

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0782 of 11 September 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR

Mechanical fasteners for use in concrete

pgb - Polska Sp. z o.o. ul. Fryderyka Wilhelma Redena 3 41-807 ZABRZE **POLEN**

pgb-Polska plant 4

24 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601-v05, Edition 01/2024

European Technical Assessment ETA-24/0782

English translation prepared by DIBt

Page 2 of 24 | 11 September 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 11 September 2024

Specific Part

1 Technical description of the product

The Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B3, C1, C2
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C3
Characteristic resistance for seismic performance categories C1 and C2	see Annex C4, C5
Displacements	see Annex C8, C9, C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C6, C7

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

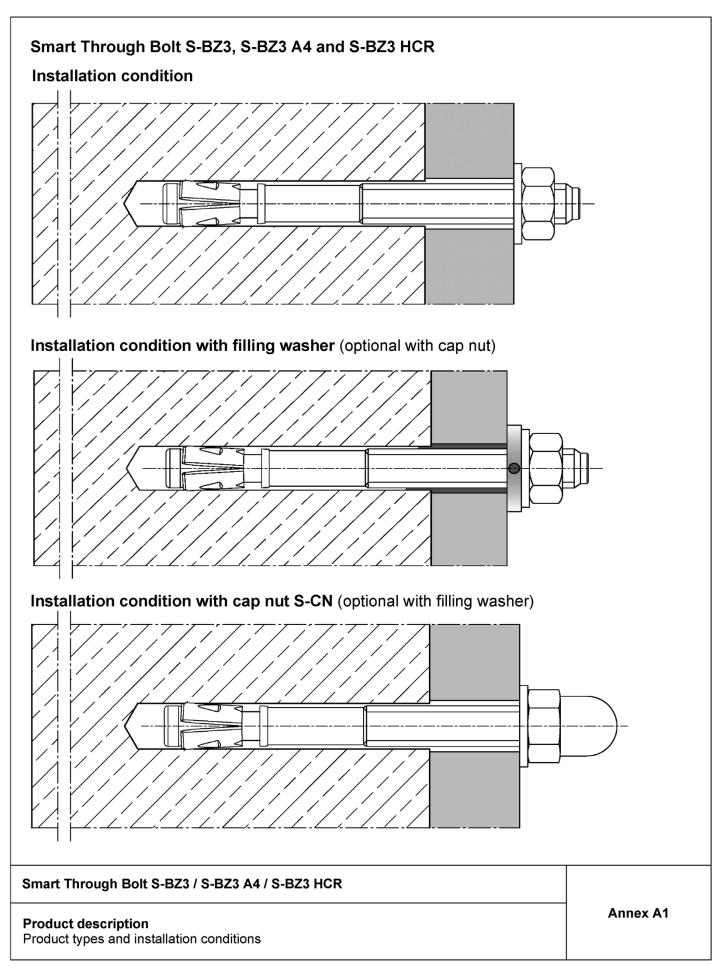
In accordance with the European Assessment Document EAD 330232-01-0601-v05 the applicable European legal act is: 1996/582/EC.

The system to be applied is: 1

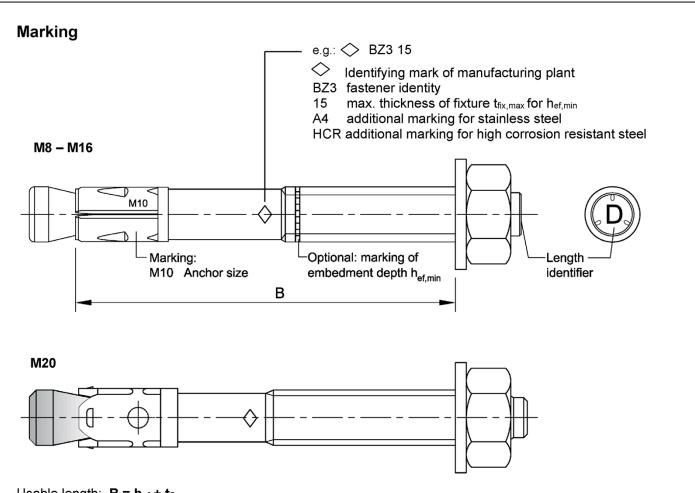
European Technical Assessment ETA-24/0782

English translation prepared by DIBt

Page 4 of 24 | 11 September 2024


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 11 September 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Usable length: **B = h**ef + tfix

(existing) effective anchorage depth h_{ef}:

fixture thickness (including e.g. levelling layers or other non-load-bearing layers or t_fix :

additional filling washer)

Table A1: Length identification

Length identifier	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
Usable	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105
length B	33	40	45	30	33	00	03	/ 0	13	00	00	90	90	100	103

Length identifier	Р	Ø	R	S	Т	U	٧	W	Х	Y	Z	AA	ВВ	СС	DD
Usable length B ≥	110	115	120	125	130	135	140	145	150	160	170	180	190	200	210

Length identifier	•	EE	FF	GG	нн	Ш	JJ	KK	LL
Usable length B	≥	220	230	240	250	260	270	280	290

Dimensions in mm

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Product description Marking	Annex A2

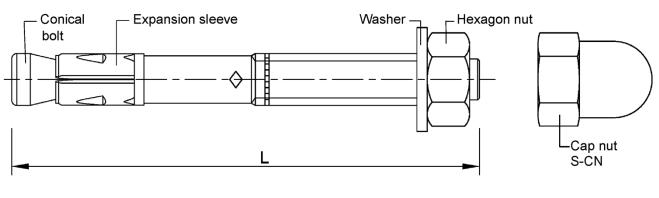


Table A2: Material

	S-BZ3	S-BZ3 A4	S-BZ3 HCR		
Part	Steel, zinc plated	Stainless steel CRC III	High corrosion resistant steel CRC V		
Conical bolt	Steel, galvanized $\geq 5 \mu m$ fracture elongation $A_5 \geq 8\%$	Stainless steel fracture elongation $A_5 \ge 8\%$	High corrosion resistant steel fracture elongation $A_5 \ge 8\%$		
Expansion sleeve	Stainless steel	Stainless steel	Stainless steel		
Washer					
Filling washer S-FW	Steel, galvanized	Otainlana ataul	High corrosion resistant		
Hexagon nut	≥ 5 µm	Stainless steel	steel		
Cap nut S-CN					

Table A3: Fastener dimensions

Factorer cize	S-BZ3 / S-BZ3 A4 / S-BZ3 HCR						
Fastener size			M8	M10	M12	M16	M20
Width across hexagon nut / cap nut S-CN	s	[mm]	13	17	19	24	30
Length of fastener	L	[mm]	h _{ef} + t _{fix} + 18,0	h _{ef} + t _{fix} + 21,5	h _{ef} + t _{fix} + 26,0	h _{ef} + t _{fix} + 33,0	h _{ef} + t _{fix} + 37,0
Thickness of filling washer S-FW	t	[mm]			5		

Filling washer S-FW

Reducing adapter for S-FW

Material and dimensions

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Product description	Annex A3

Specifications of intended use

Modes Anabox	S-BZ3 / S-BZ3 A4 / S-BZ3 HCR								
Wedge Anchor	M8	M10	M16	M20					
Static or quasi-static action			✓						
Seismic performance categories C1 and C2	✓								
Fire exposure	R30 / R60 / R90 / R120								
Variable, effective anchorage depth	35 mm to 90 mm	40 mm to 100 mm	50 mm to 125 mm	65 mm to 160 mm	90 mm to 140 mm				

Base materials:

- For all anchor sizes: compacted reinforced or unreinforced normal weight concrete according to EN 206:2013+A2:2021
- For anchor sizes M8 to M10: steel fibre reinforced concrete (SFRC) according to EN 206:2013+A2:2021 including steel fibres according to EN 14889-1:2006, clause 5, group I. The maximum content of steel fibres is 80 kg/m³.
- Cracked or uncracked concrete
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015: stainless steel according to Annex A3, Table A2 of this ETA

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018 and Technical Report TR 055:2018

Installation:

- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener (exception: when using the cap nut S-CN)
- The anchor can be set in pre- or through-setting installation.
- Optionally, the annular gap between fixture and stud of S-BZ3 can be filled to reduce the hole clearance.
 For this purpose, the filling washer (Annex A3) must be used in addition to the supplied washer. For filling
 use SMART chemical anchor type S-IRV or S-IRE or other high-strength injection mortar with
 compressive strength ≥ 40N/mm².

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Intended use Specifications	Annex B1

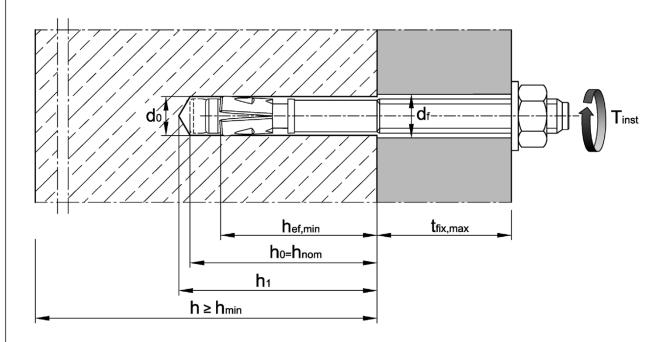


Table B1: Installation parameters

Ancheroine				S-BZ3 / S-BZ3 A4 / S-BZ3 HCR						
Anchor size	M8	M10	M12	M16	M20					
Nominal drill hole	diameter	d₀	[mm]	8	10	12	16	20		
Cutting diameter	of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55		
Minimum effective	e anchorage depth	$h_{\text{ef,min}}$	[mm]	35	40	50	65	90		
Maximum effectiv	e anchorage depth	h _{ef,max}	[mm]	90	100	125	160	140		
Depth of drill hole Diameter of clearance hole in the fixture 2)		= h ₀ ≥	[mm]	h _{ef} + 8	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14	h _{ef} + 14 (h _{ef} + 28) ¹⁾		
		h₁≥	[mm]	h _{ef} + 10	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17	$h_{ef} + 17$ $(h_{ef} + 31)^{1)}$		
		$d_f \leq$	[mm]	9	12	14	18	22		
Projection after an inserted for install S-CN (acc. to Ann	ling with cap nut	С	[mm]	10,5	12,5	16,0	19,5	23,0		
Installation	S-BZ3	T _{inst}	[Nm]	15	40	60	110	160		
torque	S-BZ3 A4 / HCR	T _{inst}	[Nm]	15	40	55	100	200		

¹⁾ Increased drill hole depth for hammer drilling without borehole cleaning.

²⁾ For larger diameters of clearance hole in the fixture, see EN 1992-4:2018, chapter 6.2.2.2

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Intended use Installation parameters	Annex B2

Table B2: Minimum thickness of concrete member, minimum spacings, edge distances

Anchor size			S-BZ3 / S-BZ3 A4 / S-BZ3 HCR						
			M8	M10	M12	M16	M20		
Minimum member thickness depending on h _{ef} h _{min} ≥		[mm]	max (1,5·h _{ef} ;80)		max (1,5·h _{ef} ;100)	max (1,5·h _{ef} ;120)	max (1,5·h _{ef} ;150)		
Minimum edge distances and spacings									
Minimum odgo diotonoo	C _{min}	[mm]	40	45	55	65	90		
Minimum edge distance	for s ≥	[mm]			see Table B4				
Minimum anacinga	Smin	[mm]	35	40	50	65	95		
Minimum spacings	for c ≥	[mm]			see Table B4				

The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in combination with variable anchorage depth and member thickness:

 $A_{sp,rqd} \leq A_{sp,ef}$

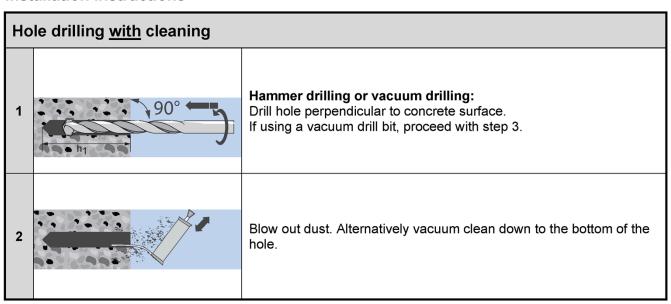
Required splitting area A_{sp,rqd} and idealized splitting area A_{sp,ef} according to Table B4.

Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance c_{cr,sp}

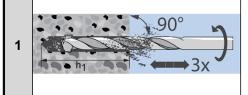
Anchor size -				S-BZ3 / S-BZ3 A4 / S-BZ3 HCR						
				M8 M10 M12 M16				M20		
Applicable concrete thickness	S-BZ3 S-BZ3 A4 S-BZ3 HCR	h _{sp}	[mm]	$\min(h; h_{ef} + 1.5 \cdot c \cdot \sqrt{2})$						
Area to	S-BZ3	Asp	[mm²]	$\frac{N_{Rk,sp}^0 - 2,573}{0,000436}$	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$	$\frac{N_{Rk,sp}^0 + 2,423}{0,000453}$		
determine C _{cr,sp} 1)	S-BZ3 A4 S-BZ3 HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 4,177}{0,000862}$	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^0 + 11,41}{0,000742}$	$\frac{N_{Rk,sp}^0 + 2,423}{0,000453}$		

 $^{^{1)}}$ With $N^0_{\text{Rk,sp}}$ in kN

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Intended use	Annex B3
Minimum spacings and edge distances	
Required area and applicable concrete thickness	


Table B4: Areas to determine spacings and edge distances for installation

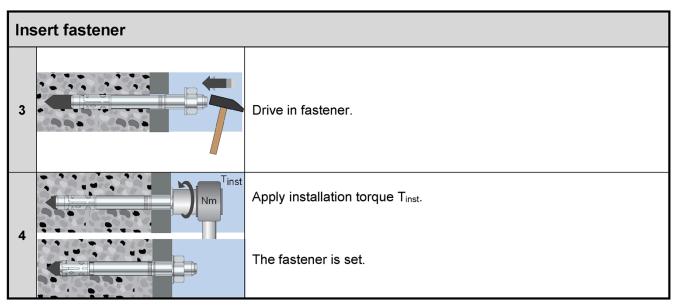
A b					S-BZ3 / S	-BZ3 A4 / S-	BZ3 HCR		
Anchor size		M8	M10	M12	M16	M20			
	The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in combination with variable anchorage depth and member thickness: $ A_{sp,rqd} \leq A_{sp,ef} $								
<u>Idealized splitting area A_{sp,ef}</u> The edge distances and spacings shall be selected or rounded in steps of 5 mm.									
Member thic	ckness: h > h _{ef} + 1	,5 · с							
Single ancho	or or anchor group wit	h s ≥ 3·	С						
Idealized splitting area A _{sp,ef} [mm²]			[mm²]		(6-	c) · (1,5·c + l	n _{ef})		
Anchor group	o (s < 3·c)								
Idealized splitting area $A_{sp,ef}$ [mm ²] $(3\cdot c + s) \cdot (1,5\cdot c + h_{ef})$									
Member thic	kness: h≤h _{ef} +1	,5 · с							
Single ancho	or or anchor group wit	h s ≥ 3 ·	С						
Idealized spli	itting area	$A_{\text{sp,ef}}$	[mm²]			(6·c) · h			
Anchor group	o (s < 3·c)								
Idealized spli	itting area	$A_{\text{sp,ef}}$	[mm²]	(3⋅c + s) ⋅ h					
Required sp	litting area A _{sp,rqd}								
	cracked concrete	A _{sp,rqd}	[mm²]	13 900	23 700	31 500	42 300	91 250	
S-BZ3	uncracked concrete	$A_{sp,rqd}$	[mm²]	22 500	34 700	41 300	50 200	110 000	
S-BZ3 A4	cracked concrete	$A_{\text{sp,rqd}}$	[mm²]	16 900	25 900	29 800	44 300	91 250	
S-BZ3 HCR	uncracked concrete	$A_{sp,rqd}$	[mm²]	19 700	35 700	35 300	54 800	110 000	


Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Intended use Projected effective area to determine spacings and edge distances	Annex B4

Installation instructions

When the drill hole depth (h_1 = h_{ef} +31mm) is reached, move the drill back and forth at least three times with the machine switched on to remove the dust in the drill hole (venting the drill hole). Continue with step 3.

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR


Intended use

Installation instructions - hole drilling and cleaning

Annex B5

Installation instructions - continuation

Drive in fastener with additionally mounted filling washer. Apply installation torque T_{inst}. Fill the annular gap between anchor and fixture with injection adhesive (see Annex B1). Use enclosed reducing adapter. The annular gap is completely filled, when excess mortar seeps out.

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Intended Use Installation instructions - set fastener	Annex B6

Installation instruction – continuation

11151	Installation instruction – continuation							
Ins	Install fastener with cap nut S-CN							
3		Check position of nut. Projection C after anchor has been inserted see Annex B2, Table B1.						
4		Drive in fastener.						
5		Remove nut.						
6		Screw on cap nut S-CN.						
7	Nm	Apply installation torque $T_{\text{inst.}}$ Fastener is set.						

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Product description Installation instruction – set fastener with cap nut	Annex B7

Table C1: Characteristic values for **tension loads** under static and quasi-static action, **S-BZ3** (steel, zinc plated)

Factorian					S-BZ3			
Installation factor			M8	M10	M12	M16	M20	
Installation factor γ _{inst} [-]					1,0			
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	19,8	30,4	44,9	79,3	126,2	
Partial factor 4)	γMs	[-]			1,5			
Pull-out								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p,cr}$	[kN]	9,5	15	22	30	45	
Increasing factor N _{Rk,p,cr} = ψ _C • N _{Rk,p,cr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,439}$	$\left(\frac{f_{ck}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$	$\left(\frac{f_{ck}}{20}\right)^{0,338}$	
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p,ucr}	[kN]	14	24	30	50	55	
Increasing factor N _{Rk,p,ucr} = ψc • N _{Rk,p,ucr} (C20/25)	ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,489}$	$\left(\frac{f_{ck}}{20}\right)^{0,448}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	
Splitting								
Characteristic resistance	N ⁰ Rk,sp	[kN]		min	($N_{Rk,p}$; N^0_{Rk}	(,c ³⁾)		
Characteristic edge distance 2)	C cr,sp	[mm]	mı	$in\left(\frac{A_{sp} + 0.8 \cdot (h_{sp} - h_{sp})}{(3.41 \cdot h_{sp} - h_{sp})}\right)$	$\frac{(s_p-h_{ef})^2}{(0.59\cdot h_{ef})}; \frac{A_s}{h_{sp}}$	$\left(\frac{p}{\sqrt{8}}\right) \ge 1.5 \cdot h$	Pef	
Characteristic spacing	S cr,sp	[mm]			2 · C _{cr,sp}			
Factor	Ψh,sp	[-]			1,0			
Concrete cone failure								
Minimum, effective anchorage depth	h _{ef,min}	[mm]	35 ¹⁾	40	50	65	90	
Maximum, effective anchorage depth	h _{ef,max}	[mm]	90	100	125	160	140	
Characteristic edge distance	Characteristic edge distance c _{cr,N} [mm]		1,5 · h _{ef}					
Characteristic spacing s _{cr,N} [mm]			2 · C _{cr,N}					
Factor cracked concrete	k cr,N	[-]	7,7					
uncracked concrete	k ucr,N	[-]	11,0					

¹⁾ Fastenings with anchorage depth h_{ef} < 40mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

⁴⁾ In absence of other national regulations

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Characteristic values for tension loads, S-BZ3 (Steel, zinc plated)	Annex C1

²⁾ Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance c_{cr,sp} according to Table B3

 $^{^{3)}}N^{0}_{Rk,c}$ according to EN 1992-4:2018

Table C2: Characteristic values for tension loads under static or quasi-static action, S-BZ3 A4 and S-BZ3 HCR

Factorial			S-BZ3 A4 / S-BZ3 HCR								
Fastener size			M8	M10	M12	M16	M20				
Installation factor	[-]	1,0									
Steel failure											
Characteristic resistance	$N_{Rk,s}$	[kN]	19,8	30,4	44,9	74,6	126,2				
Partial factor ⁴⁾	γMs	[-]			1,5						
Pull-out											
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p,cr}$	[kN]	9,5	17	22	35	45				
Increasing factor N _{Rk,p,cr} = ψ _C • N _{Rk,p,cr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,488}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,350}$	$\left(\frac{f_{ck}}{20}\right)^{0,338}$				
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p,ucr}$	[kN]	20	25	42	50	55				
Increasing factor N _{Rk,p,ucr} = ψ _C • N _{Rk,p,ucr} (C20/25)	ψο	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,240}$	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,196}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$				
Splitting											
Characteristic resistance	$N^0_{Rk,sp}$	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c} ³⁾)								
Characteristic edge distance 2)	C cr,sp	[mm]	m	$in\left(\frac{A_{sp}+0.8\cdot (h_{sp}-1)}{(3.41\cdot h_{sp}-1)}\right)$	$\frac{(a_{sp}-h_{ef})^2}{(0.59\cdot h_{ef})}$; $\frac{A_s}{h_{sp}}$	$\left(\frac{p}{\sqrt{8}}\right) \ge 1.5 \cdot h$	lef				
Characteristic spacing	S cr,sp	[mm]			2 · c _{cr,sp}						
Factor	Ψh,sp	[-]	1,0								
Concrete cone failure											
Minimum, effective anchorage depth	h _{ef,min}	[mm]	35 ¹⁾	40	50	65	90				
Maximum, effective anchorage depth		[mm]	90	100	125	160	140				
Characteristic edge distance	C cr,N	[mm]	1,5 · h _{ef}								
Characteristic spacing	S cr,N	[mm]			2 · c _{cr,N}						
Factor cracked concrete	k cr,N	[-]			7,7						
uncracked concrete	k _{ucr,N}	[-]			11,0						

 $^{^{1)}}$ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

⁴⁾ In absence of other national regulations

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Characteristic values for tension loads, S-BZ3 A4 and S-BZ3 HCR	Annex C2

²⁾ Applicable concrete thickness h_{sp} and area A_{sp} according to Table B3 to determine characteristic edge distance c_{cr,sp}

 $^{^{3)}\,}N^0_{Rk,c}$ according to EN 1992-4:2018

Table C3: Characteristic values for shear loads under static and quasi-static action

Faatanavaina		S-BZ3 / S-	BZ3 A4 / S	S-BZ3 HCF	₹					
Fastener size	M8	M10	M12	M16	M20					
Installation factor	[-]			1,0						
Steel failure without	lever arm						,			
Characteristic resistance –	S-BZ3	V^0 Rk,s	[kN]	15,7	26,8	38,3	60,0	83,8		
unfilled annular gap	S-BZ3 A4 / HCR	V^0 Rk,s	[kN]	16,8	27,8	39,8	69,5	108,5		
Characteristic resistance –	S-BZ3	V^0 Rk,s	[kN]	17,3	26,7	38,6	60,6	86,1		
filled annular gap S-BZ3 A4 / HCR		$V^0_{Rk,s}$	[kN]	16,8	27,8	44,9	80,1	108,5		
Partial factor 2)		γMs	[-]	1,25						
Ductility factor		k 7	[-]	1,0						
Steel failure with leve	er arm									
Characteristic	S-BZ3	M^0 Rk,s	[Nm]	30	60	105	240	412		
bending resistance	S-BZ3 A4 / HCR	$M^0_{Rk,s}$	[Nm]	27	55	99	223	390		
Partial factor ²⁾		γMs	[-]			1,25				
Concrete pry-out fail	ure									
Dry out factor	S-BZ3	k 8	[-]	2,8	3,1	3,0	3,6	3,3		
Pry-out factor	k 8	[-]	2,7	2,8	3,3	3,4	3,3			
Concrete edge failure	9									
Effective length of fast loading	I _f	[mm]			h _{ef} 1)					
Outside diameter of fa	stener	d_{nom}	[mm]	8	10	12	16	20		

 $^{^{1)}}$ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Characteristic values for shear loads	Annex C3

²⁾ In absence of other national regulations.

Table C4: Characteristic values for seismic loading, performance category C1

Factorial			S-E	3Z3 / S	-BZ3 /	44 / S-	BZ3 H	CR					
Fastener size	rasteller size					М	10	M12		M16		M20	
Effective anchora	Effective anchorage depth h _{ef} ≥			40	45	40	60	50	70	65	85	90	100
Tension load													
Installation factor	,	γinst	[-]					1	,0				
Steel failure													
Characteristic	S-BZ3	N _{Rk,s,C1}	[kN]	19	8,8	30),4	44	1,9	79),3	12	6,2
resistance	S-BZ3 A4 / HCR	N _{Rk,s,C1}	[kN]	19	9,8	30),4	44	l,9	74	ł,6	12	6,2
Pull-out													
Characteristic	teristic S-BZ3 N _{Rk,p,C1} [kN]		[kN]	9,1		15,0		22,0		30,0		45,1	
resistance	S-BZ3 A4 / HCR	N _{Rk,p,C1}	[kN]	9	,0	17	17,0 22,0		2,0	35,0		45,1	
Shear load													
Steel failure witl	nout lever arı	n											
Characteristic resistance -	S-BZ3	V _{Rk,s,C1}	[kN]	11,7	13,4	22,5	24,4	30,0	33,8	48,8	52,3	83	3,8
unfilled annular gap	S-BZ3 A4 / HCR	V _{Rk,s,C1}	[kN]	11,0	12,7	20,6	22,2	33,2	33,2	61,1	64,3	10	8,5
Characteristic resistance -	S-BZ3	V _{Rk,s,C1}	[kN]	14,0	14,7	24,1	24,4	37,0	38,6	60,2	60,2	86	5,1
<u>filled</u> annular gap	S-BZ3 A4 / HCR	V _{Rk,s,C1}	[kN]	12,6	16,8	24,5	27,5	36,7	39,8	67,7	74,2	10	8,5
Factor for	unfilled (1900 [-]							0	,5				
anchorages	filled annular gap	$lpha_{ extsf{gap}}$	[-]					1	,0				

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Characteristic resistance for seismic loading, performance category C1	Annex C4

Table C5: Characteristic values for seismic loading, performance category C2

Fastener size	S-BZ3 / S-BZ3 A4 / S-BZ3 HCR													
rasteller size					18	M	M10 M12		12 M16			M20		
Effective anchor	Effective anchorage depth h _{ef} ≥ [mm]			40	45	40	60	50	70	65	85	90	100	140
Tension load														
Installation facto	r	γinst	[-]						1,0					
Steel failure														
Characteristic	S-BZ3	$N_{\text{Rk,s,C2}}$	[kN]	19	9,8	30	0,4	4	4,9	79	9,3		126,2	
resistance	S-BZ3 A4 / HCR	N _{Rk,s,C2}	[kN]	19	9,8	30	0,4	4	4,9	74	4,6		126,2	
Pull-out														
Characteristic	S-BZ3	$N_{\text{Rk},p,C2}$	[kN]	2,8	3,6	7,3	12,5	10,7	19,0	19,8	35,2	35,1	37,6	42,9
resistance	S-BZ3 A4 / HCR	N _{Rk,p,C2}	[kN]	2,3	3,2	5,0	7,7	8,0	13,8	19,0	29,4	35,1	37,6	42,9
Shear load														
Steel failure wit	hout lever a	rm												
Characteristic resistance -	S-BZ3	V _{Rk,s,C2}	[kN]	7,3	11,3	15,4	19,0	18,3	28,0	39,4	43,3		69,0	
unfilled annular gap	S-BZ3 A4 / HCR	V _{Rk,s,C2}	[kN]	7,5	8,6	12,5	15,9	22,4	25,6	42,7	46,1		88,9	
Characteristic resistance -	S-BZ3	V _{Rk,s,C2}	[kN]	9,7	10,8	17,7	19,9	27,6	28,9	46,0	48,8		73,3	
filled annular gap	S-BZ3 A4 / HCR	V _{Rk,s,C2}	[kN]	9,4	9,7	16,5	17,1	24,5	28,5	47,4	47,4		88,9	
Factor for _	unfilled annular gap	$lpha_{\sf gap}$	[-]						0,5					
anchorages	filled annular gap	lphagap	[-]						1,0					

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Characteristic resistance for seismic loading, performance category C2	Annex C5

Table C6: Characteristic values for tension and shear load under fire exposure, S-BZ3 (steel, zinc plated)

Faatamanaisa						S-BZ3		
Fastener size				М8	M10	M12	M16	M20
Tension load								
Steel failure								
	R30			1,2	2,6	4,6	7,7	9,4
Characteristic	paracteristic R60	1,0	1,9	3,3	5,6	8,2		
resistance	R90	$N_{Rk,s,fi}$	[kN]	0,7	1,3	2,1	3,5	6,9
	R120			0,6	1,0	1,5	2,5	6,3
Shear load								
Steel failure withou	<u>ut</u> lever arm							
	R30			4,0	7,5	12,3	20,7	11,0
Characteristic	R60		FLAIT	2,7	5,1	8,5	14,2	10,6
resistance	R90	$V_{Rk,s,fi}$	[kN]	1,4	2,7	4,6	7,7	10,2
	R120	•		0,8	1,6	2,7	4,5	10,0
Steel failure with le	ever arm							
	R30			4,1	9,6	19,1	43,8	29,1
Characteristic	R60	· M ⁰ Rk,s,fi	FN11	2,8	6,6	13,1	30,1	28,0
resistance	R90	IVI KK,s,fi	[Nm]	1,5	3,5	7,2	16,4	26,9
	R120			0,8	2,0	4,2	9,6	26,3

 $N_{\text{Rk,p,fi}}$ and $N_{\text{Rk,c,fi}}$ according to EN 1992-4:2018

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Characteristic values under fire exposure, S-BZ3 (steel, zinc plated)	Annex C6

Table C7: Characteristic values for tension and shear load under fire exposure, S-BZ3 A4 and S-BZ3 HCR

Factorersia					S-BZ3	8 A4 / S-BZ	3 HCR	
Fastener size				M8	M10	M12	M16	M20
Tension load								
Steel failure								
	R30			4,0	6,9	11,0	18,1	36,9
Characteristic	R60	No. s	[LNI]	2,9	5,0	8,0	13,1	27,4
resistance	R90	$N_{Rk,s,fi}$	[kN]	1,8	3,1	4,9	8,1	17,9
	R120			1,2	2,1	3,4	5,6	13,1
Shear load								
Steel failure witho	<u>ut</u> lever arm							
	R30		E 1.17	8,5	17,6	32,0	52,6	73,5
Characteristic	R60	\		6,2	12,6	22,6	37,1	51,8
resistance	R90	$V_{Rk,s,fi}$	[kN]	3,9	7,5	13,1	21,5	30,1
	R120			2,8	5,0	8,4	13,8	19,2
Steel failure with le	ever arm							
	R30			8,7	22,7	49,8	111,5	194,7
Characteristic	R60	N40	FN Local	6,3	16,2	35,1	78,6	137,2
resistance	R90	M^0 Rk,s,fi	[Nm]	4,0	9,7	20,4	45,6	79,7
	R120			2,8	6,5	13,0	29,2	50,9

N_{Rk,p,fi} and N_{Rk,c,fi} according to EN 1992-4:2018

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Characteristic values under fire exposure, S-BZ3 A4 and S-BZ3 HCR	Annex C7

Table C8: Displacements under tension load, S-BZ3 (steel, zinc plated)

Fastener size				S-BZ3											
				M8		M10		M12		M16		M20			
Displacements under state $\delta_{N0} = \delta_{N0\text{-factor}} * N$ $\delta_{N\infty} = \delta_{N\infty\text{-factor}} * N$	load														
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	40		50		65		90				
Cracked concrete															
- δN0-factor		[mm/kN]	mm/kN] 0,13		0,05		0,04		0,03		0,04				
Factor for displacement -	δ _{N∞-factor}	[mm/kN]	0,29		0,20		0,15		0,11		0,05				
Uncracked concrete															
Contar for displacement	$\delta_{\text{N0-factor}}$ [mn		0,03		0,01		0,004		0,005		0,02				
Factor for displacement -	δN∞- factor	[mm/kN]	0,03		0,03		0,03		0,03		0,03				
Displacement under seis	Displacement under seismic action C2														
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	140		
Displacements for DLS	δN, C2(DLS)	[mm]	3,9	4,9	2,8	4,7	2,4	4,2	2,5	4,5	4,2	4,5	5,1		
Displacements for ULS	δ N, C2(ULS)	[mm]	11,3	14,3	9,4	16,1	7,3	12,9	7,2	12,8	11,7	12,5	14,3		

Table C9: Displacements under tension load, S-BZ3 A4 and S-BZ3 HCR

Fastener size				S-B	Z3 A4	/ S-BZ	Z3 HCI	₹					
1 43.61161 3126				М8		M10		M12		M16		M20	
Displacements under s													
$\delta_{N0} = \delta_{N0\text{-factor}} * \mathbf{N}$ $\delta_{N\infty} = \delta_{N\infty\text{-factor}} * \mathbf{N}$		N: acting t	ensior	1 load									
Effective anchorage dept	h h _{ef} ≥	[mm]	3	5	4	0	5	0	65		90		
Cracked concrete													
Easter for displacement	δ _{N0-factor}		0,11		0,06		0,05		0,02		0,04		
Factor for displacement	δN∞-factor	[mm/kN]	0,27		0,17		0,16		0,08		0,05		
Uncracked concrete													
Easter for displacement	δ _{N0-factor} [mm/kN]		0,02		0,	0,00		0,001		0,00		0,02	
ractor for displacement	Factor for displacement $\frac{\delta N_{\infty} - factor}{\delta N_{\infty} - factor} $ [mm/l		0,05		0,05		0,05		0,05		0,03		
Displacement under seismic action C2													
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	140
Displacements for DLS	$\delta_{\text{N, C2(DLS)}}$	[mm]	2,0	2,9	2,6	4,1	3,3	5,7	3,3	5,1	4,2	4,5	5,1
Displacements for ULS	δ N, C2(ULS)	[mm]	7,7	11,1	10,8	16,8	10,4	18,0	9,0	13,9	11,7	12,5	14,3

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance Displacements under tension load	Annex C8

Table C10: Displacements under shear load, S-BZ3 (steel, zinc plated)

Fastener size				S-BZ3									
1 43(6)(6) 3(26)					M10		M12		16	M20			
Displacements under static or quasi-static $\delta_{V0} = \delta_{V0\text{-factor}} * V$ V: acting $\delta_{V\infty} = \delta_{V\infty\text{-factor}} * V$													
						_	_		_				
h _{ef} ≥	[mm]	3	5	4	0	5	0	6	5	90			
δ V0- factor	[mm/kN]	0,	15	0,09		0,09		0,07		0,06			
$\delta_{\text{V}\infty\text{factor}}$	[mm/kN]	m/kN] 0,2		0,	0,13		14	0,11		0,10			
δ V0- factor	[mm/kN]	0,01		0,04		0,06		0,04		0,02			
δ∨∞- factor	[mm/kN]	0,015		0,06		0,09		0,06		0,03			
mic actio	on C2 ¹⁾ <u>un</u>	filled a	annular	gap									
h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90			
$\delta_{\text{V,C2(DLS)}}$	[mm]	2,8	2,7	3,0	3,1	3,4	3,7	3,4	3,8	5,1			
$\delta_{\text{V,C2(ULS)}}$	[mm]	5,1	5,0	5,0	5,5	6,3	9,9	6,0	9,6	9,4			
mic actio	on C2 filled	<u>d</u> annu	lar gap										
h _{ef} ≥	[mm]	40 45		40	60	50	70	65	85	90			
$\delta_{V,C2(DLS)}$	[mm]	0,5 0,4		1,4	0,9	1,4	0,7	1,4	1,2	1,3			
δ V,C2(ULS)	[mm]	1,7	1,9	5,8	4,5	4,5	3,1	5,0	3,9	5,2			
	$\begin{array}{c} h_{ef} \geq \\ \delta_{V0-factor} \\ \delta_{V\infty-factor} \\ \delta_{V0-factor} \\ \delta_{V0-factor} \\ \hline \text{mic action} \\ h_{ef} \geq \\ \delta_{V,C2(DLS)} \\ \hline \text{mic action} \\ h_{ef} \geq \\ \delta_{V,C2(DLS)} \\ \end{array}$	$\begin{array}{c c} & V: \mbox{ acting} \\ \hline h_{ef} \geq & [mm] \\ \hline \delta_{V0- \mbox{ factor}} & [mm/kN] \\ \hline \delta_{V0- \mbox{ factor}} & [mm/kN] \\ \hline \delta_{V0- \mbox{ factor}} & [mm/kN] \\ \hline \hline \delta_{V0- \mbox{ factor}} & [mm/kN] \\ \hline \mbox{mic action C2} & [mm] \\ \hline \delta_{V,C2(DLS)} & [mm] \\ \hline \delta_{V,C2(ULS)} & [mm] \\ \hline \mbox{mic action C2} & \underline{\mbox{ filled}} \\ \hline h_{ef} \geq & [mm] \\ \hline \delta_{V,C2(DLS)} & [mm] \\ \hline \end{array}$	tic or quasi-static action V : acting shear N :	h_{ef} ≥ [mm] 35 $δ_{V0-factor}$ [mm/kN] 0,15 $δ_{V∞-factor}$ [mm/kN] 0,22 $δ_{V0-factor}$ [mm/kN] 0,01 $δ_{V∞-factor}$ [mm/kN] 0,015 mic action C2 $^{1)}$ unfilled annular h _{ef} ≥ [mm] 40 45 $δ_{V,C2(DLS)}$ [mm] 2,8 2,7 $δ_{V,C2(ULS)}$ [mm] 5,1 5,0 mic action C2 filled annular gap h _{ef} ≥ [mm] 40 45 $δ_{V,C2(DLS)}$ [mm] 0,5 0,4	tic or quasi-static action V: acting shear load $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tic or quasi-static action V: acting shear load $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M8 M10 Min tic or quasi-static action V: acting shear load h _{ef} ≥ [mm] 35 40 5 δν _{0- factor} [mm/kN] 0,15 0,09 0,0 δν _{0- factor} [mm/kN] 0,22 0,13 0,0 δν _{0- factor} [mm/kN] 0,01 0,04 0,0 mic action C2 ¹⁾ unfilled annular gap h _{ef} ≥ [mm] 40 45 40 60 50 δν,c2(DLS) [mm] 5,1 5,0 5,0 5,5 6,3 mic action C2 filled annular gap annular gap h _{ef} ≥ [mm] 40 45 40 60 50 δν,c2(DLS) [mm] 0,5 0,4 1,4 0,9 1,4	M8 M10 M12 tic or quasi-static action V: acting shear load hef≥ [mm] 35 40 50 δv0- factor [mm/kN] 0,15 0,09 0,09 δv∞- factor [mm/kN] 0,01 0,04 0,06 δv∞- factor [mm/kN] 0,015 0,06 0,09 mic action C2 ¹¹⟩ unfilled annular gap hef≥ [mm] 40 45 40 60 50 70 δv,c2(DLS) [mm] 5,1 5,0 5,0 5,5 6,3 9,9 mic action C2 filled annular gap hef≥ [mm] 40 45 40 60 50 70 δv,c2(DLS) [mm] 40 45 40 60 50 70 δv,c2(DLS) [mm] 40 45 40 60 50 70 δv,c2(DLS) [mm] 0,5 0,4 1,4 0,9 1,4 0,7	M8 M10 M12 Minary tic or quasi-static action V: acting shear load hef ≥ [mm] 35 40 50 6 δν0-factor [mm/kN] 0,15 0,09 0,09 0,0 δν0-factor [mm/kN] 0,02 0,13 0,14 0,0 δν0-factor [mm/kN] 0,01 0,04 0,06 0,0 δν-σ-factor [mm/kN] 0,015 0,06 0,09 0,0 mic action C2 (mm/kN) 0,015 0,06 0,09 0,0 mic action C2 (mm/kN) 0,015 0,06 0,09 0,0 mic action C2 (mm/kN) 0,015 0,06 0,09 0,0 δν,C2(DLS) [mm] 40 45 40 60 50 70 65 δν,C2(DLS) [mm] 40 45 40 60 50 70 65 δν,C2(DLS) [mm] 40 45 40 60 50	M8 M10 M12 M16 tic or quasi-static action V: acting shear load hef ≥ [mm] 35 40 50 65 δv _{V0- factor} [mm/kN] 0,15 0,09 0,09 0,07 δv _{∞- factor} [mm/kN] 0,22 0,13 0,14 0,11 δv _{V0- factor} [mm/kN] 0,01 0,04 0,06 0,04 δv _{∞- factor} [mm/kN] 0,015 0,06 0,09 0,06 mic action C2 ¹¹ unfilled annular gap annular gap 0,06 50 70 65 85 δv,C2(DLS) [mm] 5,1 5,0 5,0 5,5 6,3 9,9 6,0 9,6 mic action C2 filled annular gap 40 45 40 60 50 70 65 85 δv,C2(DLS) [mm] 40 45 40 60 50 70 65 85 δv,C2(DLS) [mm] 40 45 40 60 50 70 65			

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account.

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR	
Performance	Annex C9
Displacements under shear load	

Table C11: Displacements under shear load, S-BZ3 A4 and S-BZ3 HCR

Factorersine	S-BZ3 A4 / S-BZ3 HCR										
Fastener size		IV	18	M10		M12		M16		M20	
Displacements under static or quasi-static action $\delta_{V0} = \delta_{V0\text{-factor}} \cdot V \qquad \qquad V: \text{ acting shear load}$ $\delta_{V\infty} = \delta_{V\infty\text{-factor}} \cdot V$											
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	40		50		5	90
Factor for displacement	actor for displacement δνο- factor [m		0,26		0,14		0,12		0,09		0,09
unfilled annular gap	$\delta_{V\infty ext{-}}$ factor	[mm/kN]	0,39		0,20		0,17		0,14		0,13
Factor for displacement	δ V0- factor	[mm/kN]	0,16		0,05		0,05		0,03		0,09
<u>filled</u> annular gap	$\delta_{V\infty ext{-}}$ factor	[mm/kN]	0,23		0,08		0,08		0,05		0,13
Displacement under seis	mic actio	on C2 ¹⁾ <u>un</u>	filled a	annula	r gap						
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,8	3,0	3,4	3,5	3,5	4,2	3,8	4,4	5,1
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,2	5,1	7,0	8,4	7,5	11,8	7,8	11,1	9,4
Displacement under seis	mic actio	on C2 <u>fille</u>	<u>d</u> annu	lar gap)						
Effective anchorage depth	ective anchorage depth h _{ef} ≥ [mm]		40	45	40	60	50	70	65	85	90
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	0,9	0,6	1,2	0,5	1,5	1,5	1,6	1,6	4,1
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	2,5	2,6	5,4	3,6	6,0	7,1	6,2	6,2	8,4

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account

Smart Through Bolt S-BZ3 / S-BZ3 A4 / S-BZ3 HCR

Performance
Displacements under shear load

Annex C10