(R-70)} ·0,33	0,75·N _{Rk,s,(R-70)} ·10 ⁽			$0.75 \cdot N_{Rk,s,(R-70)}$ · (-0,469-0,043·log(n))	0,75·N _{Rk,s,(R-70)} ·0,1	
C	haracteristic com	bined pull-out	/ concrete	cone fatigue resistance,		
		uncracked and				
	Cnaracteris		ngtn in und _{0,n} [N/mm²]	racked concrete		
$ au_{Rk,ucr} \cdot 0,575$	$ au_{Rk,ucr} \cdot 10^{(-1)}$	$0.06 \cdot \log(n)$	τ _{Rk,ucr} ·	$10^{(-0,207-0,029 \cdot \log{(n)})}$	τ _{Rk,ucr} · 0,35	
	Characte		ength in cr	acked concrete		
$\tau_{Rk,cr} \cdot 0,575$ $\tau_{Rk,cr} \cdot 10^{(-0,06 \cdot \log{(n)})} \qquad \tau_{Rk,cr} \cdot 10^{(-0,207 - 0,029)}$				$10^{(-0,207-0,029 \cdot \log{(n)})}$	τ _{Rk,cr} · 0,35	
	Characteristic of	concrete cone	and splitti	ng fatigue resistance		
			-	in uncracked concrete		
	_	$\Delta N_{Rk,c/sp}$	_{,ucr,0,n} [kN]			
$N_{Rk,c/sp,ucr} \cdot 0,66$	N _{Rk,c/sp,ucr} · 0,50					
	Characteristic c	oncrete fatigue	e resistanc	e in cracked concrete		
	_	$\Delta N_{Rk,c/sp}$	_{p,cr,0,n} [kN]			
$N_{Rk,c/sp,cr} \cdot 0,66$	N _F	$_{ m Rk,c/sp,cr} \cdot 1,1 \cdot n^-$	$^{0,055} \ge N_{Rk,G}$	_{S/sp,cr} · 0,50	N _{Rk,c/sp,cr} · 0,50	
	Ex	ponents and le	oad transfe	er factor		
xponent for combined	loading					
	M12	M16		M20	M24	
$\alpha_{s} = \alpha_{sn} \mid [-] \mid$	0,5			0,7		
oad transfer factor						
Ψ _{FN} [-]			0,5			
$N_{Rk,s}$, $ au_{Rk,ucr}$, $ au_{Rk,cr}$ see $N_{Rk,c/sp,ucr}$, $N_{Rk,c/sp,cr}$ see	ETA-17/0979 of 22 ETA-17/0979 of 2	.04.2024, for $ au_{ extsf{R}}$ 2.04.2024 and I	_{Rk} (M24-R-7 EN 1992-4:	0) \leq 0,85 · τ_{Rk} (M20-R-70) 2018		
fischer FIS EM Plus	dynamic					
Performance Essential characteristic		igue loading;			Annex C1	
Design method I accor	ding to TR 061					
=				1		

Table C2.1: Essential characteristics under shear fatigue loading for FIS EM Plus;									
Design method I according to TR 061									
		Required evide Number of load cyc							
ndiffiber of load cycles (ii) $n \le 10^4 \qquad 10^4 < n \le 5 \cdot 10^6 \qquad 5 \cdot 10^6 < n \le 10^8 \qquad n > 10^8$									
$n \le 10^{\circ}$ $10^{\circ} < n \le 5 \cdot 10^{\circ}$ $5 \cdot 10^{\circ} < n \le 10^{\circ}$ $n > 10^{\circ}$									
Ch	Shear loading Characteristic steel fatigue resistance (zinc plated steel 8.8) ΔV _{Rk,s,0,n} (8.8) [kN]								
$V_{Rk,s,(8.8)} \cdot 0,23$	$V_{\text{DL}} = (2.0) \cdot 10^{(-0.147 \cdot \log(n))}$ $V_{\text{DL}} = (2.0) \cdot 10^{(-0.573 - 0.068 \cdot \log(n))}$				V _{Rk,s,(8.8)} · 0,08				
Characteri	stic steel f	atigue resistance (stain $\Delta V_{Rk,s,0,n}$ (R-70)	nless steel R, property clas [kN]	ss 70)					
$V_{Rk,s,(R-70)}\cdot 0{,}31$	V _{Rk,s,(R-70)}	· 10 ^{(-0,042-0,118 · log (n))}	$V_{Rk,s,(R-70)} \cdot 10^{(-0,461-0,056 \cdot \log(n))}$		V _{Rk,s,(R-70)} · 0,12				
Characteristic o	oncrete pr	y out fatigue resistanc ΔV _{Rk,cp,0,n} [kN	e in cracked and uncracke	d conc	rete				
$V_{Rk,cp} \cdot 0,574$		$V_{Rk,cp} \cdot 0,50$							
Characteristic concrete edge fatigue resistance in cracked and uncracked concrete $\Delta V_{Rk,c,0,n} [kN]$									
$V_{Rk,c} \cdot 0,574$ $V_{Rk,c} \cdot 1,2 \cdot n^{-0,08} \ge V_{Rk,c} \cdot 0,50$					$V_{Rk,c} \cdot 0,50$				
		Exponents, load trans	sfer factor						
Exponent for combined loading	g, steel failu	ıre							
M1:		M16	M20		M24				
$\alpha_{\rm s} = \alpha_{\rm sn}$ [-] 0,5			0,7						
Exponent for combined loading	g, verification	on regarding failure mod							
α _c [-]			1,5						
Load transfer factor			0.5						
Ψ _{FV} [-]			0,5						
V _{Rk,s} see ETA-17/0979 of 22.	04.2024								
$V_{Rk,c}$, $V_{Rk,cp}$ see ETA-17/0979 of 22.04.2024 and EN 1992-4:2018									
<i>c</i> , , , , , , , , , , , , , , , , , , ,									
fischer FIS EM Plus dyna	amic				Annex C2				
	Performance Essential characteristics under shear fatigue loading; Design method I according to TR 061								

Load transfer factor

0,5

			nder tension and shear fatigueng to TR 061; zinc plated ste	O ,	
Size			M12	M16	
Tension loading					
Effective embedment depth	h _{ef,min}	[mm]	95	125	
Steel failure					
Characteristic steel fatigue resistance	$\Delta N_{\text{Rk},s,0,\infty}$	[kN]	6,1	11,3	
Exponent for combined loading	$\alpha_s = \alpha_{sn}$	[-]	0,5	0,7	
Combined pull-out / concrete co	one failure				
Characteristic bond fatigue $\Delta au_{ ext{Rk}}$	x,p,ucr,0,∞ [N/	mm²]	$ au_{Rk,ucr}$.	0,35	
recictance		/mm²]	τ _{Rk,cr} · (),35	
Concrete cone failure and conc	rete splittin	g failu	ire		
Characteristic concrete fatigue	$\Delta N_{\text{Rk},c,0,\infty}$	[-]	0,5 · N _{Rk,c} ¹)		
resistance	$\Delta N_{Rk,sp,0,\infty}$	[-]	0,5 · N _{Rk,sp} ¹)		
Exponent for combined loading α_c		[-]	1,5		
Load transfer factor	ansfer factor ψ _{FN}		0,5		
Shear loading					
Shear loading, steel failure with	out lever ar	m			
Characteristic steel fatigue resistance	$\Delta V_{Rk,s,0,\infty}$	[kN]	2,7	5,0	
Exponent for combined loading	$\alpha_s = \alpha_{sn}$	[-]	0,5	0,7	
Concrete pryout failure					
Characteristic concrete fatigue resistance	$\Delta V_{\text{Rk,cp,0,}\infty}$	[kN]	0,5 · V _{Rk,cp} ¹⁾		
Concrete edge failure					
Characteristic concrete fatigue resistance	$\Delta V_{\text{Rk,c,0,}\infty}$	[kN]	0,5 · V _{Rk,c} 1)		
Effective length of fastener	l _f	[mm] min (h _e ; 12 · d _{nom})		· d _{nom})	
Effective outside diameter of the anchor	d_{nom}	[mm]	12	16	
Exponent for combined loading	α_{c}	[-]	[-] 1,5		

 $^{^{1)}}$ $N_{Rk,c}$, $N_{Rk,sp}$, $V_{Rk,c}$ and $V_{Rk,cp}$ – Essential characteristics for concrete failure under static and quasi-static loading according to ETA-17/0979 of 22.04.2024 and EN 1992-4:2018.

[-]

 ψ_{FV}

fischer FIS EM Plus dynamic	
Performance Essential characteristics under tension / shear fatigue loading; Design method II according to TR 061; zinc plated steel 8.8	Annex C3

Table C4.1:	Essential characteristics under tension and shear fatigue loading;
	Design method II according to TR 061; stainless steel R property class 70

Design me	uiou ii ac	Cordin	g to 1R 061;	Stalliless Stee	er K property	Class 10
Size			M12	M16	M20	M24
Tension loading						
Effective embedment depth	h _{ef,min}	[mm]	95	125	160	190
Steel failure						
Characteristic steel fatigue resistance	$\Delta N_{\text{Rk},s,0,\infty}$	[kN]	6,6	12,4	19,4	27,8
Exponent for combined loading	$\alpha_s = \alpha_{sn}$	[-]	0,5		0,7	
Combined pull-out / concrete c	one failure					
Characteristic bond fatigue $\Delta \tau_{RH}$	_{x,p,ucr,0,∞} [N	/mm²]		$ au_{Rk,ucr}$	· 0,35	
racictanca		/mm²]		τ _{Rk,cr}	0,35	
Concrete cone failure and conc	rete splittir	ng failu	re			
Characteristic concrete fatigue	$\Delta N_{\text{Rk,c,0,}\infty}$	[-]	0,5 · N _{Rk,c} ¹)			
resistance	$\Delta N_{Rk,sp,0,\infty}$	[-]	0,5 · N _{Rk,sp} ¹)			
Exponent for combined loading	α_{c}	[-]	1,5			
Load transfer factor	ΨFN	[-]	0,5			
Shear loading						
Shear loading, steel failure with	out lever a	rm				
Characteristic steel fatigue resistance	$\Delta V_{Rk,s,0,\infty}$	[kN]	3,6	6,6	10,3	14,9
Exponent for combined loading	$\alpha_s = \alpha_{sn}$	[-]	0,5		0,7	
Concrete pryout failure						
Characteristic concrete fatigue resistance	$\Delta V_{Rk,cp,0,\infty}$	[kN]	0,5 · V _{Rk,cp} ¹⁾			
Concrete edge failure		'				
Characteristic concrete fatigue resistance	$\Delta V_{Rk,c,0,\infty}$	[kN]	0,5 · V _{Rk,c} 1)			
Effective length of fastener	I _f	[mm]	min (h _{ef} , 12 · d _{nom})			
Effective outside diameter of the anchor	d_{nom}	[mm]				24
Exponent for combined loading	α_{c}	[-]		1,	5	
Load transfer factor	ΨFV	[-]	0,5			

¹⁾ $N_{Rk,c}$, $N_{Rk,sp}$, $V_{Rk,c}$ and $V_{Rk,cp}$ – Essential characteristics for concrete failure under static and quasi-static loading according to ETA-17/0979 of 22.04.2024 and EN 1992-4:2018, for $τ_{Rk}$ (M24-R-70) ≤ 0,85 · $τ_{Rk}$ (M20-R-70)

fischer FIS EM Plus dynamic	
Performance Essential characteristics under tension / shear fatigue loading; Design method II according to TR 061; stainless steel R property class 70	Annex C4