

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0687 of 23 August 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Leviat mechanical splicing system Grout Coupler
Product family to which the construction product belongs	Couplers for mechanical splices of reinforcing steel bars
Manufacturer	Leviat GmbH Liebigstraße 14 40764 Langenfeld GERMANY
Manufacturing plant	Leviat GmbH, Werk Artern Otto-Brünner-Straße 3 06556 Artern Leviat GmbH, Plant Artern Otto-Brünner-Straße 3 06556 Artern
This European Technical Assessment contains	17 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 160129-01-0301

Page 2 of 17 | 23 August 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific part

1 Technical description of the product

The Leviat mechanical splicing system Grout Coupler is used as a system for connecting reinforcing bars in reinforced concrete components under static or quasi-static, fatigue and low cycle loading.

The product description is given in Annex A.

The characteristic material values, dimensions and tolerances of Leviat mechanical splicing system Grout Coupler not indicated in Annexes A1 to A6 shall correspond to the respective values laid down in the technical documentation^[1] of this European technical assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the Leviat mechanical splicing system Grout Coupler is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the Leviat mechanical splicing system Grout Coupler of at least 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Resistance to static or quasi-static loading	See Annex C1 and C2
Slip under static or quasi-static load	See Annex C1 and C2
Slip after static or quasi-static load	See Annex C1 and C2
Fatigue strength for N = $2 \cdot 10^6$ load cycles	See Annex C1 and C2
Fatigue strength for S-N curve with k_1 and k_2 according to EN 1992-1-1	No performance assessed
Fatigue strength for S-N curve with specific k_1 and k_2	No performance assessed
Resistance to low cycle loading (seismic actions)	See Annex C1 and C2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

^[1]

The technical documentation of this European technical assessment is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 160129-01-0301 the applicable European legal act is: 2000/606/EC. The system to be applied is: 1+

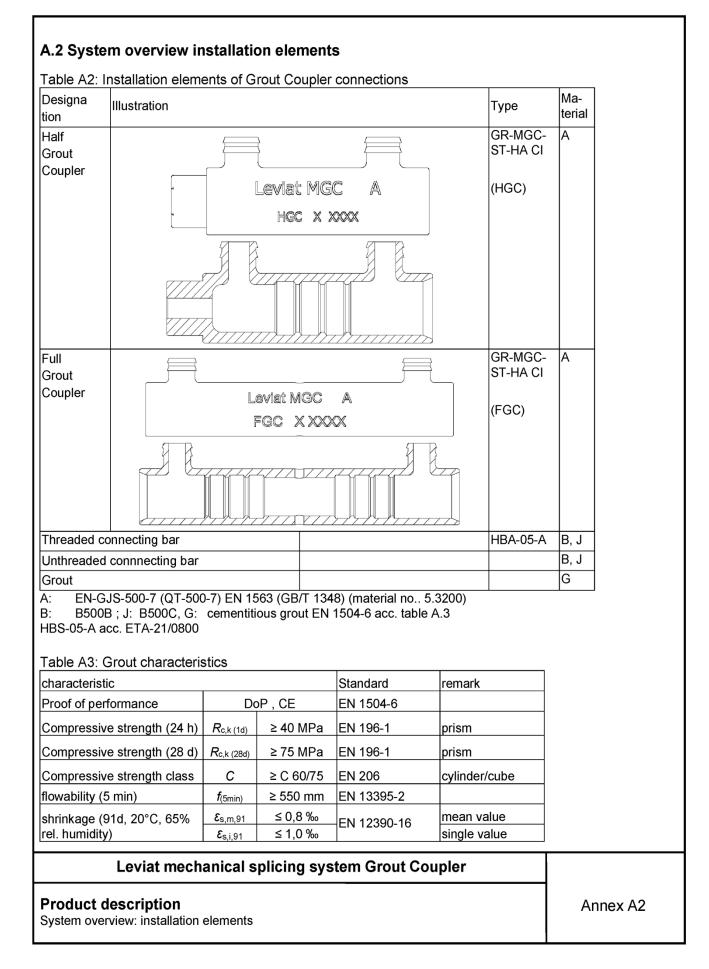
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

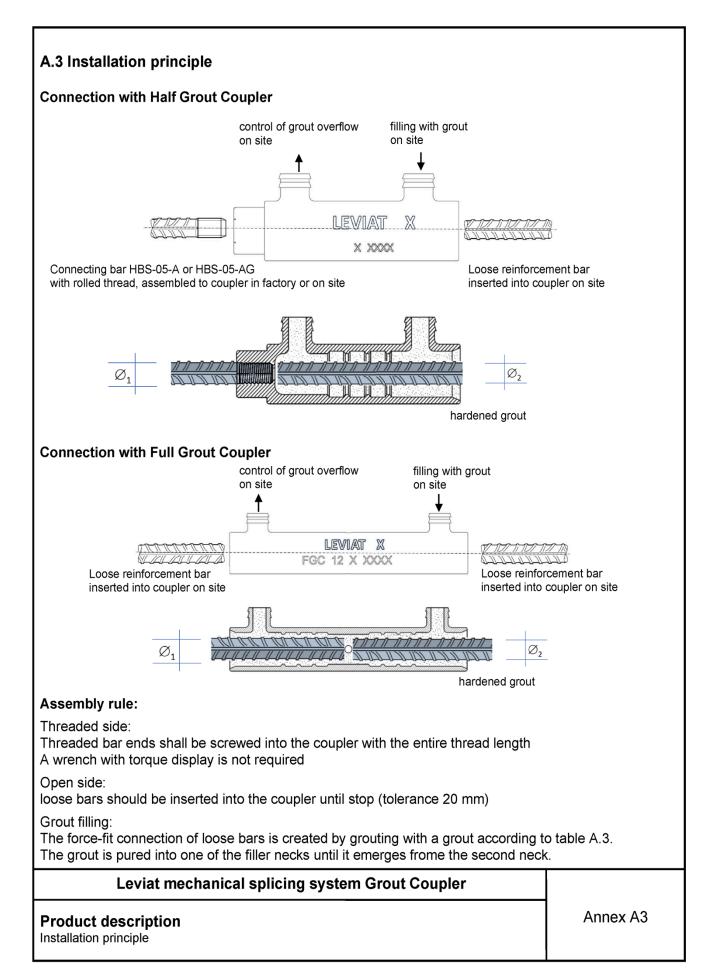
The following standards and assessments are referred to in this European Technical Assessment:

EN 196-1:2016	Methods of testing cement - Part 1: Determination of strength
EN 206:2013+A2:2021	Concrete - Specification, performance, production and conformity
EN 1504-6:2006	Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity - Part 6: Anchoring of reinforcing steel bar
EN 1563:2018	Founding - Spheroidal graphite cast irons
EN 1992-1-1:2004 + AC:2010 + A1:2014	Eurocode 2 - Design of concrete structures - Part 1-1: General rules and rules for buildings, bridges and civil engineering structures
EN 1998-1:2004 + AC:2009 + A1:2013	Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings
EN 12350-5:2019	Testing fresh concrete - Part 5: Flow table test
EN 12350-5:2019 EN 12390-16:2019	Testing fresh concrete - Part 5: Flow table test Testing hardened concrete - Part 16: Determination of the shrinkage of concrete
	Testing hardened concrete - Part 16: Determination of the shrinkage
EN 12390-16:2019	Testing hardened concrete - Part 16: Determination of the shrinkage of concrete Products and systems for the protection and repair of concrete structures - Test methods - Determination of workability - Part 2: Test
EN 12390-16:2019 EN 13395-2:2002	Testing hardened concrete - Part 16: Determination of the shrinkage of concrete Products and systems for the protection and repair of concrete structures - Test methods - Determination of workability - Part 2: Test for flow of grout or mortar Welding - Welding of reinforcing steel - Part 1: Load-bearing welded

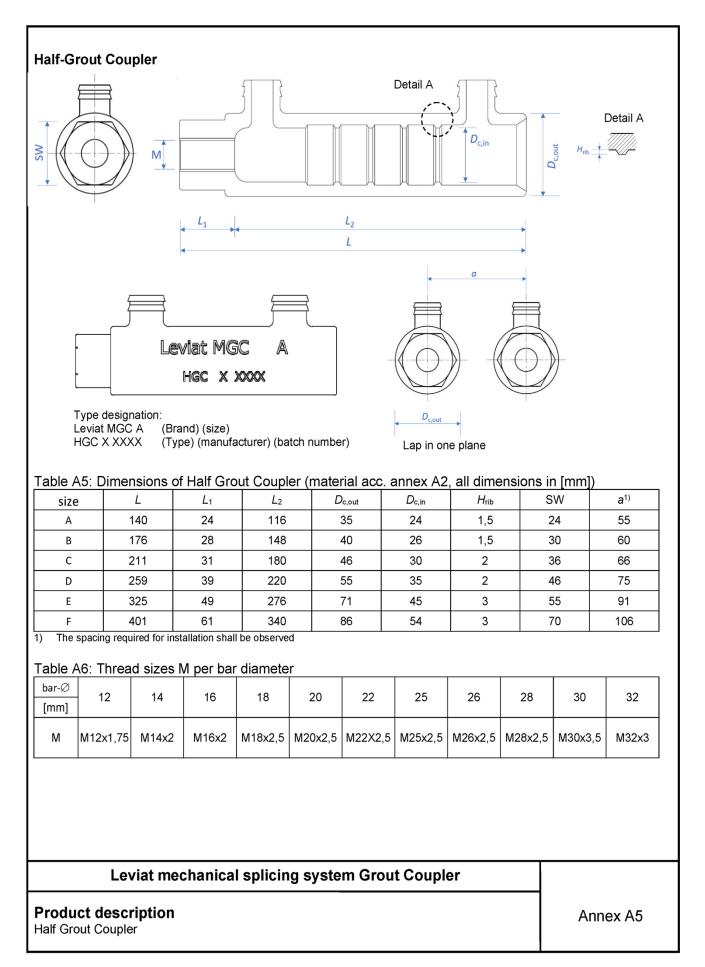
Issued in Berlin on 23 August 2024 by Deutsches Institut für Bautechnik


Beatrix Wittstock Head of Section *beglaubigt:* Kisan

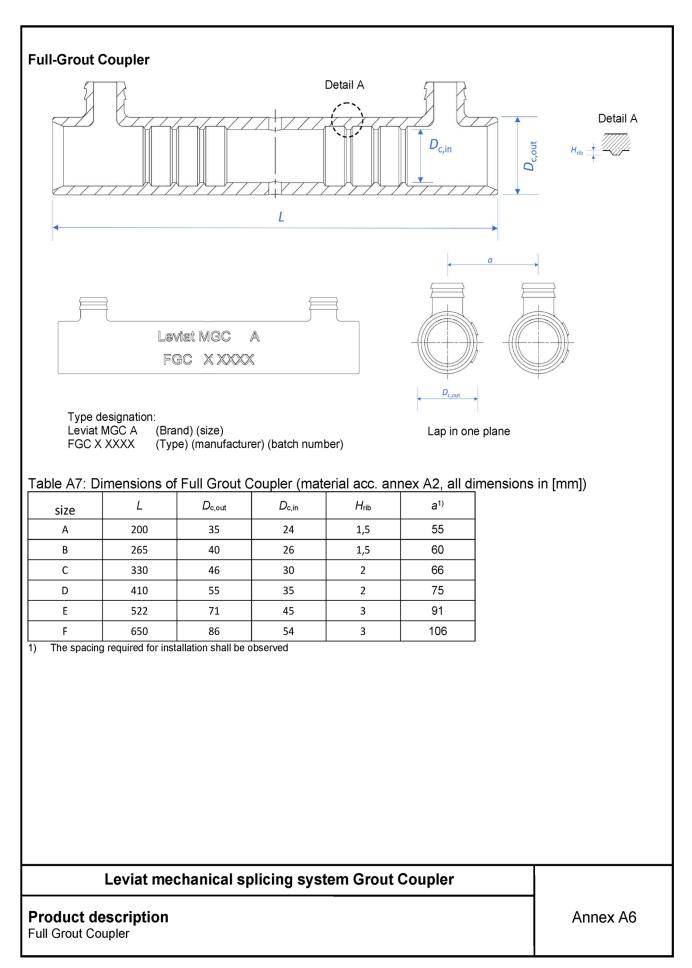
A.1 Design vari	ants G	rout Co	oupler c	onnecti	ons								
Basic principle o	f mech	anical s	plices w	ith Half	Grout	Coup	ler (H	GC)					
	Ø					grout	filling						
Basic principle o	f mech	anical s	plices w	ith Full (Grout	Coup	ler (F0	GC)					
			gr gr	out filling	J				}				
Ø													
Table A1 Design v	variants												
Connections with	Annex	12	14	16	18	20) 22	25	26	28	30	32	
HGC	A5	B,R,H,J		B,R,H,J	B,J	B,J	B,J	B,J	B,J	B,J	B,J	B,J	
FGC	A6	B,R,H,J	B,R,H,J	B,R,H,J	B,J	B,J	B,J	B,J	B,J	B,J	B,J	B,J	
B: B500B R: B500B NR H: B500B product n J: B500C Permitted welding jo butt joint in accorda (under fatigue load	oint B500 nce with	D: EN ISO	17660-1,		rocess	24 – fl	ash bu	tt weldi	ing				
Levia	at mec	hanical	splicin	g syste	m Gr	out C	ouple	er					
Product descrip System overview, d		riants									Annex A1		


Page 6 of European Technical Assessment ETA-24/0687 of 23 August 2024

Page 7 of European Technical Assessment ETA-24/0687 of 23 August 2024



								id cou						
							Ø2							
		12	14	16	18	20	22	25	26	28	30	32		
	12	A,B	B	B										
-	14	В	B,C	B,C	C	C	-							
	16	В	B,C	B,C,D	C,D	C,D	D	D	D					
-	18 20		C C	C,D	C,D	C,D	D D	D	D					
Ø1	20		L	C,D D	C,D D	C,D D	D,E	D D,E	D D,E	E	Е	Е		
\mathcal{D}_1	25			D	 D	D	D,E D,E	D,E D,E	D,E D,E	E	E	E		
	26			D	 D	D	D,E	D,E	D,E	E	E	E		
	28				0		E E	E	E E	E	E	E		
	30						E	E	E	E	E	E		
	32						E	E	E	E	E	E,F		
16 18 20 22 25 26 28 30 32					16 x 18 20 20 25 25 26 28 30 32 32	X X 			ø	16 x 18 x 20 x 1 22 25 26 28 30 32 32	x X X			
		~					~					<u> </u>		
12 14 16 18 20 25 26 28 30 32 32 x) pos	x x x x x x x x x x x x x x x x x x x x	× × × × × × × x x × x x × x x × x x × x x · · · ·	x x x x x x x x x x x x x x x x x x x		12 14 16 18 20 25 26 28 30 32	e A5 ar		Image: Constraint of the second sec	x Ø x X X X	Image: Point of the state of the s			6 28 30 32	
Joupie								n Gro		oupler				


Page 9 of European Technical Assessment ETA-24/0687 of 23 August 2024

Page 10 of European Technical Assessment ETA-24/0687 of 23 August 2024

B.1 Intended use

Grout Couplers are used for mechanical splices according to EN 1992-1-1 and EN 1998-1 and annex C for:

- transfer of axial tension and/or compression forces of the connected bars according to EN 1992-1-1, clause 8.7 and 8.8(4)
- limitation of slip according to EN 1992-1-1, clause 7.3
- restistance to fatigue loading according to EN 1998-1, clause 5.6.3 (2)
- resistance to low-cycle seismic loading according to EN 1998-1, clause 5.6.3 (2)

Leviat mechanica	l splicing	system	Grout	Coupler
------------------	------------	--------	-------	---------

Intended use Specifications

B.2 Installation Requirements

- General: EN 1992-1-1 shall apply to planning and design. Mechanical splices with Grout Couplers may be loaded up to 100% in the same way as a non-spliced bar under static and quasi static tensile and compressive load, EN 1992-1-1, 8.7.2 (4) applies.
- **Spacing and edge distances**: The same values for non-spliced bars shall apply to the concrete cover over the outer edge of a coupler and to the clear distances between the outer edges of adjacent couplers in accordance with EN 1992-1-1. The spacing necessary for installation shall remain unaffected.
- Bent bars: For bent (pre-bent) bars, the intentional bending shall not begin until a distance of at least 5∅ from the coupler end (∅ = nominal diameter of the bent bar). If coupling bars are bent at the manufacturing plant with special equipment, the distance to the coupler end may be reduced to 2∅.
- Installation: The couplers shall only be installed by trained staff under the supervision of the responsible site manager. The installation shall follow the manufacturer's written instructions, see assembly instructions, annexes B3 to B4
- Couplers shall be used as supplied by the manufacturer, without changing or replacing individual parts.
- The threads and the coupler interiors shall be clean and free from rust. Suitable measures (such as plastic caps) shall be taken to ensure that laitance or other contamination cannot enter the coupler. Foreign materials present in the coupler shall be removed before the connecting bar is screwed in. All threads shall be protected against penetration of concrete, water and oil.
- An appropriate fixing of the coupler and continuing bars to the formwork should prevent shifting of the couplers while laying of the reinforcement or pouring and compacting of the concrete.
- In case of assembly of connecting bars HBS-05-A with Half Grout Couplers on construction site, the bar shall be screwed in manually up to its tapered thread until hand-tight. The remaining screwing-in process requires suitable tools (e.g. special tongs) and is complete when the last thread turn is no longer visible.
- Processing and monitoring of grout on site:
 - Grout must fulfil requirements according to table A3. Coumpliance must be checked using the grout manufacturer's data sheets and declaration of performance.
 - Processing & mixing of grout shall take into account EN 206, chapters 9.6-9.8.
 - The grout manufacturer's instructions shall be observed for processing & mixing. The addition of water according to the manufacturer's instructions must be observed. Residual water must not be used.
 - The mortar must be mixed in pure batches (complete sacks/containers/silo mixes provided it can be proven that no segregation has occurred in the silo and that measuring agents are present). Dry mixes may only be used within the specified shelf life; mixes that have already partially hardened in the bag/container/silo may not be used.
 - The quality control according to Table B.1 must be documented in an appropriate manner.
 - The consistency of the grout may be determined using the flow rate (reference value) or the spread rate. When assessing the consistency with the spreading dimension, the correlation between the flow and spreading dimension must be determined in advance.

Leviat mechanical splicing system Grout Coupler

Annex B2

Intended use

Specifications, installation requirements

B.3 Installation requirements – control of grout quality on construction site Table B.1: Control of grout properties on construction site requirements subject Test frequency Conformity with the Delivery note / specifications; every delivery container imprint / visual inspection Use within the accompanying label permitted storage period Measuring device for flawless operation per production day water addition Measuring device for function control Compliance with target dry mix (for portioning Monthly dimensions, accuracy 3% from silo) Mixing tool function control flawless operation per production day Homogeneity of the visual control mixture; cohesive grout Each mixture or ongoing (no segregation) Mixing Consistency; adherence visual control to the specified Each mixture or ongoing consistency range during the initial Consistency measure; production and at Flow dimension EN 13395-2 / Compliance with the appropriate intervals Spreading dimension Consistency specified consistency during the production of EN 12350-5 range the test specimens for the compressive strength test at first production and at Compliance with the prism strength EN 196-1 / appropriate intervals, Compressive strength required compressive cube strength EN 206 each 1 set of prisms or 3 strength cubes (150 mm)

Leviat mechanical splicing system Grout Coupler

Intended use

Installation requirements: control of grout quality on construction site

B.4 Installation requirements: assembly instructions, part 1

Preparation of couplers:

Check cleanliness: make sure that the inside of the sleeve is free of foreign objects / dirt, Use a torch light or similar if necessary. If necessary, blow out dirt with compressed air. Optional for FGC: Attach end cap to centre the loose reinforcing steel

Connection coupler -rebar in the first conreting section:

FGC: insert loose rebar until it stops at centre pin

HGC: in case of site assembly: screw in connecting bar until the last thread turn is invisible. Factory assembled coupler bars can be processed further directly.

Preparation of formwork:

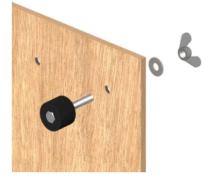
Measure the position of the bar axes on the formwork. Drill hole, see table for diameter. Push the positioning plug through, loosely tighten the wing nut.

Table B.2: Drill holes for position plug

coupler size	drill hole for thread
A, B	M10
C, D	M12
E, F	M16

Positioning of coupler on formwork:

Place the coupler on the positioning aid. Turn the coupler so that the vents are in the correct position for subsequent grouting. The edge of the coupler must be in contact with the formwork. Tighten the wing nut of the positioning plug.

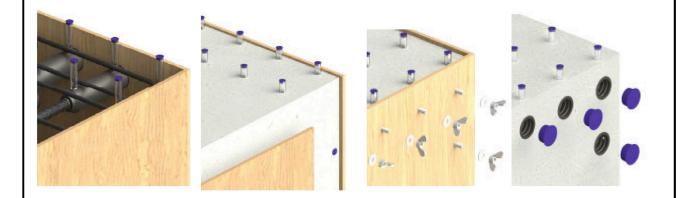

Attach filling hose

Attach a sufficiently long filling hose to the filler necks (length at least up to the concrete surface). Temporarily seal the end of the hose (e.g. with end caps) to prevent the ingress of dirt

Leviat mechanical splicing system Grout Coupler

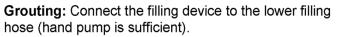
Intended use

Installation requirements: assembly instructions


Page 15 of European Technical Assessment ETA-24/0687 of 23 August 2024

English translation prepared by DIBt

B.5 Installation requirements: assembly instructions, part 2


Formwork, reinforcement, concreting: After the concrete has hardened, remove the wing nuts and demould. Remove the positioning plugs (reusable). Place dirt caps on the open end of the coupler to prevent dirt from entering.

Connection with adjacent component: Remove the dirt caps and end caps. Insert the loose bar of the next construction section / attach the precast element with grout couplers onto the reinforcing bars of the previous concreting section / precast element. Align. Secure position.

Cleanliness check: areas to be grouted should be be free of oil, dirt etc.

Mixing and testing the grout according to grout manufacturers data sheet.



Pour in the grout until overflow from the upper opening. Close the upper and lower openings (e.g. with end caps).

Hardening / Curing

After curing, cut off any protruding hose ends above concrete surface.

Leviat mechanical splicing system Grout Coupler

Intended use

Installation requirements: assembly instructions

C.1 Esse	C.1 Essential characteristics Half-Grout-Coupler-connections															
Table C1:	Essential char	acteri	stics of	conne	ctions	s with	Half (Grout	Coup	lers a	ccord	ing to	Anne	x A5		
	-	Q	y 8)	[mm]	12	14	16	18	20	22	25	26	28	30	32	
Resistance	failure of rebar	f u,min,	outside ¹⁾	[N/mm²]		540 / 575										
to static or quasi static	Failure inside	<i>f</i> u,min, i	min, inside ²⁾ [N/mm ²] 540 / 575													
loading	splice length		coupler ³⁾	[N/mm ²]		650										
	under static or quasi-static load	min / max		[%] [mm]	0,12	0,	14	0,	16	3,0	0,	24		0,2	27	
slip	after static or quasi-static loading	max	s 2 ⁵⁾	[mm]						0,1						
Fatigue strength	characteristic fatigue strength for $N = 2.10^6$ load cycles	$\Delta \sigma$ Rsk	N = 2·10 ⁶	[N/mm²]						60						
Resistance	Residual deformation	max u	20	[mm]		0,2										
to low-cycle loading (seismic	L Utive etc. I e e d	min <i>F</i> _{u,B500B} ⁶⁾		[kN]	61,1	83,1	108,6	137,4	169,6	205,3	265,1	286,7	332,5	381,7	434,3	
actions)	Ultimate load	min F	u,B500C ⁷⁾	[kN]	65,0	88,5	115,6	146,3	180,6	218,6	282,3	305,3	354,1	406,4	462,4	
 f_{u,min, insid} f_{u,min, cou} f_{u,min, cou} slip und slip afte F_{u,B500B} F_{u,B500C} 	1) $f_{u,min, outside} = 1,08 \cdot R_{e,nom}$ for B500B / 1,15 $\cdot R_{e,nom}$ for B500C (in case of failure outside splice length) 2) $f_{u,min, inside} = 1,08 \cdot R_{e,nom}$ for B500B / 1,15 $\cdot R_{e,nom}$ for B500C (in case of failure inside splice length) 3) $f_{u,min, coupler} = 1,3 \cdot R_{e,nom}$ (in case of coupler failure) 4) slip under load 0,6 $\cdot R_{e,nom}$ 5) slip after unloading from 0,6 $\cdot R_{e,nom}$ to 0,02 $R_{e,nom}$ 5) $F_{u,B500B} = 1,08 \cdot A_{s,nom,bar} \cdot R_{e,nom,bar}$ 7) $F_{u,B500C} = 1,15 \cdot A_{s,nom,bar} \cdot R_{e,nom,bar}$ 3) In connections with $\emptyset_1 \neq \emptyset_2$ the performance of the smaller diameter applies $\emptyset = \min(\emptyset_1, \emptyset_2)$															
	Leviat mee	chani	cal sp	licing	syst	em C	Grout	Cou	pler							
Performa Essential ch	n ce naracteristics: H	alf-Gro	out-Cou	pler cor	nnectio	ons	_				_		Ann	ex C	1	

Г

I

C.2 Esse	ntial charact	terist	ics Fu	ll-Gro	ut-Co	ouple	er-coi	nnect	tions							
Table C2:	Essential char	acteri	stics of	conne	ections	s with	Full C	Grout	Coupl	ers a	ccordi	ng to	Anne	k A6		
			y 8)	[mm]	12	14	16	18	20	22	25	26	28	30	32	
Resistance	failure of rebar	f u,min,	outside ¹⁾	[N/mm²]					54	40 / 57	75					
to static or		f u,min, i	nside ²⁾	[N/mm²]					54	40 / 57	75					
quasi static loading	Failure inside splice length	f u,min, o	coupler ³⁾	[N/mm²]	650											
	Under static or	min <i>i</i>	A gt,act	[%]		3,0										
slip	quasi-static load	max	S 1 ⁴⁾	[mm]	0,12	0,	14	0,	16		0,	24		0,2	28	
	after static or quasi-static loading	max	s ₂ ⁵⁾	[mm]						0,1						
Fatigue strength	characteristic fatigue strength for $N = 2 \cdot 10^6$ load cycles	$\Delta \sigma_{Rsk}$	N = 2∙10 ⁶	[N/mm²]						60						
Resistance to low-cycle	Residual deformation	max ι	20	[mm]						0,2						
loading (seismic	Ultimate load	min <i>F</i> _{u,B500B} ⁶⁾		[kN]					169,6	205,3	265,1	286,7	332,5	381,7	434,3	
actions)		min <i>F</i> u,B500C ⁷⁾		[kN]					180,6	218,6	282,3	305,3	354,1	406,4	462,4	
$\frac{ \operatorname{actions})}{ \operatorname{fu,min, outside} = 1,08 \cdot R_{e,nom} \text{ for B500B / 1, 15} \cdot R_{e,nom} \text{ for B500C (in case of failure outside splice length)}}$ $\frac{ \operatorname{fu,min, outside} = 1,08 \cdot R_{e,nom} \text{ for B500B / 1, 15} \cdot R_{e,nom} \text{ for B500C (in case of failure inside splice length)}}$ $f_{u,min, outpier} = 1,38 \cdot R_{e,nom} \text{ (in case of coupler failure)}}$ $\frac{ \operatorname{slip} under load 0,6 \cdot R_{e,nom}}{ \operatorname{slip} under load 0,6 \cdot R_{e,nom} \text{ to 0,02 } R_{e,nom}}$ $F_{u,B500B} = 1,08 \cdot A_{s,nom,bar} \cdot R_{e,nom,bar} \cdot R_{e,nom,bar}$ $f_{u,B500B} = 1,08 \cdot A_{s,nom,bar} \cdot R_{e,nom,bar}$ $R_{u,B500B} = 1,08 \cdot A_{s,nom,bar} \cdot R_{e,nom,bar}$ $f_{u,B500B} = 1,08 \cdot A_{s,nom,bar} \cdot A_{s,nom,bar} \cdot A_{s,nom,bar}$ $f_{u,B500B} = 1,08 \cdot A_{s,nom,bar} \cdot A_{s,nom,bar} \cdot A_{s,nom,bar}$ $f_{u,B500B} = 1,08 \cdot A_{s,nom,bar} $																
	Leviat me	chani	cal sp	licing	syst	em G	Grout	Cou	pler							
	Leviat mechanical splicing system Grout Coupler Performance Essential characteristics: Full-Grout-Coupler connections											Annex C2				