

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0171 of 9 April 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Würth Internally Threaded Screw Anchor W-BS-I MULTI

Fasteners for use in concrete for redundant non-structural systems

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau

Werk 9

12 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601, Edition 06/2018

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z22042.24 8.06.01-60/24

European Technical Assessment ETA-24/0171

English translation prepared by DIBt

Page 2 of 12 | 9 April 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 | 9 April 2024

Specific Part

1 Technical description of the product

The Würth Internally Threaded Screw Anchor W-BS-I MULTI is an anchor of size of 8, 10 and 12 mm made of galvanized steel or steel with zinc flake coating. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C3

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-24/0171

English translation prepared by DIBt

Page 4 of 12 | 9 April 2024

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

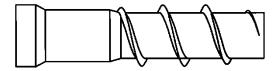
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

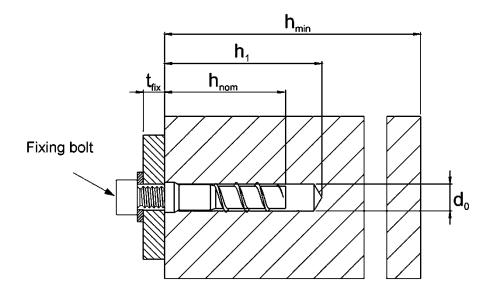
Issued in Berlin on 9 April 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section

beglaubigt:


Tempel


Product in installed condition

Würth Internally Threaded Screw Anchor W-BS-I MULTI

- Galvanized carbon steel
- Zinc flake coated carbon steel

e.g. Würth W-BS-I MULTI 8/M6 and fixture

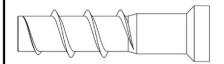
 d_0 = nominal drill hole diameter

t_{fix} = thickness of fixture

h₁ = drill hole depth

 h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth


Würth Internally Threaded Screw Anchor W-BS-I MULTI

Product description

Product in installed condition

Annex A1

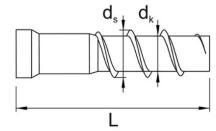
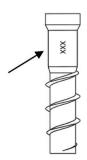

Configuration with internal thread and TX-drive e.g. W-BS-I MULTI 8/M6

Table 1: Material

Part	Product name	Material			
all types	W-BS-I MULTI	- carbon steel galvanized or zinc flake coated			
Part	Product name	Nominal characteristic steel Yield strength Ultimate strength f _{uk} [N/mm²]		Rupture elongation A₅ [%]	
all types	W-BS-I MULTI	560 700		≤8	

Table 2: Dimensions

Anchor size			W-BS-I MULTI 8 /M6	W-BS-I MULTI 10 /M8	W-BS-I MULTI 12 /M10
Screw length	L	[mm]	40	40	40
Thread outer diameter	ds	[mm]	10,5	12,5	14,5
Core diameter	d _k	[mm]	7,0	9,0	11,0
Internal Thread	d _{ith}	[mm]	M6	M8	M10
Drive			TX50	TX55	TX60


Marking: W-BS-I MULTI or TSM M

Screw type:

W-BS-I 8/M6 or TSM 8 M

Screw size:

0

Würth Internally Threaded Screw Anchor W-BS-I MULTI

Product description

Screw types, material, dimensions and markings

Annex A2

Z22039.24

Specification of Intended use

Anchorages subject to:

- Static or quasi-static loading
- Used only for redundant non-structural systems according to EN 1992-4:2018
- Fire exposure

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Cracked and uncracked concrete

Use conditions (Environmental conditions):

Concrete structures subject to dry internal conditions

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed for static or quasi-static actions according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters df of clearance hole in the fixture in Annex B2, Table 3.

Installation:

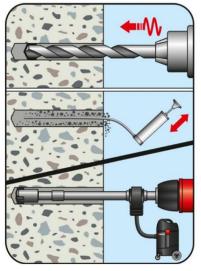
- Hammer drilling or hollow drilling
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The concrete screw must be screwed minimum in level with the concrete surface.
- The attachment is fastened by a fixing bolt/threaded rod.

Würth Internally Threaded Screw Anchor W-BS-I MULTI	
Intended use Specification continuation	Annex B1
Specification continuation	

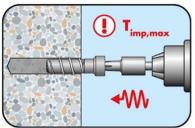
Table 3: Installation parameters

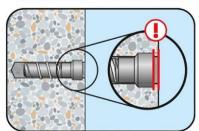
Fastening screws or threaded rods of strength classes 4.8, 5.8, 8.8 according to EN ISO 898-1:2013 may be used.

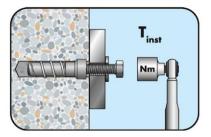
Würth Internally Threaded Screw Anchor			W-BS-I MULTI 8/M6	W-BS-I MULTI 10/M8	W-BS-I MULTI 12/M10
Nominal embedment depth	h _{nom}	[mm]	40	40	40
Nominal drill hole diameter	d ₀	[mm]	8	10	12
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,50
Drill hole depth	h ₁ ≥	[mm]	50	50	50
Clearance hole diameter	df	[mm]	7	9	12
Diameter of the internal thread	dith	[mm]	M6	M8	M10
Drive			TX50	TX55	TX60
Minimum screw-in depth of the fixing bolt or threaded rod		[mm]	8	8	8
Installation torque	T _{inst} ≤	[Nm]	4	8	15
Impact wrench/driver			Max. torque according to manufacturer's instruction		
		l imp,max		180	


Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

Würth Internally Threaded Screw	W-BS-I MULTI 8/M6	W-BS-I MULTI 10/M8	W-BS-I MULTI 12/M10		
Nominal embedment depth	h_{nom}	[mm]	40	40	40
Minimum thickness of member	h _{min}	[mm]	80	80	80
Minimum edge distance	C _{min}	[mm]	40	40	40
Minimum spacing	S _{min}	[mm]	30	40	40


Würth I	nternally Threaded Screw Anchor W-BS-I MULTI	
N	ntended use Minimum thickness of member, minimum edge distance and minimum spacing	Annex B2


Installation instructions


Create a hammer drilled or hollow drilled drill hole. Remove drill dust by vacuuming or blowing off. Cleaning of drill hole is not necessary when using a hollow drill bit.

Install screw anchor with an impact wrench/ driver or a wrench. You must not exceed the given $T_{\mbox{\tiny imp,max}}$.

The anchor must be screwed in below the concrete surface.

The fixture is fastened with a fixing bolt or a threaded rod. You must not exceed the given $T_{\mbox{\tiny inst.}}$

Würth Internally Threaded Screw Anchor W-BS-I MULTI

Intended use

Installation instructions

Annex B3

Table 5: Steel failure for tension and shear loading

Würth Internally Threaded	Scrow	Anchor	W-BS-I	W-BS-I	W-BS-I		
Warth Internally Threaded Sciew Anchor			MULTI 8/M6	MULTI 10/M8	MULTI 12/M10		
Nominal embedment depth	h _{nom}	[mm]	40 40 40				
Characteristic resistance to steel failure, strength class 4.8							
Characteristic resistance	$N_{Rk,s}$	[kN]	8,0	9,5	10,0		
Partial factor	γ _{Ms,N}	[-]		1,5			
Characteristic resistance	$V_{Rk,s}$	[kN]	4,0	7,3	9,0		
Partial factor	γ _{Ms,V}	[-]		1,25			
Ductility factor	k ₇	[-]		0,8			
Characteristic bending load	M ⁰ RK,s	[Nm]	5,0	12,5	23,9		
Characteristic resistance to steel failure, strength class 5.8							
Characteristic resistance	$N_{Rk,s}$	[kN]	8,0	9,5	10,0		
Partial factor	γ _{Ms,N}	[-]		1,5			
Characteristic resistance	$V_{Rk,s}$	[kN]	5,0	7,5	9,0		
Partial factor	γ _{Ms,V}	[-]		1,25			
Ductility factor	k ₇	[-]		0,8			
Characteristic bending load	M ⁰ RK,s	[Nm]	6,3	15,4	23,9		
Characteristic resistance to	steel f	failure, st	rength class 8.8				
Characteristic resistance	N _{Rk,s}	[kN]	8,0	9,5	10,0		
Partial factor	γ _{Ms,N}	[-]	1,5				
Characteristic resistance	V _{Rk,s}	[kN]	6,0 7,5 9,0				
Partial factor	γ _{Ms,V}	[-]	1,25				
Ductility factor	k ₇	[-]	0,8				
Characteristic bending load	M ⁰ _{RK,s}	[Nm]	8,8 15,4 23,9				

Würth Internally Threaded Screw Anchor W-BS-I MULTI	
Performances Steel failure for tension and shear loading	Annex C1

Würth Internally Threaded Screw Anchor				Size 8/M6	Size 10/M8	Size 12/M10
Nominal embedment de	pth	h _{nom}	[mm]	40	40	40
Pull-out failure in uncr	acked concrete					
Characteristic resistance in C20/25	to tension load	N _{Rk,p}	[kN]	6,5	8,0	5,5
Increasing factor for	C25/30					
$N_{Rk,p} = N_{Rk,p (C20/25)} \cdot \psi_c$	C30/37					
with $f \rightarrow f$	C40/50	m	[-]	0,213	0,146	0,147
$\psi_c = \left(\frac{f_{ck}}{20}\right)^m$	C50/60					
Pull-out failure in crack	ked concrete					
Characteristic resistance to tension load in C20/25		N _{Rk,p}	[kN]	5,5	6,5	4,5
Increasing factor for $N_{Rk,p} = N_{Rk,p} (C20/25) \cdot \psi_c$	C25/30	m	[-]		0,121	0,281
with $\psi_c = \left(\frac{f_{ck}}{20}\right)^m$	C30/37			0,209		
	C40/50 C50/60			0,203		
Concrete failure: splitt	ing failure, cond	rete con	e failur	e and prv-out	failure	
Effective embedment de		h _{ef}	[mm]	31	31	30
k-Faktor	cracked	k _{cr}	[-]		7,7	
K-I aktoi	uncracked	k _{ucr}	[-]		11,0	
Concrete cone failure	spacing	S _{cr,N}	[mm]		3,0 x h _{ef}	
	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}	
6 11	resistance	N ⁰ Rk,sp	r .	6,5	8,0	5,5
Splitting failure	spacing	S _{cr,Sp}	[mm]		$00 \text{ mm und} \ge 4 \text{ x}$	
Factor for pry-out failure	edge distance k ₈	C _{cr,Sp}	[mm]	≥ 10	$\frac{00 \text{ mm und } \ge 3 \times 10^{-3}}{1,0}$	Hef
Installation factor	[-] γ inst	[-]	1,0	1,0	1,2	
Concrete edge failure		1	.,			24 PM 2000
Effective length in concrete			[mm]	40	40	40
Nominal outer diameter	$I_f = h_{nom}$ d_{nom}	[mm]	8	10	12	

Würth Internally Threaded Screw Anchor W-BS-I MULTI	
Performances Fire exposure - characteristic values of resistance	Annex C2

Table 7: Fire	exposure -	characteristic	values	of resistance
I GOIC / I I II C	CAPOSAIC	Cital acceliatio	Values	OI I COIDCUITCE

Würth Internally T				Size	Size	Size		
Wurth internally i	Würth Internally Threaded Screw A			8/M6	10/M8	12/M10		
Nominal embedment depth		h _{nom}	[mm]	40	40	40		
Steel failure for tension and shear load								
	R30	N _{Rk,s,fi30}	[kN]	1,01	2,11	3,92		
	R60	N _{Rk,s,fi60}	[kN]	0,77	1,58	2,86		
	R90	N _{Rk,s,fi90}	[kN]	0,54	1,05	1,81		
	R120	N _{Rk,s,fi120}	[kN]	0,43	0,79	1,28		
	R30	V _{Rk,s,fi30}	[kN]	1,01	2,11	3,92		
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,77	1,58	2,86		
Resistance	R90	V _{Rk,s,fi90}	[kN]	0,54	1,05	1,81		
	R120	V _{Rk,s,fi120}	[kN]	0,43	0,79	1,28		
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,63	1,81	4,28		
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,49	1,36	3,12		
	R90	M ⁰ Rk,s,fi90	[Nm]	0,34	0,91	1,97		
	R120	M ⁰ Rk,s,fi120	[Nm]	0,27	0,68	1,39		
Pull-out failure								
Characteristic	R30-R90	N _{Rk,p,fi}	[kN]	1,38	1,63	1,13		
Resistance	R120	N _{Rk,p,fi}	[kN]	1,10	1,30	0,90		
Concrete cone fail	lure							
Characteristic	R30-R90	N ⁰ Rk,c,fi	[kN]	0,9	0,9	0,8		
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,7	0,7	0,7		
Edge distance								
R30 - R120		C _{cr,fi}	[mm]	2 x h _{ef}				
In case of fire attack	k from more	than one sid	e, the mi	nimum edge dista	ance shall be ≥30	00mm.		
Spacing								
R30 - R120		S _{cr,fi}	[mm]	4 x h _{ef}				

Würth Internally Threaded Screw Anchor W-BS-I MULTI	
Performances Fire exposure - characteristic values of resistance	Annex C3