

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0077 of 29 April 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	VJ Technology Injection System XPE440
Product family to which the construction product belongs	Post-installed reinforcing bar (rebar) connection with improved bond-splitting behaviour under static loading
Manufacturer	VJ Technology Ltd. Brunswick Road ASHFORD, KENT, TN23 1EN GROSSBRITANNIEN
Manufacturing plant	Plant 1, Germany
This European Technical Assessment contains	19 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 332402-00-0601, Edition 09/2023

Page 2 of 19 | 29 April 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the VJ Technology Injection System XPE440 in accordance with the regulations for reinforced concrete construction.

Reinforcing bars with a diameter ϕ from 8 to 40 mm according to Annex A and the injection mortar XPE440 are used for the post-installed rebar connection. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

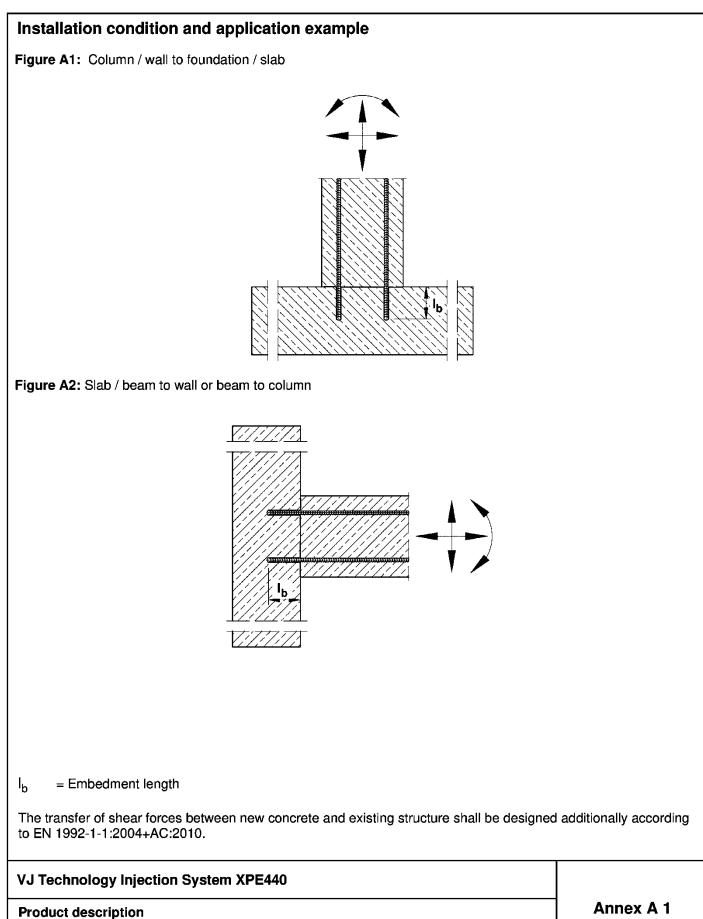
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance							
Characteristic resistance to tension load (stati	ic and quasi-static loading)							
Resistance to combined pull-out and concrete failure in uncracked concrete	See Annex C 2 to C 3							
Resistance to concrete cone failure	See Annex C 1							
Robustness	See Annex C 2 to C 3							
Resistance to bond-splitting failure	See Annex C 2 to C 3							
Influence of cracked concrete on resistance to combined pull-out and concrete failure	See Annex C 2 to C 3							
Characteristic resistance to tension load (seismic loading)	No performance assessed							

Page 4 of 19 | 29 April 2024

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332402-00-0601, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 29 April 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 6 of European Technical Assessment ETA-24/0077 of 29 April 2024

Cartridge system	
Side-by-Side Cartridge: 440 ml, 585 ml and 1400 ml	nelf life, charge quantity information
Static mixer PM-19E	
	0
Piston plug PP and mixer extension	
VJ Technology Injection System XPE440	
Product description Injection system	Annex A 2

Reinforcing bar (rebar): ø8 up to ø40									
 Minimum value of related rip area f_{R,min} accord Rib height of the bar shall be in the range 0,05¢ (¢: Nominal diameter of the bar; h_{rib}: Rib height Table A1: Materials Rebar 	$\phi \leq h_{rib} \leq 0,07\phi$								
Designation	Material								
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$								

VJ Technology Injection System XPE440

Product description Specifications Rebar

Annex A 3

		Working life 50 years	Working life 100 years
ID: Hammer drilling IDB: Hammer drilling with hollow drill bit CD: Compressed air drilling DD: Diamond drilling	Ø8 to Ø40		
Femperature Range:	II: - 40°C to +72°C	ure +24 °C and max short-term ter ure +50 °C and max short-term ter	
Base materials:			
 Maximum chloride con EN 206:2013 + A1:2016. Non-carbonated concrete Note: In case of a carbonate of the post-installed rebar co The depth of concrete to b EN 1992-1-1:2004+AC:2010 building components are in c Design: Anchorages are designed work. Verifiable calculation note Design according to EOT. The actual position of th 	to C50/60 according to EN Itent of 0,40% (CL 0 d surface of the existing conc onnection with a diameter of ¢ be removed shall correspond The foregoing may be negle dry conditions. d under the responsibility es and drawings are prepa A Technical Report TR 06	.40) related to the cemer crete structure the carbonated laye 0 + 60 mm prior to the installation of d to at least the minimum concre ected if building components are n of an engineer experienced in red taking account of the force 9, Edition June 2021. isting structure shall be deter	nt content according to or shall be removed in the area of the new rebar. ete cover in accordance with new and not carbonated and if a anchorages and concrete s to be transmitted.
Installation:			
 Water-filled drill holes; for Overhead installation allo Hole drilling by hammer d Rebar installation carried responsible for technical r Check the position of the 	wed. Irill (HD), hollow drill (HDB) out by appropriately qua matters of the site. existing rebars (if the posi- table for this purpose as w	liameter.), diamond drill (DD) or compre lified personnel and under the tion of existing rebars is not kn rell as on the basis of the cons	e supervision of the person own, it shall be determined

Table B1: Minim methe		ete cover c _{min} of pos	t-installed rebar dep	ending of drilling					
Drilling method	Rebar diameter	Without drilling aid	With dr	lling aid					
HD: Hammer drilling HDB: Hammer drilling	< 25 mm	$30 \text{ mm} + 0,06 \cdot I_b \ge 2 \phi$	$30 \text{ mm} + 0,02 \cdot I_b \ge 2 \phi$						
with hollow drill bit	≥ 25 mm	40 mm + 0,06 · $I_b \ge 2 \phi$							
DD: Diamond drilling	< 25 mm	Drill rig used as drilling	30 mm + 0,02 · l _b ≥ 2 φ						
DD: Diamond drilling	≥ 25 mm	aid	40 mm + 0,02 · $l_b \ge 2 \phi$						
CD: Compressed air	< 25 mm	50 mm + 0,08 · I _b	50 mm + 0,02 · l _b	сц і і і і і і і і і і і і і і і і і і і 					
drilling	≥ 25 mm	$60 \text{ mm} + 0,08 \cdot I_b \ge 2 \phi$	60 mm + 0,02 · l _b ≥ 2 φ						
Comments: The minimum	concrete cove	r acc. EN 1992-1-1:2004+AC	:2010 must be observed.						

The minimum clear spacing is $a = max (40mm; 4 \phi)$

Table B2: Dispensing tools

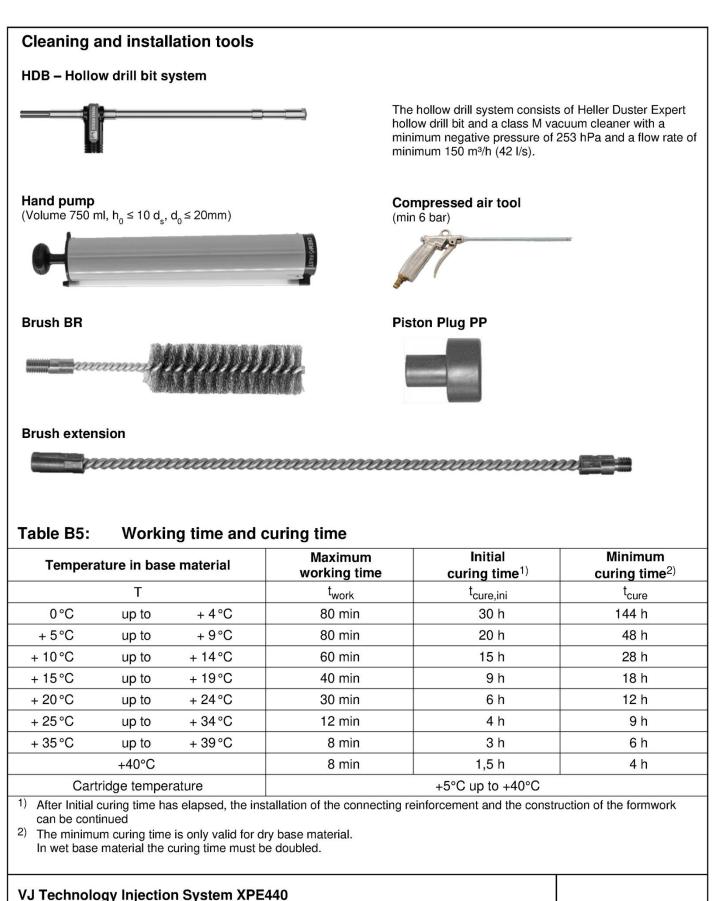
Cartridge type/size	Ha	nd tool	Pneumatic tool
Side-by-side cartridges 440, 585 ml			
	e.g. SA 296C585	e.g. Type H 244 C	e.g. Type TS 444 KX
Side-by-side cartridges 1400 ml	-	-	e.g. Type TS 471
All cartridges could also be e	extruded by a battery tool.		

VJ Technology Injection System XPE440

Intended use

Minimum concrete cover Dispensing tools

Bar		Drill				d _{b,min}	_	Cartridge: 440 ml or 5				585 ml		dge: 1400 m	
size		bit - 🤉	ð	d _b Brush - Ø		min. Brush -	Piston plug		ttery to		Pneu	matic tool	Pneumatic tool		
φ	HD	DD	CD	Bru	sn - છ	Ø	pidg	I _{b,max}		Mixer extension		Mixer extension	I _{b,max}	Mixer extension	
[mm]			m]		[mm]	[mm]		[mm]					[mm]		
8	1	0		BR10	11,5	10,5	-	250			250		250		
-	1	2	_	BR12	13,5	12,5	_	700			800		800	10/0,75	
10					, í	,		250			250		250	Or 10/1 0	
	1	4	-	BR14	15,5	14,5	PP14	700			1000		1000	16/1,8	
12		10		DD40	175	10.5		250			250		250		
4.4		16		BR16	-	16,5	PP16	700			1000		1200		
14		18		BR18		18,5	PP18	700	10/0	-	1300		1400		
16	<u> </u>	<u>20</u> 5	-	BR20 BR25		20,5	PP20 PP25		or 16/1			10/0 75	1600		
20	<u> </u>	<u>ບ</u>	- 26	BR25 BR26		25,5	PP25 PP25			,0		10/0,75 or			
	-		20		- <u> </u>	26,5						16/1,8			
22		28		BR28		28,5	PP28	500						10/1.0	
24/25		30		BR30 BR32	-	30,5	PP30	500						16/1,8	
00		32		-	- ,-	32,5	PP32				1000		2000		
28		35		BR35	,	35,5	PP35								
32/34		40		BR40		40,5	PP40								
36		45		BR45	1	45,5	PP45								
40	- 55	52	- 55	BR52 BR55	-	52,5 55,5	PP52 PP55	-	-						
Bar	Dr	ill	ham	mer		with ho		rill bit		em (H	DB)	mixer ex	Cartridge: 1400		
size	bit ·	ø	d b		min.	Piston	Hand c	or batte	ry tool	Pr	eumat	ic tool	tool Pneum		
φ	HD	в	Brush	-ø	Brush - Ø	plug	I _{b,max}		ixer nsion	l _{b,ma}	× ex	Mixer	I _{b,max}	Mixer extension	
[mm]	[m	m]					[mm]			[mm	_		[mm]		
	10					-	250			250			250		
•						-	700	1		800		_	800		
8		2				-	250	1		250			250		
	1:						700	1		100			1000		
8 10													250		
10	1:	4				PP14		1		250	1				
	1,						250			250		-			
10 12	14	6		clear		PP16	250		0,75	250		0/0,75	200	10/0,75	
10 12 14	- 1, 1, 1,	6 8		o clear Requir					or	250	1	or	200	or	
10 12 14 16	14 11 11 20	6 8 0				PP16 PP18 PP20	250		-	250	1	-	200	-	
10 12 14 16 20	14 14 18 20	5 3 0 5				PP16 PP18 PP20 PP25	250		or		1	or		or	
10 12 14 16 20 22	14 10 11 20 21 21	6 8 0 5 8				PP16 PP18 PP20 PP25 PP28	250 700		or	250 100	1	or	1000	or	
10 12 14 16 20 22	- 14 11 20 21 21 30	6 8 0 5 8 0				PP16 PP18 PP20 PP25 PP28 PP30	250		or		1	or		or	
10 12 14 16 20	14 10 11 20 21 21	6 3 2 5 5 3 3 2 2				PP16 PP18 PP20 PP25 PP28	250 700		or		1	or		or	

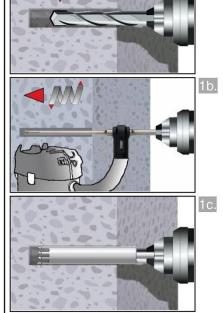

Intended use

Parameter brushes, piston plugs, max embedment length and mixer extension

Page 11 of European Technical Assessment ETA-24/0077 of 29 April 2024

English translation prepared by DIBt

Intended use Cleaning and installation tools Working time and curing time


Installation instructions

Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B 1) In case of aborted drill hole: the drill hole shall be filled with mortar.

Drilling of the bore hole

1a. Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment length. Drill bit diameter according to Table B3. Proceed with Step 2 (MAC or CAC).

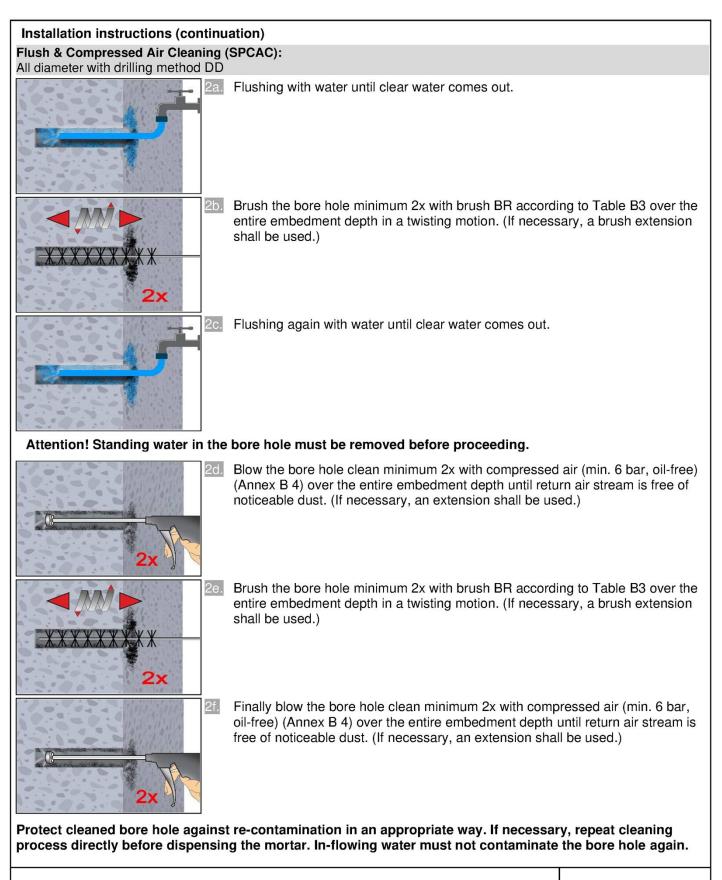
Hollow drill bit system (HDB) (see Annex B 4) Drill a hole to the required embedment length. Drill bit diameter according to Table B4. The hollow drilling system removes the dust and cleans the bore hole. Proceed with Step 3.

Diamond drilling (DD)

Drill a hole to the required embedment length required Drill bit diameter according to Table B3. Proceed with Step 2 (SPCAC).

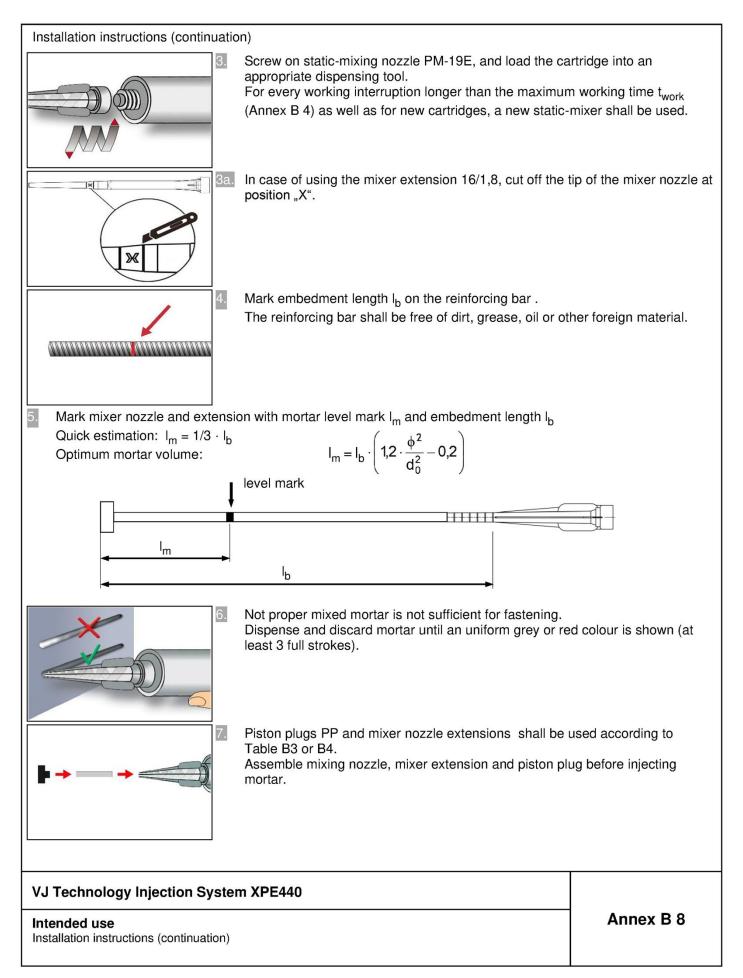
VJ Technology Injection System XPE440

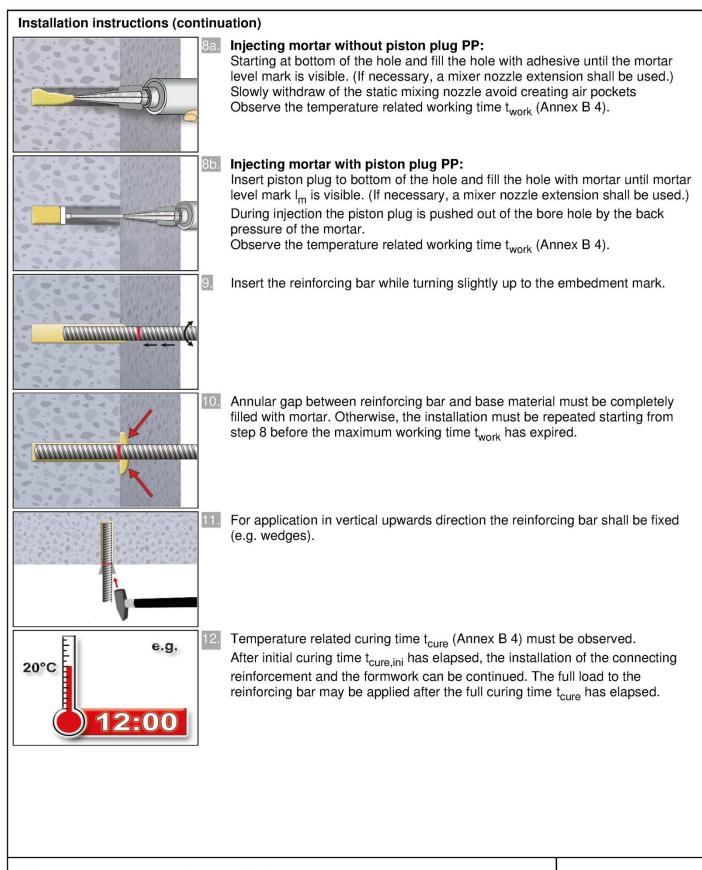
Intended use


Annex B 5

Installation instruction

Installation instructions (continuation)	
Manual Air Cleaning (MAC)	
for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10\phi$ with drilling method HD/CD	
Attention! Standing water in the bore hole must be removed. a. Blow the bore hole clean minimum 4x from the bottom of (Annex B 4).	
2b. Brush the bore hole minimum 4x with brush BR accordientire embedment depth in a twisting motion (if necessation).	
Finally blow the bore hole clean minimum 4x from the b pump (Annex B 4).	ottom or back by hand
Compressed Air Cleaning (CAC):	
All diameter with drilling method HD/CD	und hofers closedar
Attention! Standing water in the bore hole must be removed. Blow the bore hole clean minimum 2x with compressed (Annex B 4) over the entire embedment depth until returnoticeable dust. (If necessary, an extension shall be use	air (min. 6 bar, oil-free) rn air stream is free of
2b. Brush the bore hole minimum 2x with brush BR according entire embedment depth in a twisting motion. (If necess shall be used.)	
Finally blow the bore hole clean minimum 2x with compoil-free) (Annex B 4) over the entire embedment depth of free of noticeable dust. (If necessary, an extension shall free of noticeable dust.)	until return air stream is
Protect cleaned bore hole against re-contamination in an appropriate way. If necessar process directly before dispensing the mortar. In-flowing water must not contaminate	
VJ Technology Injection System XPE440	
	Annex B 6
Intended use Installation instructions (continuation)	




VJ Technology Injection System XPE440

Intended use Installation instructions (continuation)

VJ Technology Injection System XPE440

Intended use Installation instructions (continuation)

Table C1:	Characteristic resistance to tension load (static and quasi-static loading) for a working life of 50 and 100 years										
Fastener				All sizes							
Concrete con	e failure										
Uncracked co	ncrete	k _{ucr,N}	[-]	11,0							
Cracked conci	rete	k _{cr,N}	[-]	7,7							
Edge distance	ł	C _{cr,N}	[mm]	1,5 l _b ¹⁾							
Spacing		s _{cr,N}	[mm]	3,0 l _b ¹⁾							
1)	. .	I	1								

1) see Annex A 1

VJ Technology Injection System XPE440

Performances

Characteristic values of tension loads under static and quasi-static action for a working life of 50 and 100 years $% \left(\frac{1}{2}\right) =0$

Annex C 1

Table C2:Characteristic resistance to tension load under static and quasi-static loading in
hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled
holes with hollow drill bit (HDB); working life 50 and 100 years

Poinforcing bor					C 10	a 10	C 14	a 16		a. 0	a 05	<u> </u>	<i>α</i> 20	<i>a</i> 26	~ .
Reinforcing bar Combined pull-or	ut and appare		uorking I				Ø 14	010	Ø 20	Ø 24	Ø 25	0 28	Ø 32	Ø 30	Ø 4U
								es (Hi	n) and	1 com	oracce	d air (hrillod	holes	
l: 24°C/40°C II: 50°C/72°C	I: 24°C/40°C Dry, wet concrete and flooded bore	^τ Rk,ucr,50		16	16	16	16	16	16	15	15	15	15	15	15
	hole	= ⁷ Rk,ucr,100	[N /mm²]	12	12	12	12	12	12	12	12	11	11	11	11
Characteristic resi	stance in uncra	cked concr	ete C20/2	25 in h	amme	1	1	1		1	ll bit (H	HDB)			
I: 24°C/40°C II: 50°C/72°C II: 24°C/40°C	Dry, wet concrete	^t Rk,ucr,50		14 12	14 12	13 12	13 11	13 11	13 11	13	13	13 11	13 11		
E 24°C/40°C II: 50°C/72°C	flooded bore hole	= ^τ Rk,ucr,100	[N/mm²]	13 11	13 11	13 11	13 11	13 11	13 11	13 11	13 11	13	13 11	1)
		Loo in crack	ed and u								1				
Reduction factor $\psi^0_{sus,50}$, $\psi^0_{sus,100}$ in cracked and uncracked concrete C20/25; (HD, CD and HDB)Image: Displaying transformation of the subscription															
ຟິ ^ນ ີ II:50°C/72°C ⊥	flooded bore hole	Ψ ⁰ sus,100							-	68					
Increasing factors		Ψc	[-]	(f _{ck} / 20) ^{0,1}											
Characteristic bond resistance depending on the concrete		^τ Rk	$\tau_{\rm Rk,ucr,50} = \psi_{\rm c} \cdot \tau_{\rm Rk,ucr,50,(C20/25)}$												
strength class	concrete	^τ Rk,	$v_{\rm Rk, ucr, 100} = - \psi_{\rm c} \cdot \tau_{\rm Rk, ucr, 100, (C20/25)}$												
Influence of crack (HD, CD and HDE		on combine	ed pullou	it and	conc	rete c	one fa	ailure	; worl	king li	ife of a	50 and	d 100	years	,
Factor for	HD, CD			0,84	0,84	0,85	0,86	0,87	0,89	0,91	0,91	0,92	0,94	0,94	0,95
influence of cracked concrete	HDB	Ω _{cr}	[-]	0,84	0,84	0,85	0,86	0,87	0,89	0,91	0,91	0,92	0,94	ND	A ¹⁾
Bond-splitting fa	ilure; working	life 50 and	100 yea	rs; (H	D, CD	and I	HDB)								
Product basic fact	or	A _k	[-]						6	,0					
Exponent for influe	ence of		•	•											
- concrete compre	ssive strength	sp1	[-]						0,	32					
- rebar diameter φ		sp2	[-]						0,	60					
- concrete cover c	d	sp3	[-]						0,	30					
- side concrete co	ver (c _{max} / c _d)	sp4	[-]						0,	28					
- embedment leng	th I _b	lb1	[-]						0,	66					
Concrete cone fa	ilure														
Relevant parameter	er							S	ee Ta	ble C	1				
Installation facto		HDB)													
for dry and wet co		γ _{inst}	[-]						,0						,2
for flooded bore he		. 11131						1	,2)
 no performance 	assessed														

VJ Technology Injection System XPE440

Performances

Characteristic resistance to tension load under static and quasi-static loading; working life of 50 and 100 years; (HD, CD and HDB)

Annex C 2

Tabl										Table C3: Characteristic resistance to tension load under static and quasi-static loading in diamond drilled holes (DD); working life 50 and 100 years											
Reinfo	orcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	Ø 36	Ø 40					
		and concrete fa																			
	cteristic resista	nce in uncracke	ed concrete	C20/25; v	vorkin	<u>g</u> life	50 ye	ars													
Temperature range	l: 24°C/40°C	concrete and	^τ Rk,ucr,50	[N/mm²]	14	13	13	13	12	12	11	11	11	11	11	10					
Temp	II: 50°C/72°C	flooded bore hole		[]	11	11	10	10	10	9,5	9,5	9 ,5	9,0	9,0	8,5	8,5					
	tion factor ψ^0_s	_{us,50} in cracked	and uncrac	ked conci	rete C	20/25	; worl	king li	fe 50	years											
Temperature range	I: 24°C/40°C	concrete and	Ψ ⁰ sus,50	[-]	0,77																
<u> </u>	II: 50°C/72°C	flooded bore hole			0,72																
	cteristic resista	nce in uncracke	ed concrete	C20/25; v	vorkin	g life	100 y	ears													
Temperature range	I: 24°C/40°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	14	13	13	13	12	12	11	11	11	11	11	10					
	II: 50°C/72°C	flooded bore hole			11	10	10	10	9,5	9,0	9,0	9 ,0	8,5	8,5	8,0	8,0					
Reduc	tion factor ψ^0_s	_{us,100} in cracke	d and uncra	cked con	crete (C20/2	5; wo	rking	life 10)0 yea	ars										
Temperature range	l: 24°C/40°C	concrete and	Ψ ⁰ sus,100	[-]	0,73																
Temp	II: 50°C/72°C	flooded bore hole	* 505,100			0,70															
Increa	sing factors for	concrete	Ψc	[-]	(f _{ck} / 20) ^{0,2}																
	cteristic bond r		τ _R	k,ucr,50 =					Ψc•	Rk,uc	r,50,(C	20/25)									
depend class	aing on the cor	ncrete strength	^τ Rk,	ucr,100 =					ψ _c ・τ	Rk,ucr	,100,(0	20/25)								
Influe	nce of cracked	d concrete on o	combined p	ullout an	id cor	ncrete	e con	e fail	ure; v	/orkir	ng life	50 a	nd 10	0 yea	rs						
concre			Ω _{cr}	[-]	0,87	0,88	0,89	0,90	0,91	0,94	0,94	0, 9 4	0,93	0,93	0,93	0, 9 3					
L		re; working life	1	·																	
	t basic factor		A _k	[-]						5	,9										
<u> </u>	ent for influenc																				
L	rete compressi	ve strengtn	sp1	[-]							28										
	diameter ¢		sp2	[-]							53										
	rete cover c _d		sp3	[-]							36										
	concrete cover		sp4	[-]							29										
	edment length	~	lb1	[-]						0,	65										
	ete cone failu ant parameter	re									ıble C	-1									
	ation factor											· I									
	and wet concr	ete							1	,0					1	,2					
<u> </u>	ded bore hole		γinst	[-]		1	,2			,	1	,4)					
1) no	performance as	sessed	-																		
VJ T	echnology Ir	njection Syste	em XPE44	D																	
Chara	VJ Technology Injection System XPE440 Ann Performances Ann Characteristic resistance to tension load under static and quasi-static loading; working life 50 and 100 years (DD) Ann								nex	C 3											