

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0812 of 18 October 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR

Post-installed fasteners in concrete under fatigue cyclic loading

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich **GERMANY**

Werk 2, Deutschland

20 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601, Edition 06/2021

European Technical Assessment ETA-24/0812

English translation prepared by DIBt

Page 2 of 20 | 18 October 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 18 October 2024

Specific Part

1 Technical description of the product

The Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR is a fastener made of zinc plated steel or stainless steel (A4) or high corrosion resistant steel (HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static and quasi-static loading and seismic loading)	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B3, C2, C3
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C4
Displacements	see Annex C8, C9
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C5

Page 4 of 20 | 18 October 2024

Essential characteristic (fatigue loading, Assessment method B: Fatigue limit resistance)	Performance		
Characteristic fatigue resistance under cyclic tension loading			
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,\infty}$			
Characteristic concrete cone, splitting and pull-out fatigue resistance $\Delta N_{Rk,c,0,\infty}$ $\Delta N_{Rk,sp,0,\infty}$ $\Delta N_{Rk,p,0,\infty}$	see Annex C1		
Characteristic fatigue resistance under cyclic shear loading			
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,\infty}$			
Characteristic concrete edge and pry-out fatigue resistance $\Delta V_{Rk,c,0,\infty}$ $\Delta V_{Rk,cp,0,\infty}$	see Annex C1		
Characteristic fatigue resistance under combined cyclic tension and she	ear loading		
Characteristic steel fatigue resistance a_s ($n = \infty$)	see Annex C1		
Load transfer factor for cyclic tension, shear and combined tension and shear loading			
Load transfer factor ψ_{FN}, ψ_{FV}	see Annex C1		

3.2 Safty in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C6, C7

3.3 Aspects of durabilty

Essential characteristic	Performance
Durability	see Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330250-00-0601 the applicable European legal act is: 1996/582/EC.

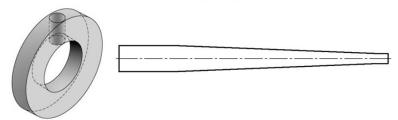
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

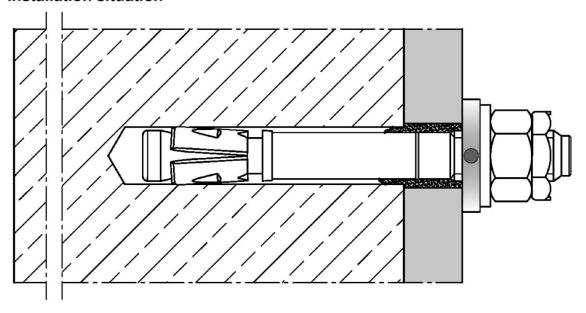
Issued in Berlin on 18 October 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider



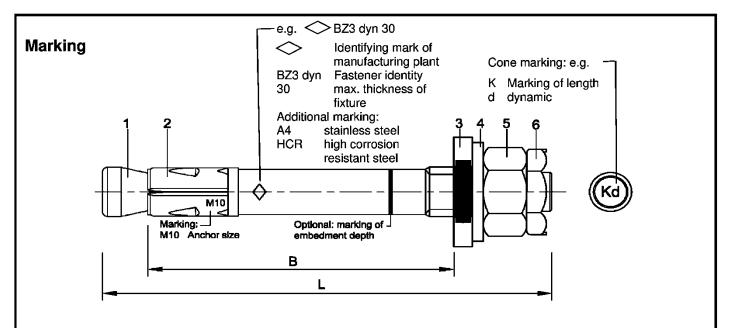
Wedge anchor BA3 dynamic, BA3 dynamic A4 und BA3 dynamic HCR

BA3 dyn. / BA3 dyn. A4 / BA3 dyn. HCR M10, M12, M16


Filling washer VFS with reducing adapter

Filling washer (alternativ)

Installation situation


Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR

Product description

Product, installation situation

Annex A1

Usable length: $B = h_{ef} + t_{fix}$

hef: (existing) effective anchorage depth

t_{fix}: fixture thickness

Table A1: Length identification

Length identi	fier	G	Н	-	7	K	٦	М	N	0	Р	Q	R	S	T	U
Usable length B	N	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135

Length identif	fier	V	W	Х	Υ	Z
Usable length B	N	140	145	150	160	170

Dimensions in mm

Table A2: Material

Part	Designation	Steel, zinc plated (BA3 dynamic)	Stainless steel (BA3 dynamic A4) CRC III	High corrosion resistant steel (BA3 dynamic HCR) CRC V		
1	Conical bolt	Steel, galvanized ≥ 5 µm, fracture elongation A ₅ ≥ 8%	Stainless steel, fracture elongation A ₅ ≥ 8%	High corrosion resistant steel, fracture elongation $A_5 \ge 8\%$		
2	Expansion sleeve	Stainless steel	Stainless steel	Stainless steel		
3	Filling washer					
4	Washer	Ctool golyopized > 5 um	Ctainless steel	High corrosion		
5	Hexagon nut	Steel, galvanized ≥ 5 µm	Stainless steel	resistant steel		
6	Locknut					
7	Filling mortar	Chemofast Injection system (e.g. EP 1000, UM-H or VK)				

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Product description Marking, length identification, material	Annex A2

Specifications of intended use

Anchorages subject to:

- · Fatigue cyclic loading
- Static and quasi-static action, fire exposure and seismic performance according to ETA-24/0686

Base materials:

- · Cracked or uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
- For all other conditions according to EN 1993-1-4:2006+A1:2015, corresponding to corrosion resistance classes CRC according to Annex A2, Table A2

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018, TR 055:2018 and TR 061:2020 (design method II)

Installation:

- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR

Intended use
Specifications of intended use

Annex B1

Overstand

Hexagon nut

Locknut

Length of fastener

55

 $25,5 + t_{fix}$

 $h_{\text{ef}} + t_{\text{fix}} + 35,5$

19

19

100

 $29,5 + t_{fix}$

 $h_{ef} + t_{fix} + 43$

24

24

Table B1: Install	Table B1: Installation parameters							
Anchor size				M10	M12	M16		
Nominal drill hole diar	neter	d ₀ =	[mm]	10	12	16		
Cutting diameter of dr	ill bit	d _{cut} ≤	[mm]	10,45	12,5	16,5		
Effective anchorage depth1)		h _{ef} ≥	[mm]	60	70	85		
Donath of drill holo			[mm]	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14		
Depth of drill hole		h₁≥	[mm]	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17		
Diameter of clearance hole in the fixture		d _f =	[mm]	12	14	18		
Minimum fixture thickness		$t_{\text{fix,min}} =$	[mm]	5	6	8		
	BA3 dyn.	T _{inst} =	[Nm]	40	60	110		
Installation torque	BA3 dyn. A4	т	[N]ma]	40	55	100		

[Nm]

[mm]

[mm]

[mm]

[mm]

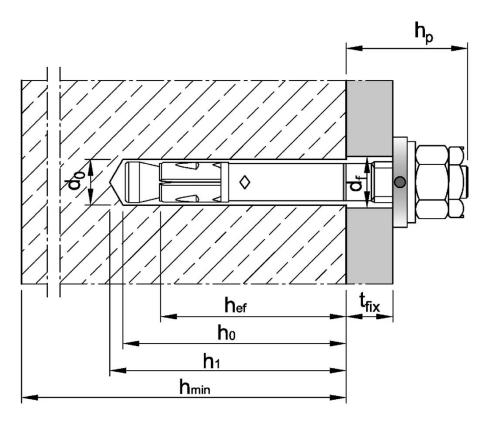
 $T_{inst} =$

 $h_p \leq$

width across nut

width across nut

40


 $21,5 + t_{fix}$

 $h_{ef} + t_{fix} + 30,5$

17

17

BA3 dyn. HCR

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Intended use Installation parameters	Annex B2

¹⁾ End of thread must be above the concrete surface

Table B2:	Minimum thickness of concrete member, minimum spacings,
	edge distances and required area

Anchor size			M10	M12	M16		
Minimum member thickness depending on hef hmin≥ [mm]			1,5·h _{ef}				
Minimum edge distances and spacings							
Minimum adaa distansa	C _{min}	[mm]	45	55	65		
Minimum edge distance	for s ≥	[mm]	see Table B4				
Minimum on oningo	Smin	[mm]	40	50	65		
Minimum spacings	for c ≥	[mm]		see Table B4			

The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in connection with the anchorage depth and the member thickness:

 $A_{sp,rqd} \leq A_{sp,ef}$

Required splitting area A_{sp,rqd} and idealized splitting area A_{sp,et} acc. to Table B4.

Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance c_{cr,sp}

Anchor size			M10	M12	M16	
Applicable concrete thick	kness	h _{sp}	[mm]	$\min(h; h_{ef} + 1.5 \cdot c \cdot \sqrt{2})$		
Area to determine a	BA3 dyn.	A_{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$
Area to determine c _{cr,sp}	BA3 dyn. A4 BA3 dyn. HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^{0} + 11,415}{0,000742}$

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Intended use Minimum spacings and edge distances Required area and applicable concrete thickness	Annex B3

Anchor size		M10	M12	M16		
	tion must be fulfilled for in combination with var					distance
		A _{sp,re}	_{qd} ≤ A _{sp,ef}			
Idealized splitting a The spacings and ed	area A _{sp,ef} dge distances shall be sel	ected or ro	ounded in	steps of 5 mm.		
Member thickness:	h > h _{ef} + 1,5 ⋅ c					
Single anchor or and	chor group with s≥3·c					
Effective anchorage	depth	h _{ef} < 1,5	· c	$A_{sp,ef} = ($	6·c) · (1,5·c + h _{ef})	[mm²]
Effective anchorage	depth	h _{ef} ≥ 1,5	. с	$A_{sp,ef} = ($	6·c) · (3·c)	[mm²]
Anchor group (s < 3	·c)					
Effective anchorage	depth	h _{ef} < 1,5 ⋅ c		$A_{sp,ef} = ($	h _{ef}) [mm²]	
Effective anchorage	h _{ef} ≥ 1,5	· с	A _{sp,ef} = ([mm²]		
Member thickness:	h ≤ h _{ef} + 1,5 · c					
Single anchor or and	chor group with s≥3·c					
Effective anchorage	depth	h _{ef} < 1,5	· c	$A_{sp,ef} = ($	6·c) · h	[mm²]
Effective anchorage	depth	h _{ef} ≥ 1,5	- с	$A_{sp,ef} = ($	6·c) · (h - h _{ef} + 1,5	·c) [mm²]
Anchor group (s < 3	·c)					
Effective anchorage	depth	h _{ef} < 1,5	· c	$A_{sp,ef} = ($	3·c + s) · h	[mm²]
Effective anchorage	depth	h _{ef} ≥ 1,5 · c		$A_{sp,ef} = (3 \cdot c + s) \cdot (h - h_{ef} + 1,5)$		1,5·c)[mm²]
Required splitting	area A _{sp,rqd}					
	cracked concrete	A _{sp,rqd}	[mm²]	23 700	31 500	42 300
BA3 dyn.	uncracked concrete	A _{sp,rqd}	[mm²]	34 700	41 300	50 200
BA3 dyn. A4	cracked concrete	A _{sp,rqd}	[mm²]	25 900	29 800	44 300
BA3 dyn. HCR	uncracked concrete	A _{sp,rqd}	[mm²]	35 700	35 300	54 800

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Intended use Areas to determine spacings and edge distances	Annex B4

Installation instructions Drill hole perpendicular to concrete surface. 1 If using a vacuum drill bit, proceed with step 3. 2 Blow out dust. Alternatively, vacuum clean down to the bottom of the hole. Drive in fastener with filling washer until effective anchorage depth is 3 reached. Apply installation torque Tinst according to Table B1 by using torque 4 wrench. 5 Screw on locknut until hand tight then tighten 1/4 to 1/2 turn. Fill the annular gap between anchor and fixture with mortar (compressive strength ≥ 40 N/mm², e.g. Injection System EP 1000, UM-H oder VK). 6 Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out. Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR Annex B5 Intended use Installation instructions

Anchor size				M10	M12	M16
Tension load						
Steel failure						
	BA3 dyn.		[kN]	4,6	6,2	9,7
Characteristic fatigue resistance	BA3 dyn. A4	ΔN _{Rk,s,0,∞}	[kN]	3,2	5,3	9,2
ratigue resistance	BA3 dyn. HCR		[kN]	2,8	5,5	9,7
Load-transfer factor f fastener groups	or	Ψғи	[-]		0,5	
Pull-out						
Characteristic fatigue	resistance	ΔN _{Rk,p,0,∞}	[kN]		$0,5~N_{Rk,p}$	
Concrete cone and	splitting failure					
Characteristic fatigue	recictance	ΔN _{Rk,c,0,∞}	[kN]		0,5 N _{Rk,c}	
Characteristic ratigue	resistance	ΔN _{Rk,sp,0,∞}	[kN]		0,5 N _{Rk,sp}	
Effective anchorage of	depth	h _{ef}	[mm]	60	70	85
Shear load						
Steel failure without	lever arm					
Olemen and a starting	BA3 dyn.		[kN]	2,5	4,0	7,5
Characteristic fatigue resistance	BA3 dyn. A4	ΔV _{Rk,s,0,∞}	[kN]	1,5	2,8	6,0
_	BA3 dyn. HCR		[kN]	2,3	2,8	5,0
Load-transfer factor f fastener groups	or	Ψεν	[-]	0,5		
Concrete pry-out fa	ilure					
Characteristic fatigue	resistance	Δ V Rk,cp,0,∞	[kN]		$0,5 V_{Rk,cp}$	
Concrete edge failu	re		<u>.</u>			
Characteristic fatigue	resistance	ΔV _{Rk,c,0,∞}	[kN]		0,5 V _{Rk,c}	
Effective length of an	chor	lf	[mm]	60	70	85
Diameter of anchor		d _{nom}	[mm]	10	12	16
Tension and shear I	oad		•			
		γMs,fat	[-]	1,35		
Partial factor 1)		γMc,fat	[-]		1,5	
railiai iaciOf "		γMsp,fat	[-]		1,5	
		γMp,fat	[-]		1,5	
Exponents for combin	ned loading	α_{s}	[-]	0,5	0,5	0,7
Experience for combin	iou iouding	α_{c}	[-]		1,5	

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Performance Characteristic values of fatigue resistance	Annex C1

Table C2:	Characteristic values for tension loads under static and quasi-static
	action, BA3 dynamic (steel, zinc plated)

action, BA3 dynan		, [-		1		
Anchor size			M10	M12	M16	
Installation factor	γinst	[-]		1,0		
Steel failure						
Characteristic resistance	$N_{\text{Rk},s}$	[kN]	30,4	44,9	79,3	
Partial factor 1)	γMs	[-]		1,5		
Pull-out						
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,cr}	[kN]	15	22	30	
Increasing factor N _{Rk,p,cr} = ψ _C • N _{Rk,p,cr} (C20/25)	ψο	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$	
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p,ucr}	[kN]	24	30	50	
Increasing factor N _{Rk,p,ucr} = ψc • N _{Rk,p,ucr} (C20/25)	ψο	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,448}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$	
Splitting						
Characteristic resistance	$N^0_{Rk,sp}$	[kN]		min (N _{Rk,p} ; N^0 _{Rk,c} 3))		
Characteristic edge distance 2)	C _{cr,sp}	[mm]	$\frac{A_{sp} + 0.8 \cdot (h_{sp} - h_{ef})^2}{(3.41 \cdot h_{sp} - 0.59 \cdot h_{ef})}$			
Characteristic spacing	S _{cr,sp}	[mm]	2 · C _{cr,sp}			
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	60	70	85	
Characteristic edge distance	C er,N	[mm]	1,5 · h _{ef}			
Characteristic spacing	S _{cr,N}	[mm]	2 · C _{cr,N}			
cracked concrete	K _{cr,N}	[-]		7,7		
Factor uncracked concrete	k _{ucr,N}	[-]	11,0			

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Performance Characteristic values for tension loads, BA3 dynamic (steel, zinc plated)	Annex C2

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance $c_{cr,sp}$ according to Table B3

 $^{^{3)}\} N^0_{\text{Rk,c}}$ according to EN 1992-4:2018

Table C3:	Characteristic values for tension loads under static or quasi-static action,
	BA3 dynamic A4 and BA3 dynamic HCR

	DAS dyliallic AT		ayılalı				
Anchor size	е			M10	M12	M16	
Installation f	actor	γinst	[-]		1,0		
Steel failure	e						
Characterist	tic resistance	N _{Rk,s}	[kN]	30,4	44,9	74,6	
Partial facto	r ¹⁾	γMs	[-]		1,5		
Pull-out							
	tic resistance in acrete C20/25	N _{Rk,p,cr}	[kN]	17	22	35	
Increasing fa N _{Rk,p,cr} = ψc	actor • N _{Rk,p,cr} (C20/25)	ψο	[-]	$\left(\frac{f_{\rm ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,350}$	
	tic resistance in concrete C20/25	N _{Rk,p,ucr}	[kN]	25	42	50	
Increasing fa N _{Rk,p,ucr} = ψο	actor :• N _{Rk,p,ucr} (C20/25)	ψο	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,196}$	
Splitting							
Characterist	tic resistance	N ⁰ Rk,sp	[kN]		min ($N_{Rk,p}$; $N^0_{Rk,c}$ ³⁾)		
Characterist	tic edge distance 2)	C _{cr,sp}	[mm]	$\frac{A_{sp} + 0.8 \cdot (h_{sp} - h_{ef})^2}{(3.41 \cdot h_{sp} - 0.59 \cdot h_{ef})}$			
Characterist	tic spacing	S _{cr,sp}	[mm]		2 · C _{cr,sp}		
Concrete co	one failure						
Effective and	chorage depth	h _{ef}	[mm]	60	70	85	
Characteristic edge distance		C _{cr,N}	[mm]	1,5 · h _{ef}			
Characterist	tic spacing	S _{cr} ,N	[mm]		2 · C _{cr,N}		
Factor	cracked concrete	K _{cr,N}	[-]		7,7		
i acidi	uncracked concrete	K _{ucr,N}	[-]	11,0			

¹⁾ In absence of other national regulations

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Performance Characteristic values for tension loads, BA3 dynamic A4 and BA3 dynamic HCR	Annex C3

²⁾ Applicable concrete thickness h_{sp} and area A_{sp} according to Table B3 to determine characteristic edge distance c_{cr,sp}

 $^{^{3)}\,}N^0_{\text{Rk,c}}$ according to EN 1992-4:2018

Anchor size				M10	M12	M16
Installation factor		γinst	[-]		1,0	
Steel failure without leve	er arm					
	BA3 dyn.	V ⁰ Rk,s	[kN]	26,8	38,3	60,0
Characteristic resistance	BA3 dyn. A4 BA3 dyn. HCR	V ⁰ Rk,s	[kN]	27,8	39,8	69,5
Partial factor 1)		γMs	[-]		1,25	
Ductility factor		k ₇	[-]		1,0	
Steel failure with lever a	r m					
Characteristic bending	BA3 dyn.	M ⁰ Rk,s	[Nm]	60	105	240
resistance	BA3 dyn. A4 BA3 dyn. HCR	M ⁰ Rk,s	[Nm]	55	99	223
Partial factor 1)		γMs	[-]		1,25	
Concrete pry-out failure						
	BA3 dyn.	k ₈	[-]	3,1	3,0	3,6
Pry-out factor	BA3 dyn. A4 BA3 dyn. HCR	k ₈	[-]	2,8	3,3	3,4
Concrete edge failure						
Effective length of fastene	r in shear loading	lf	[mm]		h _{ef}	
Outside diameter of faster	ier	d _{nom}	[mm]	10	12	16

¹⁾ In absence of other national regulations

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Performance Characteristic values for shear loads	Annex C4

Anchor size				M10	M12	M16
Effective anchoraç	ge depth	h _{ef} ≥	[mm]	60	70	85
Tension load			I			
Installation factor		γinst	[-]		1,0	
Steel failure		_				<u>, </u>
Characteristic	BA3 dyn.	N _{Rk,s,C1}	[kN]	30,4	44,9	79,3
resistance	BA3 dyn. A4 BA3 dyn. HCR	N _{Rk,s,C1}	[kN]	30,4	44,9	74,6
Pull-out	DAO da		f(-A/2	45.0	000	00.0
Characteristic resistance	BA3 dyn. BA3 dyn. A4 BA3 dyn. HCR	N _{Rk,p,C1}	[kN]	15,0 17,0	22,0 22,0	30,0 35,0
Shear load	DAS dyn. HOH					
Steel failure with	out lever arm					
	BA3 dyn.	V _{Rk,s,C1}	[kN]	24,4	33,8	52,3
Characteristic resistance	BA3 dyn. A4 BA3 dyn. HCR	V _{Rk,s,C1}	[kN]	22,2	33,2	64,3
Factor for anchora without annular ga	•	αgap	[-]		1,0	
	racteristic values	for seis	mic load	ling, performa	nce category C2	M16
Anchor size		for seis	mic load		1	T
Anchor size Effective anchoraç		1	[mm]	M10	M12 70	M16
Anchor size Effective anchora Tension load Installation factor		1		M10	M12	M16
Anchor size Effective anchoraç Tension load Installation factor	ge depth	h _{ef} ≥	[mm]	M10 60	M12 70 1,0	M16 85
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic	ge depth BA3 dyn.	h _{ef} ≥ γinst	[mm]	M10 60 30,4	M12 70 1,0 44,9	M16 85
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance	ge depth	h _{ef} ≥	[mm]	M10 60	M12 70 1,0	M16 85
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance Pull-out	ge depth BA3 dyn. BA3 dyn. A4 BA3 dyn. HCR	h _{ef} ≥ γinst NRk,s,C2 NRk,s,C2	[mm] [-] [kN] [kN]	M10 60 30,4 30,4	M12 70 1,0 44,9 44,9	M16 85 79,3 74,6
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance Pull-out Characteristic	ge depth BA3 dyn. BA3 dyn. A4	h _{ef} ≥ γinst	[mm]	M10 60 30,4	M12 70 1,0 44,9	M16 85
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance Pull-out Characteristic resistance	BA3 dyn. BA3 dyn. A4 BA3 dyn. HCR BA3 dyn. ACR	h _{ef} ≥ γinst NRk,s,C2 NRk,s,C2	[mm] [-] [kN] [kN]	M10 60 30,4 30,4 12,5	M12 70 1,0 44,9 44,9	79,3 74,6
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance Pull-out Characteristic resistance Shear load	BA3 dyn. BA3 dyn. A4 BA3 dyn. HCR BA3 dyn. HCR BA3 dyn. A4 BA3 dyn. A4 BA3 dyn. A4 BA3 dyn. HCR	h _{ef} ≥ γinst NRk,s,C2 NRk,s,C2	[mm] [-] [kN] [kN]	M10 60 30,4 30,4 12,5 7,7	M12 70 1,0 44,9 44,9	79,3 74,6 35,2 29,4
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance Pull-out Characteristic resistance Shear load Steel failure with	BA3 dyn. BA3 dyn. A4 BA3 dyn. HCR BA3 dyn. HCR BA3 dyn. A4 BA3 dyn. A4 BA3 dyn. HCR out lever arm BA3 dyn.	h _{ef} ≥ γinst NRk,s,C2 NRk,s,C2	[mm] [-] [kN] [kN]	M10 60 30,4 30,4 12,5	M12 70 1,0 44,9 44,9	79,3 74,6
Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance Pull-out Characteristic resistance Shear load Steel failure with Characteristic resistance	BA3 dyn. BA3 dyn. A4 BA3 dyn. HCR BA3 dyn. HCR BA3 dyn. HCR Out lever arm BA3 dyn. A4 BA3 dyn. HCR	h _{ef} ≥ γinst NRk,s,C2 NRk,s,C2 NRk,p,C2	[mm] [-] [kN] [kN]	M10 60 30,4 30,4 12,5 7,7	M12 70 1,0 44,9 44,9 19,0 13,8	79,3 74,6 35,2 29,4
Table C6: Cha Anchor size Effective anchorage Tension load Installation factor Steel failure Characteristic resistance Pull-out Characteristic resistance Shear load Steel failure with Characteristic resistance Factor for anchorage without annular gar	BA3 dyn. BA3 dyn. A4 BA3 dyn. HCR BA3 dyn. HCR BA3 dyn. A4 BA3 dyn. HCR out lever arm BA3 dyn. BA3 dyn. HCR BA3 dyn. HCR	hef≥ γinst NRk,s,C2 NRk,s,C2 NRk,p,C2 VRk,p,C2	[mm] [-] [kN] [kN] [kN]	M10 60 30,4 30,4 12,5 7,7	M12 70 1,0 44,9 44,9 19,0 13,8	79,3 74,6 35,2 29,4

Table C7: Characteri BA3 dyna		s for tensio l, zinc plated		ear load under	fire exposure	,
Anchor size				M10	M12	M16
Tension load						
Steel failure						
	R30			2,6	4,6	7,7
Olataviatia vasiatavas	R60	1 ,	TL-N IT	1,9	3,3	5,6
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	1,3	2,1	3,5
	R120	1	,	1,0	1,5	2,5
Shear load						
Steel failure without lever	r arm					
	R30			7,5	12,3	20,7
Observatoriatio vaniatama	R60	1 ,	TI-NII	5,1	8,5	14,2
Characteristic resistance	R90	─ V _{Rk,s,fi}	[kN]	2,7	4,6	7,7
	R120]	,	1,6	2,7	4,5
Steel failure with lever ar	m					
	R30			9,6	19,1	43,8
Ole a sea stantistic manifestation	R60	1 1	[Nima]	6,6	13,1	30,1
Characteristic resistance	R90	− M ⁰ Rk,s,fi	[Nm]	3,5	7,2	16,4
	R120]	,	2,0	4,2	9,6

 $N_{\text{Rk},\text{p,fi}}$ and $N_{\text{Rk,c,fi}}$ according to EN 1992-4:2018

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Performance Characteristic values under fire exposure, BA3 dynamic (steel, zinc plated)	Annex C6

		ila DAS ay	<u>rnamic HC</u>	П		
Anchor size				M10	M12	M16
Tension load			•			
Steel failure						
	R30			6,9	11,0	18,1
Characteristic registance	R60	– ,,	TLANT	5,0	8,0	13,1
Characteristic resistance	R90	- N _{Rk,s,fi}	[kN] -	3,1	4,9	8,1
	R120			2,1	3,4	5,6
Shear load						
Steel failure without leve	r arm					
	R30			17,6	32,0	52,6
Characteristic resistance	R60] ,,, ,,	[[LNI]	12,6	22,6	37,1
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	7,5	13,1	21,5
	R120			5,0	8,4	13,8
Steel failure with lever ar	m					
	R30			22,7	49,8	111,5
Characteristic registers	R60] NAO	[Nm1	16,2	35,1	78,6
Characteristic resistance	R90	M ⁰ Rk,s,fi	[Nm]	9,7	20,4	45,6
	R120		[6,5	13,0	29,2

 $N_{\text{Rk},\text{p,fi}}$ and $N_{\text{Rk,c,fi}}$ according to EN 1992-4:2018

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Performance Characteristic values under fire exposure, BA3 dynamic A4 and BA3 dynamic HCR	Annex C7

Displacements under static $\delta_{N0} = \delta_{N0\text{-factor}} \cdot N$			M10	M12	M16
$\delta_{N\infty} = \delta_{N\infty\text{-factor}} * N$	-	c action tension load			
Cracked concrete					
Factor for displacement	δ _{N0-factor}	[mm/kN]	0,05	0,04	0,03
Factor for displacement	δ _{N∞-factor}	[mm/kN]	0,20	0,15	0,11
Uncracked concrete					
Factor for displacement	δN0- factor	[mm/kN]	0,01	0,004	0,005
actor for displacement	δN∞- factor	[mm/kN]	0,03	0,03	0,03
Displacement under seismi	ic action C2				
Displacements for DLS	δn,c2(DLS)	[mm]	4,7	4,2	4,5
Displacements for ULS	δ N,C2(ULS)	[mm]	16,1	12,9	12,8
-		g tension load			
Displacements under static	or quasi-stati	c action			
	N: actino	ncol noignat r			
$\delta_{No} = \delta_{No\text{-factor}} \cdot N$ $\delta_{N\infty} = \delta_{N\infty\text{-factor}} \cdot N$, terision load			
		y terision load			
$\delta_{N\infty} = \delta_{N\infty\text{-factor}} \cdot N$ Cracked concrete		[mm/kN]	0,06	0,05	0,02
$\delta_{N\infty} = \delta_{N\infty\text{-factor}} \cdot N$ Cracked concrete Factor for displacement			0,06 0,17	0,05 0,16	0,02
$\delta_{N\infty} = \delta_{N\infty\text{-factor}} \cdot N$ Cracked concrete	δΝ0-factor δΝ∞-factor	[mm/kN]	0,17	0,16	0,08
$\delta_{N\infty} = \delta_{N\infty\text{-factor}} \cdot N$ Cracked concrete Factor for displacement	δn0-factor δn∞-factor	[mm/kN] [mm/kN]	0,17	0,16	0,08
δ _{N∞} = δ _{N∞-factor} * N Cracked concrete Factor for displacement Uncracked concrete Factor for displacement	δΝ0-factor δΝ∞-factor δΝ∞- factor δΝ∞- factor	[mm/kN]	0,17	0,16	0,08
$\delta_{N\infty} = \delta_{N\infty\text{-factor}} \cdot N$ Cracked concrete Factor for displacement Uncracked concrete	δΝ0-factor δΝ∞-factor δΝ∞- factor δΝ∞- factor	[mm/kN] [mm/kN]	0,17	0,16	0,08

Anchor size			M10	M12	M16
Displacements under statis $\delta v_0 = \delta v_0$ -factor $\star V$ $\delta v_\infty = \delta v_\infty$ -factor $\star V$	•	c action ng shear load			
Easter for displacement	δvo- factor	[mm/kN]	0,09	0,09	0,07
Factor for displacement	δv∞- factor	[mm/kN]	0,13	0,14	0,11
Displacement under seism	nic action C2				
Displacements for DLS	δv,c2(dls)	[mm]	3,1	3,7	3,8
Displacements for ULS	δv,c2(uLs)	[mm]	5,5	9,9	9,6
Table C19: Diamlesem			·		0,0
Table C12: Displacem Anchor size			·	M12	M16
•	ents under sh c or quasi-statio	ear load, A	4 and HCR		T
Anchor size Displacements under stati $\delta v_0 = \delta v_0 \cdot factor \cdot V$ $\delta v_\infty = \delta v_\infty \cdot factor \cdot V$	ents under sh c or quasi-statio	ear load, A	4 and HCR		T
Anchor size Displacements under stati $\delta v_0 = \delta v_0 \cdot factor \cdot V$ $\delta v_\infty = \delta v_\infty \cdot factor \cdot V$	ents under sh c or quasi-station V: acting	c action g shear load	M10	M12	M16
Anchor size Displacements under stati $\delta v_0 = \delta v_{0\text{-factor}} \cdot V$ $\delta v_{\infty} = \delta v_{\infty\text{-factor}} \cdot V$ Factor for displacement	ents under sh c or quasi-static V: acting δνο- factor	ear load, A	M10 0,14	M12	M16
Anchor size	ents under sh c or quasi-static V: acting δνο- factor	ear load, A	M10 0,14	M12	M16

Wedge Anchor Chemofast BA3 dynamic / BA3 dynamic A4 / BA3 dynamic HCR	
Performance Displacements under shear load	Annex C9