

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische **Technische Bewertung**

ETA-24/0686 vom 18. Oktober 2024

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR

Mechanischer Dübel zur Verankerung im Beton

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich **DEUTSCHLAND**

Werk 2, Deutschland

24 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601-v05, Edition 01/2024

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z166644.24 8.06.01-165/24

Seite 2 von 24 | 18. Oktober 2024

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR ist ein Dübel aus galvanisch verzinktem Stahl oder aus nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B3, C1, C2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C3
Charakteristischer Widerstand für die seismischen Leistungskategorien C1 und C2	Siehe Anhang C4, C5
Verschiebungen	Siehe Anhang C8, C9, C10

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C6, C7

3.3 Aspekte der Dauerhaftigkeit

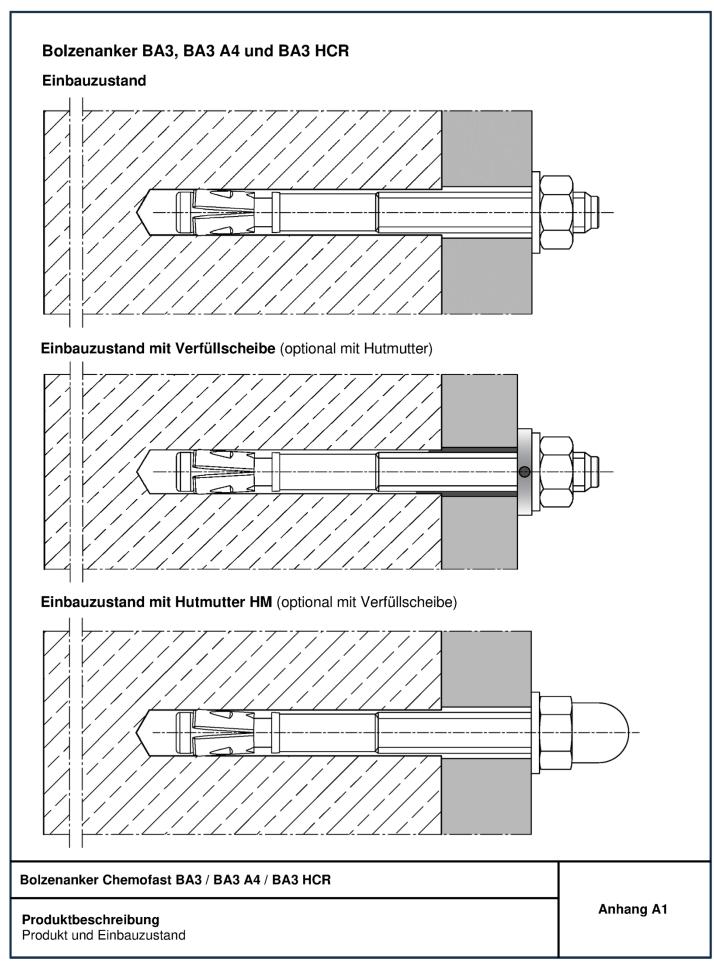
Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

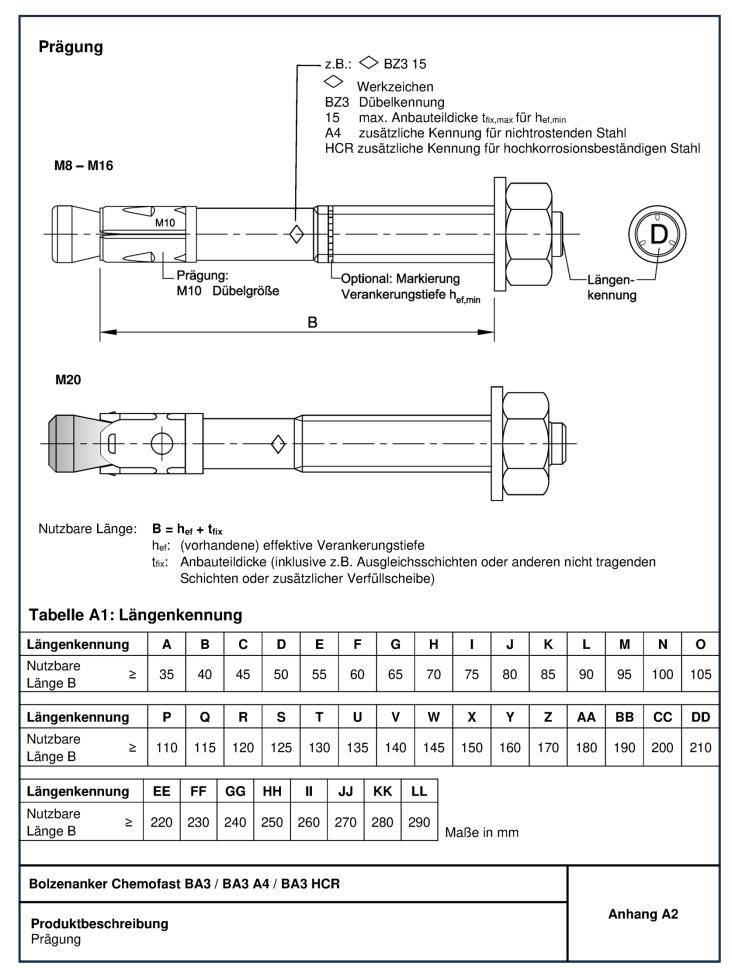
Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601-v05 gilt folgende Rechtsgrundlage: 1996/582/EG.

Folgendes System ist anzuwenden: 1

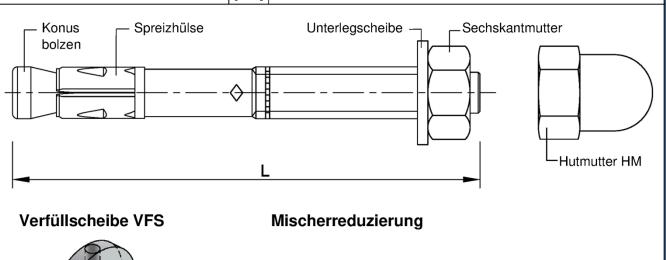
Seite 4 von 24 | 18. Oktober 2024


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 18. Oktober 2024 vom Deutschen Institut für Bautechnik

Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider



Ta	hal	ما	Λ2	- N/	late	rial
10	DEI	ı	AZ.	. IV	Ialt	ııaı

	BA3	BA3 A4	BA3 HCR	
Teil	Stahl verzinkt	Nichtrostender Stahl CRC III	Hochkorrosions- beständiger Stahl CRC V	
Konusbolzen	Stahl galvanisch verzinkt ≥ 5 µm, Bruchdehnung A₅ ≥ 8%	Nichtrostender Stahl, Bruchdehnung A₅ ≥ 8%	Hochkorrosionsbeständiger Stahl, Bruchdehnung A₅ ≥ 8%	
Spreizhülse	Nichtrostender Stahl	Nichtrostender Stahl	Nichtrostender Stahl	
Unterlegscheibe			Hochkorrosionsbeständiger	
Verfüllscheibe VS	Stahl galvanisch verzinkt	Nichtroctonder Stabl		
Sechskantmutter	≥ 5 µm	Nichtrostender Stahl	Stahl	
Hutmutter HM				

Tabelle A3: Produktabmessungen

Dübelgröße			BA3 / BA3 A4 / BA3 HCR					
			M8	M10	M12	M16	M20	
Schlüsselweite Sechskantmutter / Hutmutter HM	s	[mm]	13	17	19	24	30	
Dübellänge	L	[mm]	h _{ef} + t _{fix} + 18,0	h _{ef} + t _{fix} + 21,5	h _{ef} + t _{fix} + 26,0	h _{ef} + t _{fix} + 33,0	h _{ef} + t _{fix} + 37,0	
Dicke der Verfüllscheibe VS	t	[mm]			5			

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR Produktbeschreibung Material und Produktabmessungen Anhang A3

Spezifizierung des Verwendungszwecks							
Delega-vilar		BA3 / BA3 A4 / BA3 HCR					
Bolzenanker	М8	M10	M12	M16	M20		
Statische oder quasi-statische Einwirkung			✓				
Seismische Einwirkung, Leistungskategorie C1 und C2	✓						
Brandbeanspruchung	R30 / R60 / R90 / R120						
Variable, effektive Verankerungstiefe	35 mm bis 90 mm	40 mm bis 100 mm	50 mm bis 125 mm	65 mm bis 160 mm	90 mm bis 140 mm		

Verankerungsgrund:

- Für alle Größen: Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206:2013+ A2:2021
- Für die Größen M8 und M10: Stahlfaserbeton (SFCR) nach EN 206:2013+ A2:2021 mit Stahlfasern nach EN 14889-1:2006, Abschnitt 5, Gruppe 1. Der Fasergehalt darf maximal 80kg/m³ betragen.
- Gerissener oder ungerissener Beton
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206:2013+A2:2021

Anwendungsbedingungen (Umweltbedingungen):

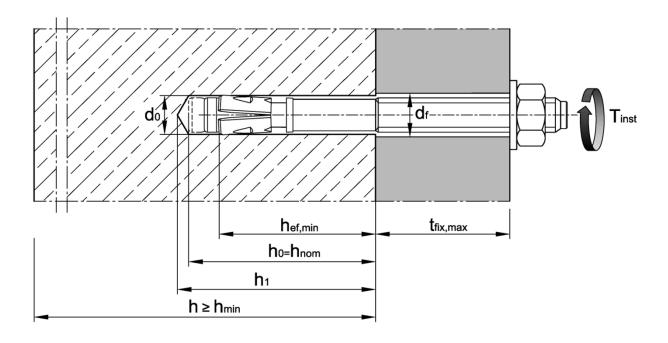
- Bauteile unter den Bedingungen trockener Innenräume: alle Ausführungen
- Für alle anderen Bedingungen entsprechend der Korrosionsbeständigkeitsklassen CRC nach EN 1993-1-4:2006 + A1:2015: nichtrostender Stahl nach Anhang A3, Tabelle A2 dieser ETA

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Bemessungsverfahren EN 1992-4:2018 und Technical Report TR 055:2018.

Einbau:

- · Bohrlocherstellung mit Hammer- oder Saugbohrer.
- Verwendung wie vom Hersteller geliefert, ohne Austausch einzelner Teile (Ausnahme: Verwendung Hutmutter HM).
- Der Dübel kann in Vorsteck- und Durchsteckmontage gesetzt werden.
- Optional kann der Ringspalt zwischen Bolzen und Anbauteil zur Reduzierung des Lochspiels verfüllt werden. Dazu ist die Verfüllscheibe (siehe Anhang A3) zusätzlich zur mitgelieferten Unterlegscheibe zu verwenden. Zur Verfüllung können die Chemofast Injektionsmörtel (z.B. UM-H, VK, EP 1000) oder andere hochfeste Injektionsmörtel mit einer Druckfestigkeit ≥ 40N/mm² verwendet werden.


Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Verwendungszweck Spezifikationen	Anhang B1

D 1			BA3 / BA3 A4 / BA3 HCR					
Dübelgröße				М8	M10	M12	M16	M20
Bohrernenndurchmesse	er	d ₀	[mm]	8	10	12	16	20
Bohrerschneidendurchr	nesser	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55
Minimale effektive Vera	nkerungstiefe	h _{ef,min}	[mm]	35	40	50	65	90
Maximale effektive Vera	ankerungstiefe	h _{ef,max}	[mm]	90	100	125	160	140
Dahylachticfo	h	nom= h ₀ ≥	[mm]	h _{ef} + 8	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14	$h_{ef} + 14$ $(h_{ef} + 28)^{1)}$
Bohrlochtiefe		h₁≥	[mm]	h _{ef} + 10	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17	$h_{ef} + 17$ $(h_{ef} + 31)^{1)}$
Durchgangsloch im Anbauteil ²⁾		$d_{f} \leq$	[mm]	9	12	14	18	22
Überstand nach Einsch Ankers für Montage mit (siehe Anhang B7, Bild	Hutmutter HM	С	[mm]	10,5	12,5	16,0	19,5	23,0
	BA3	T _{inst}	[Nm]	15	40	60	110	160
Montagedrehmoment	BA3 A4 / BA3 HCR	T _{inst}	[Nm]	15	40	55	100	200

¹⁾ Größere Bohrlochtiefe bei Hammerbohrverfahren ohne Bohrlochreinigung erforderlich.

 $^{^{2)}\,\}mbox{F\"{u}r}$ größere Durchgangslöcher im Anbauteil, siehe EN 1992-4:2018, Kapitel 6.2.2.2

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Verwendungszweck Montagekennwerte	Anhang B2

Tabelle B2: Mindestbauteildicke.	minimale Rand- und Achsabstände
----------------------------------	---------------------------------

Dübelgröße			BA3 / BA3 A4 / BA3 HCR									
Dubergrobe			M8	M10	M12	M16	M20					
Mindestbauteildicke in Abhängigkeit von h _{ef}	h _{min} ≥	[mm]	max (1,5	5-h _{ef} ; 80)	max (1,5·h _{ef} ;100)	max (1,5·h _{ef} ;120)	max (1,5·h _{ef} ;150)					
Minimale Rand- und Act	nsabstän	de		•	•							
Minimalar Dandahatand	Cmin	[mm]	40	45	55	65	90					
Minimaler Randabstand -	für s≥	[mm]			siehe Tabelle B	4						
Minimalar Ashashatand	Smin	[mm]	35	40	50	65	95					
Minimaler Achsabstand	für c≥	[mm]			siehe Tabelle B	4						

Für die Berechnung der minimalen Achs- und Randabstände bei der Montage in Verbindung mit variabler Verankerungstiefe und der Bauteildicke muss die folgende Gleichung erfüllt sein:

 $A_{sp,rqd} \leq A_{sp,ef}$

Erforderliche Spaltfläche Asp,rqd und idealisierte Spaltfläche Asp,ef nach Tabelle B4.

Tabelle B3: Ansetzbare Bauteildicke h_{sp} **und Fläche** A_{sp} zur Ermittlung des charakteristischen Randabstandes c_{cr,sp}

Dübəleväße					BA3	/ BA3 A4 / BA3	HCR			
Dübelgröße				M8	M8 M10 M12 M16 I					
Ansetzbare Bauteildicke	BA3 BA3 A4 BA3 HCR	h _{sp}	[mm]		min($(h; h_{ef} + 1.5 \cdot c)$	$\cdot\sqrt{2}$)			
Fläche zur	BA3	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 - 2,573}{0,000436}$	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$	$\frac{N_{Rk,sp}^0 + 2,423}{0,000453}$		
Ermittlung von c _{cr,sp} 1)	BA3 A4 BA3 HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 4,177}{0,000862}$	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^0 + 11,415}{0,000742}$	$\frac{N_{Rk,sp}^0 + 2,423}{0,000453}$		

 $^{^{1)}\} Mit\ N^0_{Rk,sp}$ in kN

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Verwendungszweck Minimale Rand- und Achsabstände Erforderliche Flächen und ansetzbare Bauteildicke	Anhang B3

Tabelle B4: Flächen zur Ermittlung der erforderlichen Achs- und Randabstände b der Montage	ei

 Dübelgröße

 BA3 / BA3 A4 / BA3 HCR

 M8
 M10
 M12
 M16
 M20

Für die Berechnung der minimalen Achs- und Randabstände bei der Montage in Verbindung mit variabler Verankerungstiefe und der Bauteildicke muss die folgende Gleichung erfüllt sein:

 $A_{sp,rqd} \leq A_{sp,ef}$

Idealisierte Spaltfläche Asp,ef

Rand- und Achsabstände sind in 5mm Schritten zu wählen bzw. zu runden.

Bauteildicke: $h > h_{ef} + 1.5 \cdot c$

Einzeldübel oder Dübelgruppe mit s ≥ 3·c

Idealisierte Spaltfläche $A_{sp,ef}$ [mm²] (6·c) · (1,5·c + h_{ef})

Dübelgruppe (s < 3⋅c)

Idealisierte Spaltfläche $A_{sp,ef}$ $\left[mm^2\right]$ $\left(3 \cdot c + s\right) \cdot \left(1,5 \cdot c + h_{ef}\right)$

Bauteildicke: $h \le h_{ef} + 1.5 \cdot c$

Einzeldübel oder Dübelgruppe mit s ≥ 3·c

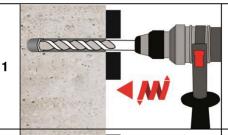
Idealisierte Spaltfläche $A_{sp,ef}$ $[mm^2]$ $(6 \cdot c) \cdot h$

Dübelgruppe (s < 3⋅c)

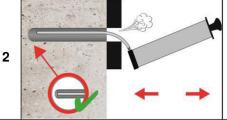
Idealisierte Spaltfläche $A_{sp,ef} \mid [mm^2] \mid (3 \cdot c + s) \cdot h$

Erforderliche Spaltfläche Asp,rqd

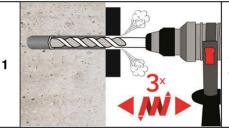
BA3 —	gerissener Beton	$A_{\text{sp},\text{rqd}}$	[mm²]	13 900	23 700	31 500	42 300	91 250
	ungerissener Beton	$A_{\text{sp},\text{rqd}}$	[mm²]	22 500	34 700	41 300	50 200	110 000
BA3 A4	gerissener Beton	A _{sp,rqd}	[mm²]	16 900	25 900	29 800	44 300	91 250
BA3 HCR	ungerissener Beton	A _{sp,rqd}	[mm²]	19 700	35 700	35 300	54 800	110 000


Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR

Verwendungszweck
Projizierte effektive Fläche zur Ermittlung der erforderlichen Achs- und Randabstände


Montageanweisung

Bohrlocherstellung mit Bohrlochreinigung


Hammerbohrer oder Saugbohrer:

Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen. Bei Verwendung eines Saugbohrer, weiter mit Schritt 3.

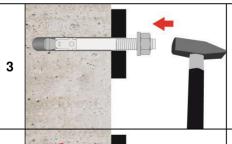
Bohrloch vom Grund her ausblasen oder aussaugen.

Bohrlocherstellung ohne Bohrlochreinigung (M20)

Bei Erreichen der Bohrlochtiefe (h_1 = h_{ef} +31mm) den Bohrer bei eingeschalteter Bohrmaschine mindestens **3x** vor- und zurückbewegen um das Bohrmehl im Bohrloch zu entfernen (Lüften des Bohrlochs). Mit Schritt 3 fortfahren.

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR

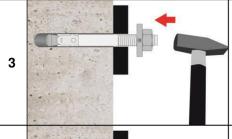
Verwendungszweck


Montageanweisung - Bohrlocherstellung und Bohrlochreinigung

Anhang B5

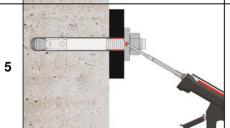
Montageanweisung - Fortsetzung

Dübel setzen



Dübel einschlagen.

Montagedrehmoment Tinst aufbringen.


Dübel setzen mit Ringspaltverfüllung

Verfüllscheibe zusätzlich zur Unterlegscheibe montieren. Dübel einschlagen.

Montagedrehmoment Tinst aufbringen.

Ringspalt zwischen Bolzen und Anbauteil mit Injektionsmörtel verfüllen (siehe Anhang B1).

Beiliegende Mischerreduzierung verwenden.

Der Ringspalt ist komplett verfüllt, wenn Mörtel austritt.

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR

Verwendungszweck

Montageanweisung - Dübel setzen

Anhang B6

Montageanweisung - Fortsetzung Dübel setzen mit Hutmutter HM Position der Mutter prüfen. Überstand C nach Einschlagen des Ankers siehe Anhang B2, Tabelle B1. Dübel einschlagen. 5 Mutter entfernen. Hutmutter HM aufschrauben 6 7 Montagedrehmoment Tinst aufbringen. Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR **Anhang B7** Verwendungszweck Montageanweisung – Dübel setzen mit Hutmutter HM

Tabelle C1: Charakteristische Werte bei **Zugbeanspruchung** unter statischer und quasi statischer Belastung, **BA3** (Stahl verzinkt)

Dübolarößo					BA3					
Dübelgröße			M8	M10	M12	M16	M20			
Montagebeiwert	γinst	[-]	1,0							
Stahlversagen										
Charakteristischer Widerstand	N _{Rk,s}	[kN]	19,8	30,4	44,9	79,3	126,2			
Teilsicherheitsbeiwert 4)	γMs	[-]			1,5					
Herausziehen										
Charakteristischer Widerstand in gerissenem Beton C20/25	N _{Rk,p,cr}	[kN]	9,5	15	22	30	45			
Erhöhungsfaktor $N_{Rk,p,cr} = \psi_C \cdot N_{Rk,p,cr} (C20/25)$	ψο	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,439}$	$\left(\frac{f_{ck}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$	$\left(\frac{f_{ck}}{20}\right)^{0,338}$			
Charakteristischer Widerstand in ungerissenem Beton C20/25	N _{Rk,p,ucr}	[kN]	14	24	30	50	55			
Erhöhungsfaktor N _{Rk,p,ucr} = ψc • N _{Rk,p,ucr} (C20/25)	ψς	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,489}$	$\left(\frac{f_{ck}}{20}\right)^{0,448}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Spalten					•	•				
Charakteristischer Widerstand	N ⁰ Rk,sp	[kN]		mir	1 (N _{Rk,p} ; N ⁰ Rk,	c ³⁾)				
Charakteristischer Randabstand ²⁾	Ccr,sp	[mm]	n	$nin\left(\frac{A_{sp} + 0.8 \cdot (1 + 1)}{(3.41 \cdot h_{sp} - 1)}\right)$	$\frac{(h_{sp}-h_{ef})^2}{(-0.59\cdot h_{ef})}; \frac{A_{sp}}{h_{sp}}$	$\left(\frac{p}{\sqrt{8}}\right) \ge 1.5 \cdot h_e$	f			
Charakteristischer Achsabstand	Scr,sp	[mm]			2 · Ccr,sp					
Faktor	Ψh,sp	[-]			1,0					
Betonversagen										
Minimale, effektive Verankerungstiefe	h _{ef,min}	[mm]	35 ¹⁾	40	50	65	90			
Maximale, effektive Verankerungstiefe	h _{ef,max}	[mm]	90	100	125	160	140			
Charakteristischer Randabstand	C _{cr,N}	[mm]	1,5 · h _{ef}							
Charakteristischer Achsabstand	Scr,N	[mm]			2 · C _{cr,N}					
Faktor gerissener Beton	k _{cr,N}	[-]			7,7					
ungerissener Beton	k _{ucr,N}	[-]			11,0					

¹⁾ Befestigungen mit Verankerungstiefen h_{ef} < 40mm sind auf die Verwendung statisch unbestimmter Bauteile unter Innenraumbedingungen beschränkt

⁴⁾ Sofern andere nationale Regelungen fehlen

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Charakteristische Werte bei Zugbeanspruchung, BA3 (Stahl verzinkt)	Anhang C1

²⁾ Ansetzbare Bauteildicke h_{sp} und Fläche A_{sp} zur Bestimmung des charakteristischen Randabstandes c_{cr,sp} nach Tabelle B3

³⁾ N⁰Rk,c nach EN 1992-4:2018

Tabelle C2: Charakteristische Werte bei **Zugbeanspruchung** unter statischer und quasistatischer Belastung, **BA3 A4** und **BA3 HCR**

Dübələri Ö			BA3 A4 / BA3 HCR							
Dübelgröße			M8 M10 M12 M16 M20							
Montagebeiwert	γinst	[-]	1,0							
Stahlversagen										
Charakteristischer Widerstand	N _{Rk,s}	[kN]	19,8	30,4	44,9	74,6	126,2			
Teilsicherheitsbeiwert 4)	γMs	[-]	1,5							
Herausziehen										
Charakteristischer Widerstand in gerissenem Beton C20/25	N _{Rk,p,cr}	[kN]	9,5	17	22	35	45			
Erhöhungsfaktor für $N_{Rk,p,cr} = \psi_C \cdot N_{Rk,p,cr}$ (C20/25)	ψο	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,488}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,350}$	$\left(\frac{f_{ck}}{20}\right)^{0,338}$			
Charakteristischer Widerstand in ungerissenem Beton C20/2	I NID	[kN]	20	25	42	50	55			
Erhöhungsfaktor N _{Rk,p,ucr} = ψ _C • N _{Rk,p,ucr} (C20/25) ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,240}$	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,196}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Spalten	·									
Charakteristischer Widerstand	N ⁰ Rk,sp	[kN]		mii	n (N _{Rk,p} ; N ⁰ _{Rk,c}	³⁾)				
Charakteristischer Randabsta	nd C _{cr,sp}	[mm]	r	$\min\left(\frac{A_{sp} + 0.8 \cdot 0}{(3.41 \cdot h_{sp})}\right)$	$\frac{(h_{sp}-h_{ef})^2}{-0.59\cdot h_{ef}}$; $\frac{A_{sp}}{h_{sp}\cdot v}$	$\left(\frac{1}{\sqrt{8}}\right) \ge 1.5 \cdot h_e$	f			
Charakteristischer Achsabstar	nd s _{cr,sp}	[mm]			2 · c _{cr,sp}					
Faktor	Ψh,sp	[-]			1,0					
Betonausbruch										
Minimale, effektive Verankerungstiefe	h _{ef,min}	[mm]	35 ¹⁾	40	50	65	90			
Maximale, effektive Verankerungstiefe	h _{ef,max}	[mm]	90	100	125	160	140			
Charakteristischer Randabsta	nd c _{cr,N}	[mm]			1,5 · h _{ef}					
Charakteristischer Achsabstar	nd s _{cr,N}	[mm]			2 · c _{cr,N}					
gerissener Bet	on k _{cr,N}	[-]			7,7					
ungerissener Bet	on k _{ucr,N}	[-]			11,0					

¹⁾ Befestigungen mit Verankerungstiefen hef < 40 mm sind auf die Verwendung statisch unbestimmter Bauteile unter Innenraumbedingungen beschränkt.

⁴⁾ Sofern andere nationale Regelungen fehlen.

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Charakteristische Werte bei Zugbeanspruchung, BA3 A4 und BA3 HCR	Anhang C2

²⁾ Ansetzbare Bauteildicke h_{sp} und Fläche A_{sp} zur Bestimmung des charakteristischen Randabstandes c_{cr,sp} nach Tabelle B3.

³⁾ N⁰_{Rk,c} nach EN 1992-4:2018

Tabelle C3: Charakteristische Werte bei **Querbeanspruchung** unter statischer und quasi-statischer Belastung

Dübələrə					BA3 / E	BA3 A4 / B	A3 HCR		
Dübelgröße				M8	M10	M12	M16	M20	
Montagesicherheitsbe	eiwert	γinst	[-]			1,0		•	
Stahlversagen ohne	Hebelarm								
Charakteristischer Widerstand –	ВАЗ	V ⁰ Rk,s	[kN]	15,7	26,8	38,3	60,0	83,8	
<u>unverfüllter</u> Ringspalt	BA3 A4 / BA3 HCR	V ⁰ Rk,s	[kN]	16,8	27,8	39,8	69,5	108,5	
Charakteristischer	BA3	V ⁰ Rk,s	[kN]	17,3	26,7	38,6	60,6	86,1	
Widerstand – <u>verfüllter</u> Ringspalt	BA3 A4 / BA3 HCR	V ⁰ Rk,s	[kN]	16,8	27,8	44,9	80,1	108,5	
Teilsicherheitsbeiwert ²⁾ γ _{Ms}				1,25					
Duktilitätsfaktor		k ₇	67 [-] 1,0						
Stahlversagen <u>mit</u> H	ebelarm								
Charakteristischer	BA3	M ⁰ Rk,s	[Nm]	30	60	105	240	412	
Biegewiderstand	BA3 A4 / BA3 HCR	M ⁰ Rk,s	[Nm]	27	55	99	223	390	
Teilsicherheitsbeiwert	2)	γMs	[-]	1,25					
Betonausbruch auf	der lastabgewand	Iten Seite							
	BA3	k ₈	[-]	2,8	3,1	3,0	3,6	3,3	
Pry-out Faktor	BA3 A4 / BA3 HCR	k ₈	[-]	2,7	2,8	3,3	3,4	3,3	
Betonkantenbruch									
Wirksame Dübellänge	e bei Querlast	lf	[mm]			h _{ef} 1)			
Wirksamer Außendur	chmesser	d _{nom}	[mm]	8	10	12	16	20	

¹⁾ Befestigungen mit Verankerungstiefen h_{ef} < 40 mm sind auf die Verwendung statisch unbestimmter Bauteile unter Innenraumbedingungen beschränkt.

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Charakteristische Werte bei Querbeanspruchung	Anhang C3

²⁾ Sofern andere nationale Regelungen fehlen.

Dübolarößo							BA3 /	BA3 A	4 / BA	3 HCR			
Dübelgröße				N	18	M	10	М	12	М	16	M	20
Effektive Verankeru	ungstiefe	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100
Zugbeanspruchur	ng												
Montagebeiwert		γinst	[-]					1	,0				
Stahlversagen				•									
Charakteristischer	ВА3	N _{Rk,s,C1}	[kN]	19	9,8	30),4	44	l,9	79	9,3	120	6,2
Widerstand	BA3 A4 / BA3 HCR	N _{Rk,s,C1}	[kN]	19	9,8	30,4		44,9		74,6		126,2	
Herausziehen													
Charakteristischer	ВА3	N _{Rk,p,C1}	[kN]	N] 9,1		15,0		22,0		30,0		45,1	
Widerstand	BA3 A4 / BA3 HCR	N _{Rk,p,C1}	[kN]	9	,0	17,0		22,0		35,0		45	i,1
Querbeanspruchu	ing												
Stahlversagen oh	ne Hebelarm	l											
Charakteristischer Widerstand –	ВА3	$V_{Rk,s,C1}$	[kN]	11,7	13,4	22,5	24,4	30,0	33,8	48,8	52,3	83	3,8
unverfüllter Ringspalt	BA3 A4 / BA3 HCR	$V_{\text{Rk,s,C1}}$	[kN]	11,0	12,7	20,6	22,2	33,2	33,2	61,1	64,3	108	8,5
Charakteristischer Widerstand –	ВА3	V _{Rk,s,C1}	[kN]	14,0	14,7	24,1	24,4	37,0	38,6	60,2	60,2	86	5,1
verfüllter Ringspalt	BA3 A4 / BA3 HCR	V _{Rk,s,C1}	[kN]	12,6	16,8	24,5	27,5	36,7	39,8	67,7	74,2	108	8,5
Faktor für	unverfüllter Ringspalt	$lpha_{ extsf{gap}}$	[-]					0	,5				
Verankerungen —	verfüllter Ringspalt	$\alpha_{\sf gap}$	[-]					1	,0				

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Charakteristischer Widerstand bei seismischer Beanspruchung, Leistungskategorie C1	Anhang C4

	eismische Beanspruchung, Leistungskategorie C2 BA3 / BA3 A4 / BA3 HCR													
Dübelgröße				N	18	М	10	М	12	M16		M20		
Effektive Verankerungstiefe h _{ef} ≥ [mm]					45	40	60	50	70	65	85	90	100	140
Zugbeanspruchur	ng				•									
Montagebeiwert		γinst	[-]						1,0					
Stahlversagen														
Charakteristischer	BA3	N _{Rk,s,C2}	[kN]	19	9,8	30),4	44	l,9	79),3	126,2		
Widerstand	BA3 A4 / BA3 HCR	N _{Rk,s,C2}	[kN]	19	9,8	30),4	44,9		74,6		126,		
Herausziehen														
Charakteristischer	BA3	N _{Rk,p,C2}	[kN]	2,8	3,6	7,3	12,5	10,7	19,0	19,8	35,2	35,1	37,6	42,9
Widerstand	BA3 A4 / BA3 HCR	N _{Rk,p,C2}	[kN]	2,3	3,2	5,0	7,7	8,0	13,8	19,0	29,4	35,1	37,6	42,9
Querbeanspruchu	ıng													
Stahlversagen oh	ne Hebelarm													
Charakteristischer Widerstand –	BA3	V _{Rk,s,C2}	[kN]	7,3	11,3	15,4	19,0	18,3	28,0	39,4	43,3		69,0	
<u>unverfüllter</u> Ringspalt	BA3 A4 / BA3 HCR	V _{Rk,s,C2}	[kN]	7,5	8,6	12,5	15,9	22,4	25,6	42,7	46,1		88,9	
Charakteristischer Widerstand –	BA3	V _{Rk,s,C2}	[kN]	9,7	10,8	17,7	19,9	27,6	28,9	46,0	48,8		73,3	
verfüllter Ringspalt	BA3 A4 / BA3 HCR	V _{Rk,s,C2}	[kN]	9,4	9,7	16,5	17,1	24,5	28,5	47,4	47,4		88,9	
	unverfüllter Ringspalt	$lpha_{ extsf{gap}}$	[-]						0,5					
Verankerungen	verfüllter Ringspalt	$lpha_{ extsf{gap}}$	[-]						1,0					

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Charakteristischer Widerstand bei seismischer Beanspruchung, Leistungskategorie C2	Anhang C5

Tabelle C6:	Charakteristische Werte bei Zug- und Querbeanspruchung unter
	Brandeinwirkung, BA3 (Stahl verzinkt)

Düb alaırı 0 a				BA3								
Dübelgröße				М8	M10	M12	M16	M20				
Zugbeanspruchung												
Stahlversagen												
	R30			1,2	2,6	4,6	7,7	9,4				
Charakteristischer	R60	N	[kN]	1,0	1,9	3,3	5,6	8,2				
Widerstand	R90	N _{Rk,s,fi}		0,7	1,3	2,1	3,5	6,9				
	R120			0,6	1,0	1,5	2,5	6,3				
Querbeanspruchun	g						•					
Stahlversagen <u>ohne</u>	Hebelarm											
	R30		[kN]	4,0	7,5	12,3	20,7	11,0				
Charakteristischer	R60			2,7	5,1	8,5	14,2	10,6				
Widerstand	R90	V _{Rk,s,fi}		1,4	2,7	4,6	7,7	10,2				
	R120			0,8	1,6	2,7	4,5	10,0				
Stahlversagen <u>mit</u> H	ebelarm											
	R30			4,1	9,6	19,1	43,8	29,1				
Charakteristischer	R60] _{N40-} .	[NIm]	2,8	6,6	13,1	30,1	28,0				
Widerstand	R90	─ M ⁰ Rk,s,fi	[Nm]	1,5	3,5	7,2	16,4	26,9				
	R120			0,8	2,0	4,2	9,6	26,3				

 $N_{\text{Rk},p,\text{fi}}$ und $N_{\text{Rk},\text{c.fi}}$ nach EN 1992-4:2018

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Charakteristische Werte bei Brandbeanspruchung, BA3 (Stahl verzinkt)	Anhang C6

Tabelle C7:	Charakteristische Werte bei Zug- und Querbeanspruchung unter
	Brandeinwirkung, BA3 A4 und BA3 HCR

Düb alaırı ö O a				BA3 A4 / BA3 HCR								
Dübelgröße				М8	M10	M12	M16	M20				
Zugbeanspruchung					•							
Stahlversagen												
	R30			4,0	6,9	11,0	18,1	36,9				
Charakteristischer	R60	N	[kN]	2,9	5,0	8,0	13,1	27,4				
Widerstand	R90	N _{Rk,s,fi}		1,8	3,1	4,9	8,1	17,9				
	R120			1,2	2,1	3,4	5,6	13,1				
Querbeanspruchun	g				•							
Stahlversagen <u>ohne</u>	Hebelarm											
	R30		[kN]	8,5	17,6	32,0	52,6	73,5				
Charakteristischer	R60	\		6,2	12,6	22,6	37,1	51,8				
Widerstand	R90	V _{Rk,s,fi}		3,9	7,5	13,1	21,5	30,1				
	R120			2,8	5,0	8,4	13,8	19,2				
Stahlversagen <u>mit</u> H	ebelarm											
	R30			8,7	22,7	49,8	111,5	194,7				
Charakteristischer	R60	N40	[NIm]	6,3	16,2	35,1	78,6	137,2				
Widerstand	R90	─ M ⁰ Rk,s,fi	[Nm]	4,0	9,7	20,4	45,6	79,7				
	R120			2,8	6,5	13,0	29,2	50,9				

 $N_{\text{Rk},p,\text{fi}}$ und $N_{\text{Rk},c,\text{fi}}$ nach EN 1992-4:2018

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Charakteristische Werte bei Brandbeanspruchung, BA3 A4 und BA3 HCR	Anhang C7

D#4 -120-								BA3					
Dübelgröße				M8 M10 M12						M16 M20			
Verschiebung unter statisc	her und q	uasi-statis	scher	Beans	pruch	ung	•						
$\begin{split} \delta_{N0} &= \delta_{N0 Faktor} * N \\ \delta_{N\infty} &= \delta_{N\infty Faktor} * N \end{split}$	N: einw	irkende Zu	ıgkraft										
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	35 40 50		6	5	90						
Gerissener Beton													
Faktor für Verschiebung -	δ N0- Faktor	[mm/kN]	0,	13	0,0	05	0,0	04	0,	03		0,04	
raktoriur verschiebung	δ _{N∞} -Faktor	[mm/kN]	0,	29	0,2	20	0,	15	0,	11		0,05	
Ungerissener Beton													
Folder für Verschiebung	δN0- Faktor	[mm/kN]	0,	03	0,0	01	0,0	04	0,0	05		0,02	
Faktor für Verschiebung -	δ _{N∞-} Faktor	[mm/kN]	0,	03	0,0	03	0,0	03	0,	03		0,03	
Verschiebung unter seismi	scher Bea	nspruchu	ng C2										
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	140
Verschiebung für DLS	δn,c2 (DLS)	[mm]	3,9	4,9	2,8	4,7	2,4	4,2	2,5	4,5	4,2	4,5	5,1
Verschiebung für ULS	δn,c2 (ULS)	[mm]	11,3	14,3	9,4	16,1	7,3	12,9	7,2	12,8	11,7	12,5	14,
Dübelgröße			M	18	M.	10	M.	12	M	M16 M20			
Verschiebung unter statisc	her und q	uasi-statis	scher	Beans	pruch	ung							
$\delta_{N0} = \delta_{N0} \cdot F_{aktor} \cdot N$ $\delta_{N\infty} = \delta_{N\infty} \cdot F_{aktor} \cdot N$	N: einw	irkende Zu	ıgkraft										
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	3	5	4	0	5	0	6	5		90	
Gerissener Beton													
Faktor für Verschiebung -	δN0- Faktor	[mm/kN]	0,11		0,06		0,05		0,02		0,04		
raktoriur verschiebung -	δN∞-Faktor	[mm/kN]	0,	27	0,	17	0,	16	0,0	08		0,05	
Ungerissener Beton													
Faktor für Verschiebung -	δ N0- Faktor	[mm/kN]	0,	02	0,0	00	0,0	01	0,0	00		0,02	
Taktor for Verschiebung	δ _{N∞-} Faktor	[mm/kN]	0,	05	0,0	05	0,0	05	0,0	05		0,03	
Verschiebung unter seismi	scher Bea	nspruchu	ng C2										
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	140
Verschiebung für DLS	$\delta_{\text{N,C2 (DLS)}}$	[mm]	2,0	2,9	2,6	4,1	3,3	5,7	3,3	5,1	4,2	4,5	5,1
	δ N,C2 (ULS)	[mm]	7,7	11,1	10,8	16,8	10,4	18,0	9,0	13,9	11,7	12,5	14,
Verschiebung für ULS													
Verschiebung für ULS													
Verschiebung für ULS													
									<u> </u>				
Verschiebung für ULS Bolzenanker Chemofast B	A3 / BA3 <i>A</i>	N4 / BA3 H	ICR										

Dübolaröße			BA3									
Dübelgröße	N	18	M.	10	M.	12	M.	16	M20			
Verschiebung unter statisc $\delta_{V0} = \delta_{V0\text{-Faktor}} * V$ $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} * V$	-	uasi-stati rkende Qu			pruch	ung						
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	3	5	4	0	5	0	6	5	90	
Faktor für Verschiebung	δv0- Faktor	[mm/kN]	0,15		0,09		0,09		0,07		0,06	
<u>unverfüllter</u> Ringspalt	δv∞- Faktor	[mm/kN]	0,22		0,13		0,14		0,11		0,10	
Faktor für Verschiebung	δv0- Faktor	[mm/kN]	0,01		0,04		0,06		0,04		0,02	
verfüllter Ringspalt	δv∞- Faktor	[mm/kN]	0,0)15	0,0	06	0,09		0,06		0,03	
Verschiebung unter seismi	scher Bea	nspruch	ıng C2	2 ¹⁾ <u>unv</u>	erfüllt	er Ring	gspalt					
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	
Verschiebung für DLS	δv,c2(DLS)	[mm]	2,8	2,7	3,0	3,1	3,4	3,7	3,4	3,8	5,1	
Verschiebung für ULS	δv,c2(ULS)	[mm]	5,1	5,0	5,0	5,5	6,3	9,9	6,0	9,6	9,4	
Verschiebung unter seismi	scher Bea	nspruch	ıng C2	verfü	Ilter Ri	ngspal	t					
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	
Verschiebung für DLS	δv,c2(DLS)	[mm]	0,5	0,4	1,4	0,9	1,4	0,7	1,4	1,2	1,3	
Verschiebung für ULS	δv,c2(ULS)	[mm]	1,7	1,9	5,8	4,5	4,5	3,1	5,0	3,9	5,2	

¹⁾ Bei Verankerungen mit Lochspiel muss zusätzlich der Ringspalt berücksichtigt werden.

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Verschiebung unter Querbeanspruchung	Anhang C9

Dübelgröße			BA3 A4 / BA3 HCR								
			N	18	M10		M12		М	16	M20
Verschiebung unter statisc $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$ $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$	-	uasi-stati rkende Qu			pruch	ung					
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	35		40		50		65		90
Faktor für Verschiebung _ unverfüllter Ringspalt	δv0- Faktor	[mm/kN]	0,26		0,14		0,12		0,09		0,09
	δv∞- Faktor	[mm/kN]	0,39		0,20		0,17		0,14		0,13
Faktor für Verschiebung	δv0- Faktor	[mm/kN]	0,16		0,05		0,05		0,03		0,09
<u>verfüllter</u> Ringspalt	δv∞- Faktor	[mm/kN]	0,23		0,08		0,08		0,05		0,13
Verschiebung unter seismi	scher Bea	anspruchi	ıng C2	2 ¹⁾ <u>unv</u>	erfüllt	<u>er</u> Rinç	gspalt				
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90
Verschiebung für DLS	δv,c2(DLS)	[mm]	2,8	3,0	3,4	3,5	3,5	4,2	3,8	4,4	5,1
Verschiebung für ULS	δv,c2(ULS)	[mm]	5,2	5,1	7,0	8,4	7,5	11,8	7,8	11,1	9,4
Verschiebung unter seismi	scher Bea	anspruchi	ung C2	verfü	IIter Ri	ngspal	t				
Effektive Verankerungstiefe	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90
Verschiebung für DLS	δv,C2(DLS)	[mm]	0,9	0,6	1,2	0,5	1,5	1,5	1,6	1,6	4,1
Verschiebung für ULS	δv,c2(ULS)	[mm]	2,5	2,6	5,4	3,6	6,0	7,1	6,2	6,2	8,4

¹⁾ Bei Verankerungen mit Lochspiel muss zusätzlich der Ringspalt berücksichtigt werden.

Bolzenanker Chemofast BA3 / BA3 A4 / BA3 HCR	
Leistung Verschiebung unter Querbeanspruchung	Anhang C10