

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0048 of 21 March 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Mungo Wedge Anchor M1-FM and M1-IG

Mechanical fastener for use in concrete

Mungo S.p.a. Via Germania 23 z.i. 35127 PADOVA (PD) ITALIEN

Plant 41

36 pages including 3 annexes which form an integral part of this assessment

330232-01-0601, Edition 05/2021

European Technical Assessment ETA-24/0048

English translation prepared by DIBt

Page 2 of 36 | 21 March 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 36 | 21 March 2024

Specific Part

1 Technical description of the product

The Mungo Wedge Anchor M1-FM und M1-IG is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Anchor type M1-FM with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type M1-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12.
- Anchor type M1-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type M1-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load (static and quasi-static loading)	M1-FM see Annex B4, B5, C1 to C4 M1-IG see Annex B8, C11 and C12		
Characteristic resistance to shear load (static and quasi-static loading)	M1-FM see Annex C5 M1-IG see Annex C13		
Displacements (static and quasi-static loading)	M1-FM see Annex C9 and C10 M1-IG see Annex C15		
Characteristic resistance and displacements for seismic performance categories C1 and C2	M1-FM see Annex C6, C9 and C10 M1-IG No performance assessed		

European Technical Assessment ETA-24/0048

English translation prepared by DIBt

Page 4 of 36 | 21 March 2024

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	M1-FM see Annex C7 and C8 M1-IG see Annex C14

3.3 Aspects of durability

Essential characteristic	Performance		
Durability	See Annex B1		

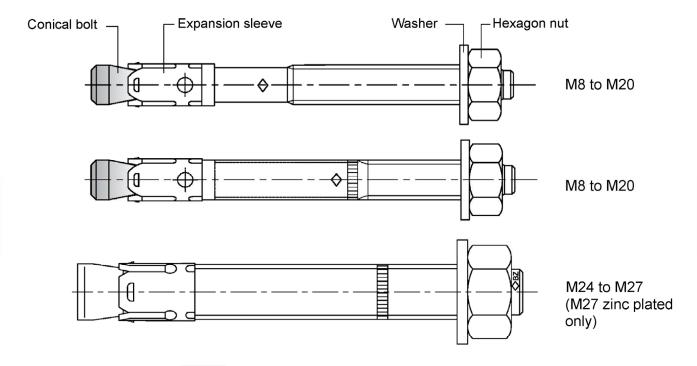
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

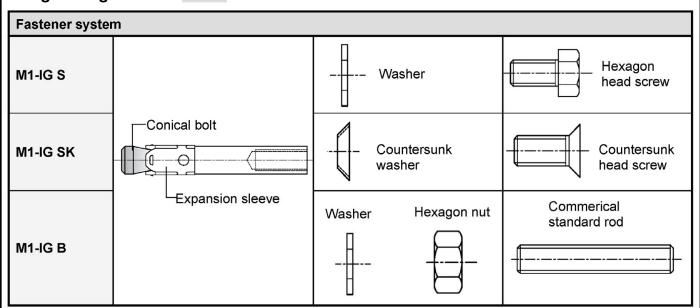
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 21 March 2024 by Deutsches Institut für Bautechnik

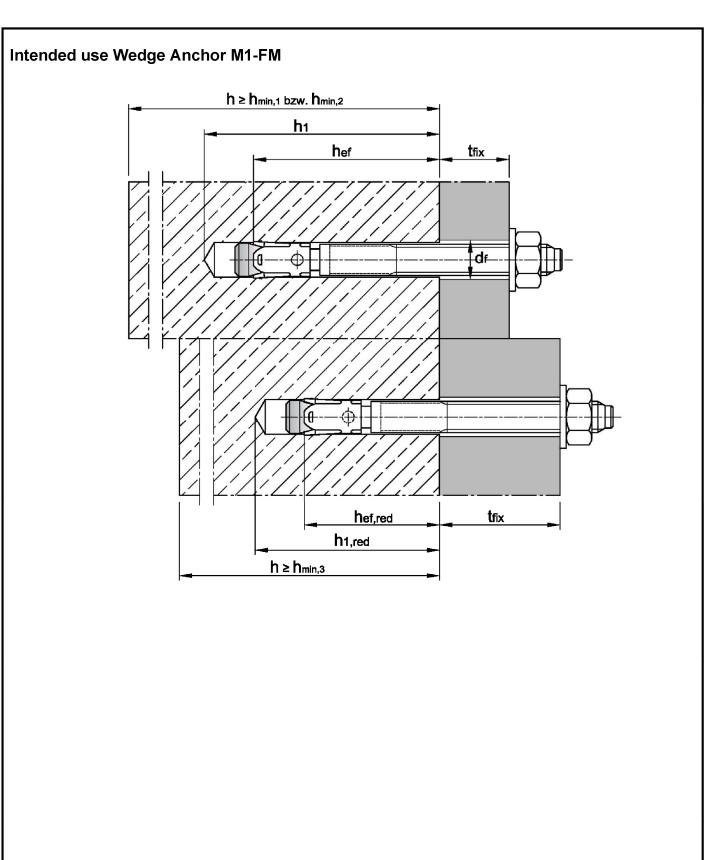
Dipl.-Ing. Beatrix Wittstock beglaubigt:
Head of Section Baderschneider



Fastener version Product description		Intended use	Performance		
M1-FM	Annex A1 - Annex A4	Annex B1 – Annex B7	Annex C1 – Annex C10		
M1-IG	Annex A1 Annex A5 – Annex A7	Annex B1 – Annex B2 Annex B8 – Annex B10	Annex C11 – Annex C15		

Mungo Wedge anchor M1-FM

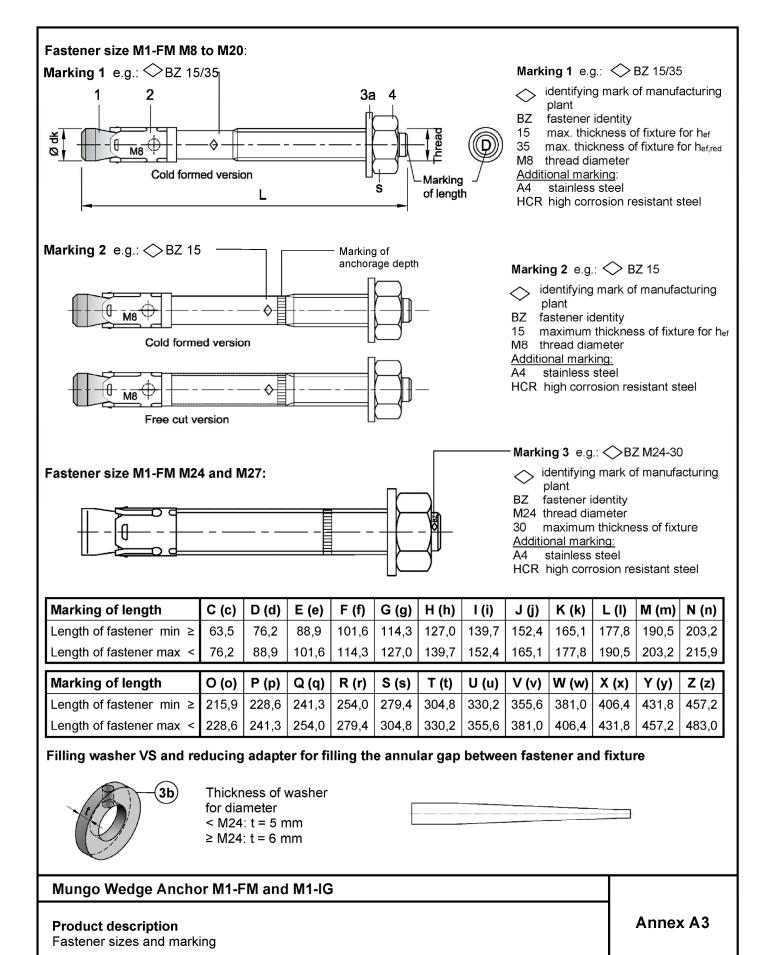
Mungo Wedge Anchor M1-IG M6 to M12



Mungo Wedge Anchor M1-FM and M1-IG

Product description Fastener types

Annex A1



Mungo Wedge Anchor M1-FM and M1-IG

Product descriptionInstallation situation M1-FM

Annex A2

730731 24 8 06 01-29/24

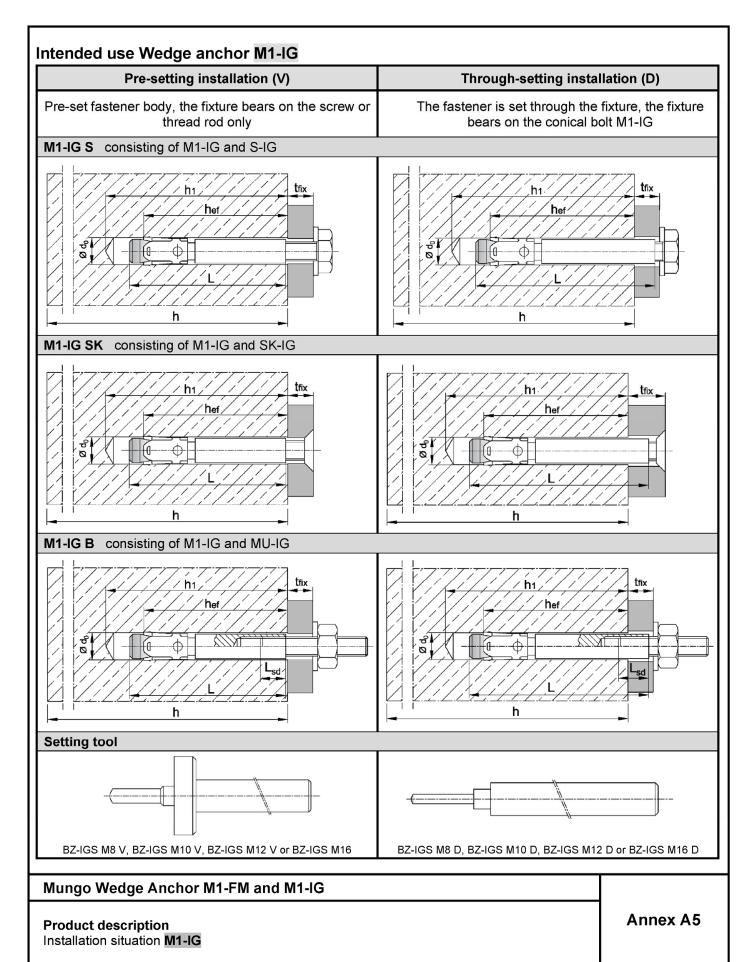
Table A1: Fastener dimensions M1-FM

Fastener siz	е		M8	M10	M12	M16	M20	M24	M27
Conical half	ainal half		M8	M10	M12	M16	M20	M24	M27
Conical bolt		\emptyset d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
Length of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
fastener ¹⁾	reduced anchorage depth	L _{hef,red}	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	ı	-	-
Thickness of	filling washer	t [mm]	5	5	5	5	5	6	6
Hexagon nut		s	13	17	19	24	30	36	41

¹⁾ With additional use of filling washer 3b the usable thickness of fixture is reduced by the thickness of filling washer t [mm]

Dimensions in mm

Table A2: Materials M1-FM


		M	1-FM	M1R4-FM	M1-HCR	
No.	Part	Steel, z	inc plated	Stainless steel A4	High corrosion resistant steel HCR	
		galvanized ≥ 5µm sherardized ≥ 45µm			(CRC V)	
1	Conical bolt	M8 to M20: Cold formed or machined steel, galvanized, cone plastic coated	M8 to M20: Cold formed or machined steel, sherardized, cone plastic coated	M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated	
	Threaded bolt	M24 and M27: M24 and M27: steel, sherardized		M24: Stainless steel	M24: High corrosion resistant steel	
	Threaded cone	Steel, galvanized	M24 and M27: Steel, galvanized	(e.g. 1.4401, 1.4404) EN 10088:2014	1.4529 or 1.4565, EN 10088:2014	
2	Expansion sleeve	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel, zinc plated	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	
3a	Washer	. Steel, zinc plated	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571)	High corrosion resistant steel	
3b	Filling washer			ÈN 10088:2014	1.4529 or 1.4565, EN 10088:2014	
4	Hexagon nut	Steel, galvanized, coated	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated	

Mungo Wedge Anchor M1-FM and M1-IG

Product descriptionDimensions and materials

Annex A4

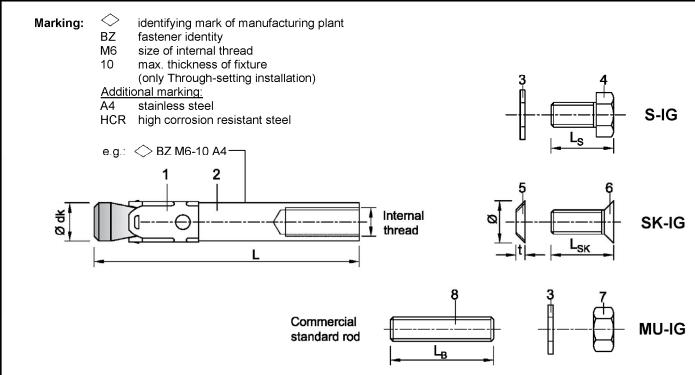


Table A3: Fastener dimensions M1-IG

No.	. Fastener size		M6	M8	M10	M12
	Conical bolt with internal thread	\emptyset d_k	7,9	9,8	11,8	15,7
1	Pre-setting installation	L	50	62	70	86
	Through-setting installation	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	ble A4	
3	Washer			see ta	ble A4	
	Hexagon head screw width across		10	13	17	19
4	Pre-setting installation Ls		t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Through-setting installation Ls		14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk Ø countersunk		17,3	21,5	25,9	30,9
	washer	t	3,9	5,0	5,7	6,7
6	Countersunk bit size		Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Pre-setting installation	L_{SK}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Through-setting installation	L_{SK}	16 to 20	20 to 25	25	30
7	Hexagon nut width ac	ross flats	10	13	17	19
8	Commercial type V	L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
L°_	standard rod ¹⁾ type D	L _B ≥	21	28	34	41

¹⁾ acc. to specifications (Table A4)

Dimensions in mm

Mungo Wedge Anchor M1-FM and M	1-IG	į
--------------------------------	------	---

Product description

Fastener parts, marking and dimensions M1-IG

Annex A6

Table A4: Materials M1-IG

		M1-IG	M1R4-IG	M1-IG-HCR	
No.	Part	Steel, galvanized ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)	
1	Conical bolt M1-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated	
2	Expansion sleeve M1-IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	
3	Washer S-IG / MU-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014	
4	Hexagon head screw S-IG	Steel, galvanized, coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated	
5	Countersunk washer SK-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated	
6	Countersunk head screw SK-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated	
7	Hexagon nut MU-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated	
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009	

Mungo Wedge Anchor M1-FM and M1-IG	_
Product description Materials M1-IG	Annex A7

Specifications of intended use

Wedge Anchor M1-FM							
Standard anchorage depth	M8	M10	M12	M16	M20	M24	M27
Steel, galvanized	✓						
Steel, sherardized	✓						
Stainless steel A4 and high corrosion resistant steel HCR	_2)				_2)		
Static or quasi-static action	√						
Fire exposure	✓						
Seismic action (C1 and C2) 1)			✓			_2)	_2)

Reduced anchorage depth 1)	M8	M10	M12	M16
Steel, galvanized			✓	
Steel, sherardized	✓			
Stainless steel A4 and high corrosion resistant steel HCR	√			
Static or quasi-static action	✓			
Fire exposure	✓			
Seismic action (C1 and C2)		-	2)	

¹⁾ Only cold formed anchors acc. to Annex A3

²⁾ No performance assessed

Wedge Anchor M1-IG	М6	M8	M10	M12
Steel, galvanized		,	/	
Stainless steel A4 and high corrosion resistant steel HCR	✓			
Static or quasi-static action	✓			
Fire exposure	✓			
Seismic action (C1 and C2)	_1)			

¹⁾ No performance assessed

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Cracked or uncracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions: Intended use of materials according to Annex A4, Table A2 or Annex A7, Table A4 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

Mungo Wedge Anchor M1-FM and M1-IG	
Intended use Specifications	Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to EN 1992-4:2018 in conjunction with Technical Report TR 055, Edition February 2018

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the M1-FM can be filled to reduce the hole. For this purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength mortar with compressive strength ≥ 40 N/mm².
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

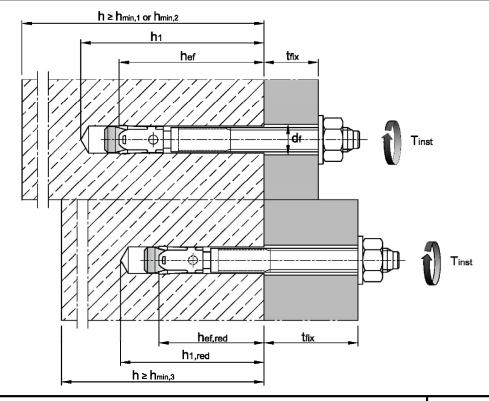

Mungo Wedge Anchor M1-FM and M1-IG	
Intended use Specifications	Annex B2

Table B1: Installation parameters, M1-FM

Fastener siz	e			M8	M10	M12	M16	M20	M24	M27
Nominal drill	hole diameter	d₀	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Steel, galvanized	T _{inst}	[Nm]	20	25	45	90	160	200	300
Installation	Steel, sherardized	T _{inst}	[Nm]	16	22	40	90	160	260	300
torque	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	_1)
		[mm]	9	12	14	18	22	26	30	
Standard an	chorage depth									
Depth of	Steel, zinc plated	$h_1\geq$	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	h ₁ ≥	[mm]	60	75	90	110	125	155	-
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	_1)
Reduced anchorage depth										
Depth of drill	hole	$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
Reduced effe depth	ective anchorage	$h_{\sf ef,red}$	[mm]	35	40	50	65	_1)	_1)	_1)

1) No performance assessed

Mungo Wedge Anchor M1-FM and M1-IG

Intended use Installation parameters Annex B3

Table B2: Minimum	spacings and e	edge distances,	standard anchorag	e depth, M1-FM
	. 3	9		, ,

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concret	e membei								
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete				•					•
Minimum spacing	Smin	[mm]	40	45	60	60	95	100	125
willimum spacing	für c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95	100	180
	für s ≥	[mm]	80	90	140	180	200	220	540
Uncracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
g	für c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	Cmin	[mm]	50	50	75	80	130	100	180
	für s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	_1)
Cracked concrete				T		T			ı
Minimum spacing	Smin	[mm]	40	50	60	60	95	125	
	für c ≥	[mm]	70	75	100	100	150	125	_1)
Minimum edge distance	Cmin	[mm]	40	55	60	60	95	125	
	für s ≥	[mm]	80	90	140	180	200	125	
Uncracked concrete						0.5	00	405	I
Minimum spacing	Smin	[mm]	40	50	60	65	90	125	
	für c ≥	[mm]	80	75	120	120	180	125	_1)
Minimum edge distance	C _{min}	[mm]	50	60	75	80	130	125	
	für s ≥	[mm]	100	120	150	150	240	125	
Minimum thickness of concret									
Steel zinc plated, stainless ste	el A4, HC	R							
Minimum thickness of member	$h_{\text{min},2}$	[mm]	80	100	120	140	_1)	_1)	_1)
Cracked concrete				ı					ı
Minimum spacing	Smin	[mm]	40	45	60	70			
	für c ≥	[mm]	70	90	100	160	_1)	_1)	_1)
Minimum edge distance	Cmin	[mm]	40	50	60	80			
	für s ≥	[mm]	80	115	140	180			
Uncracked concrete		·							
Minimum spacing	Smin	[mm]	40	60	60	80			
	für c ≥	[mm]	80	140	120	180	_1)	_1)	_1)
Minimum edge distance	C _{min}	[mm]	50	90	75	90	_ ,	_ ,	′
wiimmum euge distance	für s ≥	[mm]	100	140	150	200			

Fire exposure from one side								
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature					
Minimum edge distance	C _{min,fi}	[mm]	See normal ambient temperature					
Fire exposure from more than one side								
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature					
Minimum edge distance	C _{min,fi}	[mm]	≥ 300 mm					

Intermediate values by linear interpolation.

Mungo Wedge Anchor M1-FM and M1-IG

Intended use

Minimum spacings and edge distances for standard anchorage depth

Annex B4

¹⁾ No performance assessed

Table B3: Minimum spacings and edge distances, reduced anchorage depth, M1-FM

Fastener size			M8	M10	M12	M16			
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140			
Cracked concrete									
Minimum spacing	Smin	[mm]	50	50	50	65			
IVIIIIIIIIII Spacing	für c ≥	[mm]	60	100	160	170			
Minimum odgo distanco	C _{min}	[mm]	40	65	65	100			
Minimum edge distance	für s ≥	[mm]	185	180	250	250			
Uncracked concrete									
Minimum angoing	Smin	[mm]	50	50	50	65			
Minimum spacing	für c ≥	[mm]	60	100	160	170			
Minimum odgo dietonoo	C _{min}	[mm]	40	65	100	170			
Minimum edge distance	für s ≥	[mm]	185	180	185	65			
Fire exposure from one side									
Minimum spacing	S _{min,fi}	[mm]	S	ee normal amb	ient temperatu	ire			
Minimum edge distance	C _{min,fi}	[mm]	n] See normal ambient temperature						
Fire exposure from more than one side									
Minimum spacing	S _{min,fi}	[mm]	m] See normal ambient temperature						
Minimum edge distance	C min,fi	[mm]	nm] ≥ 300 mm						

Intermediate values by linear interpolation.

Mungo Wedge Anchor M1-FM and M1-IG	
Intended use Minimum spacings and edge distances for reduced anchorage depth	Annex B5

Installation instructions M1-FM 90 Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3. Blow out dust. Alternatively vacuum clean down to the bottom of the 2 hole. Check position of nut. 3 Drive in fastener, such that hef or hef,red depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the fastener in accordance with Annex A3. $\mathsf{T}_{\mathsf{inst}}$ Installation torque T_{inst} shall be applied by using calibrated torque 5 wrench.

Mungo Wedge Anchor M1-FM and M1-IG	
Intended Use Installation instructions	Annex B6

Installation instructions M1-FM with filling of annular gap Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3a. 2 Blow out dust. Alternatively vacuum clean down to the bottom of the hole. Check position of nut. 3a Fit the filling washer to the fastener. 3b The thickness of the filling washer must be taken into account with $t_{\mbox{\scriptsize fix}}$. Drive in fastener with filling washer, such that hef or hef,red depth is met. This compliance is ensured, if the thickness of fixture is 5mm smaller (or 6mm when ≥ M24) than the maximum thickness of fixture marked on the fastener in accordance with Annex A3. Installation torque T_{inst} shall be applied by using calibrated torque 5 wrench. Fill the annular gap between stud and fixture with high stregth mortar with compressive strength ≥ 40 N/mm². Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out.

Mungo Wedge Anchor M1-FM and M1-IG	
Intended Use Installation instructions with filling washer	Annex B7

Table B4: Installation parameters M1-IG

Fastener size				M6	M8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter		d₀	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \geq$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{\text{sd}}^{2)} \geq$	[mm]	9	12	15	18
Installation towns		S	[Nm]	10	30	30	55
Installation torque, steel zinc plated	T _{inst}	SK	[Nm]	10	25	40	50
Steel Zille plated		В	[Nm]	8	25	30	45
La stallation to some	Tinst	S	[Nm]	15	40	50	100
Installation torque, stainless steel A4, HCR		SK	[Nm]	12	25	45	60
stainless steel A4, HCK		В	[Nm]	8	25	40	80
Pre-setting installation							
Diameter of clearance hole in the fix	ture	$d_f \leq$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Through-setting installation							
Diameter of clearance hole in the fix	ture	$d_{f} \leq$	[mm]	9	12	14	18
		S	[mm	5	7	8	9
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
	,	В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of pre-setting installation, if the shear load at steel failure is designed with lever arm.

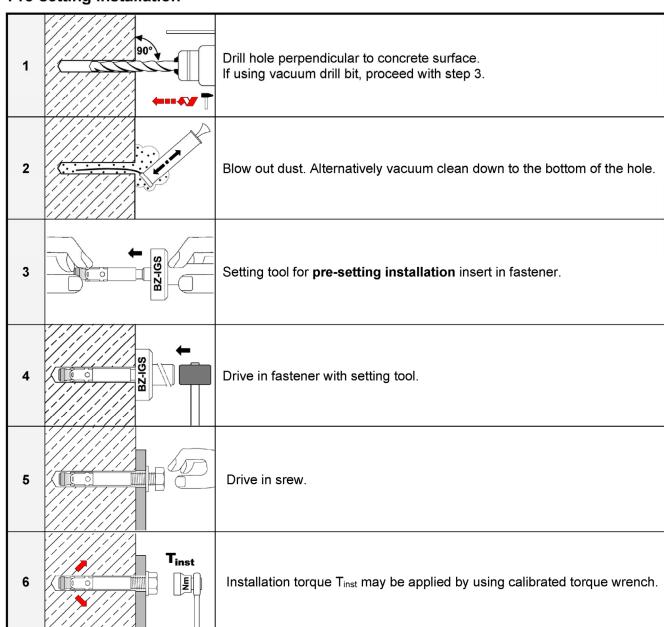
Table B5: Minimum spacings and edge distances M1-IG

Fastener size			M6	M8	M10	M12
Minimum thickness of concrete member	\mathbf{h}_{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum enocing	Smin	[mm]	50	60	70	80
Minimum spacing	für c ≥	[mm]	60	80	100	120
Minimum adaa diatanaa	Cmin	[mm]	50	60	70	80
Minimum edge distance	für s ≥	[mm]	75	100	100	120
Uncracked concrete						
Minimum angoing	Smin	[mm]	50	60	65	80
Minimum spacing	für c ≥	[mm]	80	100	120	160
Minimum adaa diatanaa	Cmin	[mm]	50	60	70	100
Minimum edge distance	für s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	Smin,fi	[mm]		See normal	temperature	
Minimum edge distance	C _{min,fi}	[mm]		See normal	temperature	
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	
Minimum edge distance	C _{min,fi}	[mm]		≥ 300) mm	

Mungo Wedge Anchor M1-FM and M1-IG

Intended use

Installation parameters, minimum spacings and edge distances M1-IG


Annex B8

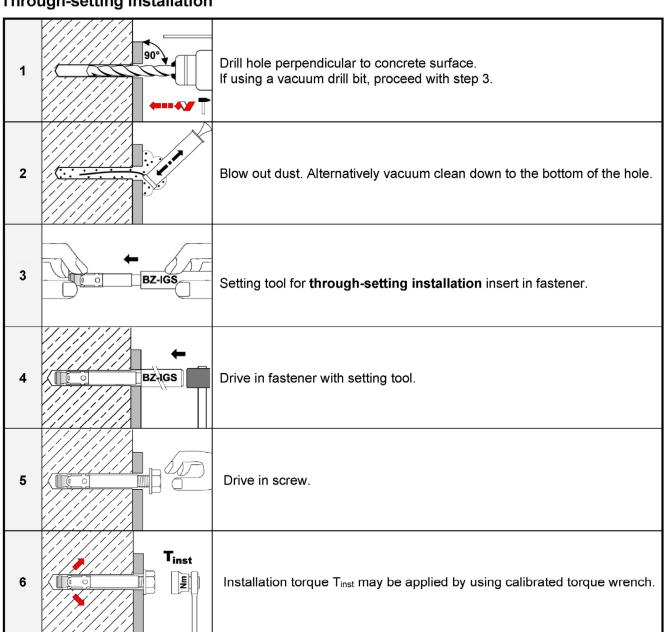
²⁾ see Annex A5

Installation instructions M1-IG

Pre-setting installation

Mungo	Wedge	Anchor	M1-FM	and M1-IG	ì
-------	-------	--------	-------	-----------	---

Intended Use


Installation instructions for pre-setting installation M1-IG

Annex B9

Installation instructions M1-IG

Through-setting installation

Mungo	Wedge	Anchor	M1-FM	and I	M1-IG
-------	-------	--------	-------	-------	-------

Intended Use

Installation instructions for through-setting installation M1-IG

Annex B10

Table C1: Characteristic values for tension loads, M1-FM (zinc plated), cracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24	M27
Installation factor	γinst	[-]				1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	36	44,4	50,3
Reduced anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	12,7	18,9	_1)	_1)	_1)
Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0,5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_1)	_1)	_1)
Factor for cracked concrete	$\mathbf{k}_1 = \mathbf{k}_{\text{cr,N}}$	[-]				7,7			

¹⁾ No performance asessed

Mungo Wedge Anchor M1-FM and M1-IG

Performance

Characteristic values for tension loads, M1-FM (zinc plated), cracked concrete, static and quasi-static action

Annex C1

²⁾ Use restricted to anchoring of structural components statically indeterminate

Table C2: Characteristic values for tension loads, M1R4-FM / M1-HCR (A4 / HCR), cracked concrete, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24
Installation factor	γinst	[-]			1	,0		
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	36	40
Reduced anchorage depth								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	12,7	18,9	_1)	_1)
Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{100}\right)^{0.5}$		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_1)	_1)
Factor for cracked concrete	k cr,N	[-]			7	,7		

¹⁾ No performance assessed.

Mungo Wedge Anchor M1-FM and M1-IG

Performance

Characteristic values for **tension loads**, M1R4-FM / M1-HCR **(A4 / HCR)**, **cracked concrete**, static and quasi-static action

Annex C2

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C3: Characteristic values for tension loads, M1-FM (zinc plated), uncracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24	M27
Installation factor	γinst	[-]			•	1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out	•								
Standard anchorage depth									
Characteristic resistance in	N.I.	FLA II	40	16	25	25	E4	60.0	74.0
uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	51	62,9	71,3
Reduced anchorage depth									
Characteristic resistance in	$N_{Rk,p}$	[kN]	7,5	9	18	26,7	_1)	_1)	_1)
uncracked concrete C20/25		[]	-,-			,,			
Splitting									
Standard anchorage depth									
Splitting for standard thickness o $c_{\text{cr,sp}}$ may be linearly interpolated for the	f concrete	memb	<u>er</u> (The hiզ	gher resista	ince of cas	e 1 and ca	se 2 may b	e applied;	
Standard thickness of concrete	h _{min,1} ≥		100	120	140	170	200	230	250
Case 1	I Imin,1 ≥	[mm]	100	120	140	170	200	230	230
Characteristic resistance in									<u> </u>
uncracked concrete C20/25	N^0 _{Rk,sp}	[kN]	9	12	20	30	40	62,3	50
Edge distance	C _{cr,sp}	[mm]		•	1	1,5 h _{ef}			•
Case 2						·			
Characteristic resistance	N ⁰ Rk,sp	[kN]	12	16	25	35	50,5	62,3	70,6
in uncracked concrete C20/25	IN Rk,sp		12			33			
Edge distance	C _{cr,sp}	[mm]		2t	1 ef		2,2 h _{ef}	1,5 h _{ef}	2,5 h _{et}
Splitting for minimum thickness of	of concrete	memb	<u>er</u>		1				
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	_1)	_1)	_1)
Edge distance	C _{cr,sp}	[mm]		2,5	h _{ef}	•			
Reduced anchorage depth							'	'	
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			
Characteristic resistance in uncracked concrete C20/25	N ⁰ _{Rk,sp}		7,5	9	17,9	26,5	_1)	_1)	_1)
Edge distance	C _{cr,sp}	[mm]	100	100	125	150			
Increasing factor	-0,зр	[]				٥٢	l		l
$N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$ $N_{Rk,sp}^0 = \psi_c \cdot N_{Rk,sp}^0 (C20/25)$	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_1)	_1)	_1)

¹⁾ No performance asessed.

Performance

Characteristic values for **tension loads**, M1-FM (**zinc plated**), **uncracked concrete**, static and quasi-static action

Annex C3

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C4: Characteristic values for tension loads, M1R4-FM / M1-HCR (A4 / HCR), uncracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24
Installation factor	γinst	[-]			1	,0		
Steel failure	·							
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1	,5		1,68	1,5
Pull-out	·							
Standard anchorage depth								
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	51	71,3
Reduced anchorage depth								
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	9	18	26,7	_1)	_1)
Splitting								
Standard anchorage depth								
Splitting for standard thickness of							2 may be a	pplied;
c _{cr,sp} may be linearly interpolated for				T ,	T '	Τ΄ ΄		
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1					ı	1	1	1
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	9	12	20	30	40	_1)
Edge distance	C _{cr,sp}	[mm]			1,5 h _{ef}			_1)
Case 2								
Characteristic resistance in uncracked concrete C20/25	$N^{o}_{Rk,sp}$	[kN]	12	16	25	35	50,5	70,6
Edge distance	C _{cr,sp}	[mm]	115	125	140	200	220	250
Splitting for minimum thickness of	concrete me	<u>mber</u>						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	_1)	_1)
Edge distance	C cr,sp	[mm]		2,	h _{ef}			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	7,5	9	17,9	26,5	_1)	_1)
Edge distance	C cr,sp	[mm]	100	100	125	150		
Increasing factor $N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$ $N^0_{Rk,sp} = \psi_c \cdot N^0_{Rk,sp} (C20/25)$	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{c}{0}\right)^{0,5}$		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_1)	_1)
Factor for uncracked concrete	$\mathbf{k}_1 = \mathbf{k}_{\text{ucr},N}$	[-]		1	1	1,0	I	l .
No performance asessed.						•		

¹⁾ No performance asessed.

Performance

Characteristic values for **tension loads**, M1R4-FM / M1-HCR **(A4 / HCR)**, **uncracked concrete**, static and quasi-static action

Annex C4

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C5: Characteristic values for shear loads, M1-FM, cracked and uncracked concrete, static or quasi static action

Fastener size				M8	M10	M12	M16	M20	M24	M27
Installation factor		γinst	[-]				1,0			
Steel failure witho	ut lever arm, Stee	l zinc p	olated							
Characteristic resis	tance	V ⁰ Rk,s	[kN]	12,2	20,1	30	55	69	114	169,4
Ductility factor		k ₇	[-]				1,0			
Partial factor		γMs	[-]		1,	25		1,33	1,25	1,25
Steel failure witho	ut lever arm, Stai	nless s	teel A4	, HCR						
Characteristic resis	tance	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Ductility factor		k ₇	[-]						1,0	_1)
Partial factor		γMs	[-]		1,	25		1,4	1,25	
Steel failure with I	ever arm, Steel zi	nc plat	ed							
Characteristic bend	ing resistance	M ⁰ Rk,s	[Nm]	23	47	82	216	363	898	1331,5
Partial factor		γMs	[-]		1,	25		1,33	1,25	1,25
Steel failure with I	ever arm, Stainles	ss stee	I A4, H	CR						
Characteristic bend	ling resistance	$M^0_{\text{Rk,s}}$	[Nm]	26	52	92	200	454	785,4	_1)
Partial factor		γMs	[-]		1,	25		1,4	1,25	- /
Concrete pry-out f	failure									
Pry-out factor		k ₈	[-]		2	,4			2,8	
Concrete edge fail	lure									
Effective length of	Steel zinc plated	If	[mm]	46	60	70	85	100	115	125
fastener in shear loading with h ef	Stainless steel A4, HCR	lf	[mm]	46	60	70	85	100	125	_1)
Effective length of	Steel zinc plated	$I_{f,red}$	[mm]	35 ²⁾	40	50	65			
fastener in shear loading with h ef,red	Stainless steel A4, HCR	$I_{f,red}$	[mm]	35 ²⁾	40	50	65	_1)	_1)	_1)
Outside diameter o	f fastener	d_{nom}	[mm]	8	10	12	16	20	24	27

¹⁾ No performance assessed.

Performance

Characteristic values for **shear loads**, M1-FM, **cracked** and **uncracked concrete**, static or quasi static action

Annex C5

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C6: Characteristic resistance for seismic loading, M1-FM, standard anchorage depth, performance category C1 and C2

Fastener s	size			М8	M10	M12	M16	M20
Tension lo	ads							
Installation	factor	γinst	[-]			1,0		
Steel failui	re, Steel zinc plated							
Characteris	stic resistance C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	60	86
Characteris	stic resistance C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	60	86
Partial facto	or	γMs	[-]	1,	53	1	,5	1,6
Steel failui	re, Stainless steel A4	, HCR						
Characteris	stic resistance C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	64	108
Characteris	stic resistance C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	64	108
Partial facto	or	γMs	[-]		1	,5		1,68
Pull-out (s	teel zinc plated, stainle	ess steel	A4 and	I HCR)				
Characteris	stic resistance C1	VRk,p,eq,C1	[kN]	5	9	16	25	36
Characteris	stic resistance C2	V _{Rk,p,eq,C2}	[kN]	2,3	3,6	10,2	13,8	24,4
Shear load	ls							
Steel failui	re without lever arm,	Steel zin	c plate	ed				
Characteris	stic resistance C1	V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69
Characteris	stic resistance C2	V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2	35,7	55,2
Partial facto	or	γMs	[-]		1,	25	,	1,33
Steel failui	re without lever arm,	Stainles	s steel	A4, HCR				
Characteris	stic resistance C1	V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69
Characteris	stic resistance C2	V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2	35,7	55,2
Partial facto	or	γMs	[-]		1,	25		1,4
Factor for annular	without filling of annular gap	αgap	[-]			0,5		
gap	with filling of annular gap	αgap	[-]			1,0		

Performance

Characteristic resistance for **seismic loading**, M1-FM, **standard anchorage depth**, performance category **C1** and **C2**

Annex C6

Table C7: Characteristic values for tension and shear load under fire exposure, M1-FM, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Fastener size				M8	M10	M12	M16	M20	M24	M27					
Tension load					ı			ı							
Steel failure															
Steel, zinc plat	ed														
	R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6					
Characteristic	R60	NI	[LINI]	1,1	1,9	3,0	5,6	8,2	11,8	15,3					
resistance	R90	$N_{Rk,s,fi}$	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0					
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8					
Stainless steel	A4, HCR														
	R30			3,8	6,9	12,7	23,7	33,5	48,2						
Characteristic	R60	Na. a	וואוז	2,9	5,3	9,4	17,6	25,0	35,9	_1)					
resistance	R90	$N_{Rk,s,fi}$	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	_ '/					
	R120			1,6	2,8	4,5	8,4	12,1	17,4						
Shear load															
Steel failure wi	thout lever a	arm													
Steel, zinc plat	ed														
	R30			1,6	2,6	4,1	7,7	11	16	20,6					
Characteristic	R60	\/	[[LNI]	1,5	2,5	3,6	6,8	11	15	19,8					
resistance	R90	$V_{Rk,s,fi}$	∨ KK,S,∏	[kN]	1,2	2,1	3,5	6,5	10	15	19,0				
	R120			1,0	2,0	3,4	6,4	10	14	18,6					
Stainless steel	A4, HCR														
	R30			3,8	6,9	12,7	23,7	33,5	48,2						
Characteristic	R60	V	[FNI]	2,9	5,3	9,4	17,6	25,0	35,9	_1)					
resistance	R90	$V_{Rk,s,fi}$	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	,					
	R120			1,6	2,8	4,5	8,4	12,1	17,4						
Steel failure wi	th lever arm														
Steel, zinc plat	ed														
	R30			1,7	3,3	6,4	16,3	29	50	75					
Characteristic	R60	M^0 Rk,s,fi	[Nm]	1,6	3,2	5,6	14	28	48	72					
resistance	R90	IVI KK,S,TI	[ווואין]	1,2	2,7	5,4	14	27	47	69					
	R120			1,1	2,5	5,3	13	26	46	68					
Stainless steel	A4, HCR														
	R30			3,8	9,0	19,7	50,1	88,8	153,5						
Characteristic	R60	M0E	[MM]	2,9	6,8	14,6	37,2	66,1	114,3	_1)					
resistance	R90	− M ⁰ Rk,s,fi	- M ⁰ Rk,s,fi	M ⁰ Rk,s,fi	M ⁰ Rk,s,fi	M ⁰ Rk,s,fi	- M ⁰ _{Rk,s,fi} [Nm]	[וייוו]	2,1	4,7	9,5	24,2	43,4	75,1	
	R120			1,6	3,6	7,0	17,8	32,1	55,5						

¹⁾ No performance assessed

Performance

Characteristic values for tension and shear load under fire exposure, M1-FM, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C7

Table C8: Characteristic values for tension and shear load under fire exposure, M1-FM, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Fastener size				M8	M10	M12	M16
Tension load							
Steel failure							
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic	R60	− N _{Rk,s,fi}	[kN]	1,1	1,9	3,0	5,6
resistance	R90		[KIN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4	, HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60	N	[LNI]	2,5	5,3	9,4	17,6
resistance	R90	─ N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Shear load							
Steel failure witho	out lever arm						
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic	R60	− V _{Rk,s,fi}	[kN]	1,1	1,9	3,0	5,6
resistance	stance R90	∨ Rk,s,fi	[KIN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4	, HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60		FIZNI1	2,5	5,3	9,4	17,6
resistance	R90	$ V_{Rk,s,fi}$	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Steel failure with	lever arm						
Steel, zinc plated							
	R30			1,5	3,3	6,4	16,3
Characteristic	R60		[Nlma]	1,2	2,5	4,7	11,9
resistance	R90	─ M ⁰ _{Rk,s,fi}	[Nm]	0,8	1,7	3,0	7,5
	R120			0,6	1,2	2,1	5,3
Stainless steel A4	, HCR						
	R30			3,2	8,9	19,7	50,1
Characteristic	R60	NAO	[N]==1	2,6	6,8	14,6	37,2
resistance	R90	─ M ⁰ _{Rk,s,fi}	[Nm]	2,0	4,7	9,5	24,2
	R120	_		1,6	3,6	7,0	17,8

Performance

Characteristic values for tension and shear load under fire exposure, M1-FM, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C8

Table C9: Displacements under tension load, M1-FM

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δνο	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
Бізріасетісті	δ _{N∞}	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in uncracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δηο	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
ырысетет	δ _{N∞}	[mm]	0,	8	1,4		0,8		1,4
Displacements under seismic tension	loads C2								
Displacements for DLS	$\delta_{\text{N,eq,(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1	_1)	_1)
Displacements for ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	8,2	13,8	15,7	9,5	15,2	'/	/
Stainless steel A4, HCR								•	
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
Displacement	δηο	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	_1)
	 δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in uncracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
	δηο	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	_1)
Displacement	 δ _{N∞}	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Displacements under seismic tension	loads C2								
Displacements for DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1	1)	1)
Displacements for ULS	δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	_1)	_1)
Reduced anchorage depth									
Steel zinc plated, stainless steel A4	, HCR								
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			
	δηο	[mm]	0,8	0,7	0,5	1,0	_1)	_1)	_1)
Displacement	 δ _{N∞}	[mm]	1,2	1,0	0,8	1,1	1		
Tension load in uncracked concrete	N	[kN]	3,7	4,3	8,5	12,6			
	δηο	[mm]	0,1	0,2	0,2	0,2	_1)	_1)	_1)
Displacement	 δ _{N∞}	[mm]	0,7	0,7	0,7	0,7	-		

¹⁾ No performance assessed

Mungo Wedge Anchor M1-FM and M1-IG	
Performance Displacements under tension load	Annex C9

Table C10: Displacements under shear load, M1-FM

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage dept	:h						ı	I	
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
Displacement	$\delta_{\text{V}\infty}$	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seisn	nic shear l	oads C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7	_1)	_1)
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Stainless steel A4, HCR					_				
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	_1)
	δν∞	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seism	nic shear l	oads C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7	_1)	_1)
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1	_ ′	_ ′
Reduced anchorage dept	h								
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Dianlessment	δνο	[mm]	2,0	3,2	3,6	3,5	_1)	_1)	_1)
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4			
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	_1)	_1)	_1)
Displacement		[mm]	2,9	3,6	5,9	6,4			

¹⁾ No performance assessed

Mungo Wedge Anchor M1-FM and M1-IG	
widingo wedge Afficial wit-rivi and wit-ig	
Performance Displacements under shear load	Annex C10

Table C11: Characteristic values for tension loads, M1-IG, cracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	γinst	[-]		1	,2	
Steel failure						
Characteristic resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Partial factor	γMs	[-]		1	,5	
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
	γMs	[-]		1,	87	
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	N Rk,p	[kN]	5	9	12	20
Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor for cracked concrete	$\mathbf{k}_1 = \mathbf{k}_{cr,N}$	[-]		7	,7	

Mungo Wedge Anchor M1-FM and M1-IG

Performance

Characteristic values for tension loads, M1-IG, cracked concrete, static and quasi-static action

Annex C11

Table C12: Characteristic values for tension loads, M1-IG, uncracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	γinst	[-]		1,	,2	
Steel failure						
Characteristic resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Partial factor	γMs	[-]		1	,5	
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Partial factor	γMs	[-]		1,	87	
Pull-out						
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30
Splitting (the higher resistance of C	ase 1 and Cas	e 2 may	be applied)			
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Case 1						
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	16	25
Edge distance	C cr,sp	[mm]		1,5	h _{ef}	
Case 2						
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30
Edge distance	C cr,sp	[mm]		2,5	h _{ef}	
Increasing factor for $\begin{split} N_{Rk,p} &= \psi_c \cdot N_{Rk,p} \left(C20/25 \right) \\ N^0_{Rk,sp} &= \psi_c \cdot N^0_{Rk,sp} \left(C20/25 \right) \end{split}$	ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$)0,5	
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor for uncracked concrete	$\mathbf{k}_1 = \mathbf{k}_{\text{ucr},N}$	[-]		11	,0	

Mungo \	Nedge A	Anchor M	1-FM and	1 M1-IG
---------	---------	----------	----------	---------

Performance

Characteristic values for tension loads, M1-IG, uncracked concrete, static and quasi-static action

Annex C12

Table C13: Characteristic values for shear loads, M1-IG, cracked and uncracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	γinst	[-]		1	,0	
BZ-IG, steel zinc plated						
Steel failure without lever arm, pre-se	tting install	ation				
Characteristic resistance	V^0 Rk,s	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, throug	h-setting in	stallati	on			
Characteristic resistance	V^0 Rk,s	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, pre-setting	g installatio	n				
Characteristic bending resistance	M^0 Rk,s	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, through-s	etting insta	llation				
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	36,0	53,2	76,0	207
Partial factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γMs	[-]		1,	25	
Ductility factor	k 7	[-]		1	,0	
BZ-IG, stainless steel A4, HCR						
Steel failure without lever arm, pre-se	tting install	ation				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial factor	γMs	[-]	1,25			
Steel failure without lever arm, throug	h-setting in	stallati	on			
Characteristic resistance	$V^0_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Partial factor	γMs	[-]		1,	25	
Steel failure with lever arm, pre-setting	g installatio	n				
Characteristic bending resistance	M^0 _{Rk,s}	[Nm]	10,7	26,2	52,3	91,6
Partial factor	γMs	[-]		1,	56	
Steel failure with lever arm, through-s	etting insta	llation				
Characteristic bending resistance	M^0 _{Rk,s}	[Nm]	28,2	44,3	69,9	191,2
Partial factor	γMs	[-]		1,	25	
Ductility factor	k ₇	[-]		1	,0	
Concrete pry-out failure						
Pry-out factor	k 8	[-]	1,5	1,5	2,0	2,0
Concrete edge failure						
Effective length of fastener in shear loading	l _f	[mm]	45	58	65	80
Effective diameter of fastener	d_{nom}	[mm]	8	10	12	16

Performance

Characteristic values for **shear loads**, **M1-IG**, **cracked and uncracked concrete**, static and quasi-static action

Annex C13

Table C14: Characteristic values for tension and shear load under fire exposure, M1-IG, cracked and uncracked concrete C20/25 to C50/60

Fastener size				М6	M8	M10	M12
Tension load			•				
Steel failure							
Steel zinc plated	d						
	R30			0,7	1,4	2,5	3,7
Characteristic	R60	$N_{Rk,s,fi}$	[kN]	0,6	1,2	2,0	2,9
resistance	R90	INRK,S,fi	נאואן	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel A	A4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	N	[[LNI]	1,9	3,8	6,3	9,2
resistance	R90	$N_{Rk,s,fi}$	[kN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Shear load							
Steel failure wit	hout lever arm	า					
Steel zinc plated	d						
	R30			0,7	1,4	2,5	3,7
Characteristic	R60	$V_{Rk,s,fi}$	 [kN]	0,6	1,2	2,0	2,9
resistance	R90	V RK,s,ti	[KIN]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel	A4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	\/	 [kN]	1,9	3,8	6,3	9,2
resistance	R90	$V_{Rk,s,fi}$		1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Steel failure wit	h lever arm						
Steel zinc plated	d						
	R30	· ·		0,5	1,4	3,3	5,7
Characteristic	R60	M0 _D	 [Nm]	0,4	1,2	2,6	4,6
resistance	R90	M^0 Rk,s,fi	[[[[]]]	0,4	0,9	2,0	3,4
	R120			0,3	0,8	1,6	2,8
Stainless steel /	A4, HCR						
	R30			2,2	5,5	11,2	19,6
Characteristic	R60	M^0 Rk,s,fi	 [Nm]	1,5	3,9	8,1	14,3
resistance	R90	IVI KK,S,TÎ		0,7	2,2	5,1	8,9
	R120			0,4	1,3	3,5	6,2

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **M1-IG** cracked and uncracked concrete C20/25 to C50/60

Annex C14

Table C15: Displacements under tension load, M1-IG

Fastener size			M6	M8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
5	δηο	[mm]	0,6	0,6	0,8	1,0
Displacements	δn∞	[mm]	0,8	0,8	1,2	1,4
Tension load in uncracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacements	δηο	[mm]	0,4	0,5	0,7	0,8
Displacements	δ _{N∞}	[mm]	0,8	0,8	1,2	1,4

Table C16: Displacements under shear load, M1-IG

Fastener size			M6	M8	M10	M12
Shear load in cracked and uncracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Dianlacements	δνο	[mm]	2,8	2,9	2,5	3,6
Displacements -	δν∞	[mm]	4,2	4,4	3,8	5,3

Mungo Wedge Anchor M1-FM and M1-IG	
Performance Displacements under tension load and under shear load M1-IG	Annex C15