

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-13/0222 of 12 February 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS

Cast-in anchor with internal threaded socket

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat plants

23 pages including 3 annexes which form an integral part of this assessment

EAD 330012-01-0601, Edition 12/2022

ETA-13/0222 issued on 5 April 2022

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z192804.24

European Technical Assessment ETA-13/0222

English translation prepared by DIBt

Page 2 of 23 | 12 February 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 12 February 2025

Specific Part

1 Technical description of the product

The DEMU Fixing anchor T-FIXX in the size of M10, M12, M16 and M20 is an anchor consisting of an internal threaded socket deformed at one end. The socket is made of galvanised steel or stainless steel. The anchorage is characterised by mechanical interlock at the deformed end of the socket.

The HALFEN hexagon plate anchor TWS in the size of M12 and M16 is an anchor consisting of an internal threaded socket made of galvanised steel with an welded plate made of galvanised steel.

The anchors are imbedded surface-flush or sunk in the concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for tension loading under static and quasi-static actions and displacements	
- Resistance to steel failure for tension loading	See Annex C1 and C4
- Resistance to pull-out failure	See Annex C1 and C4
- Resistance to concrete cone failure	See Annex C1 and C4
Resistance to splitting and edge distance to prevent splitting and blow-out failure	See Annex C1 and C4
- Minimum edge distance and spacing	See Annex B5
- Maximum torque moment	See Annex B3 and B4
- Displacements for tension loading	See Annex C2 and C4

Page 4 of 23 | 12 February 2025

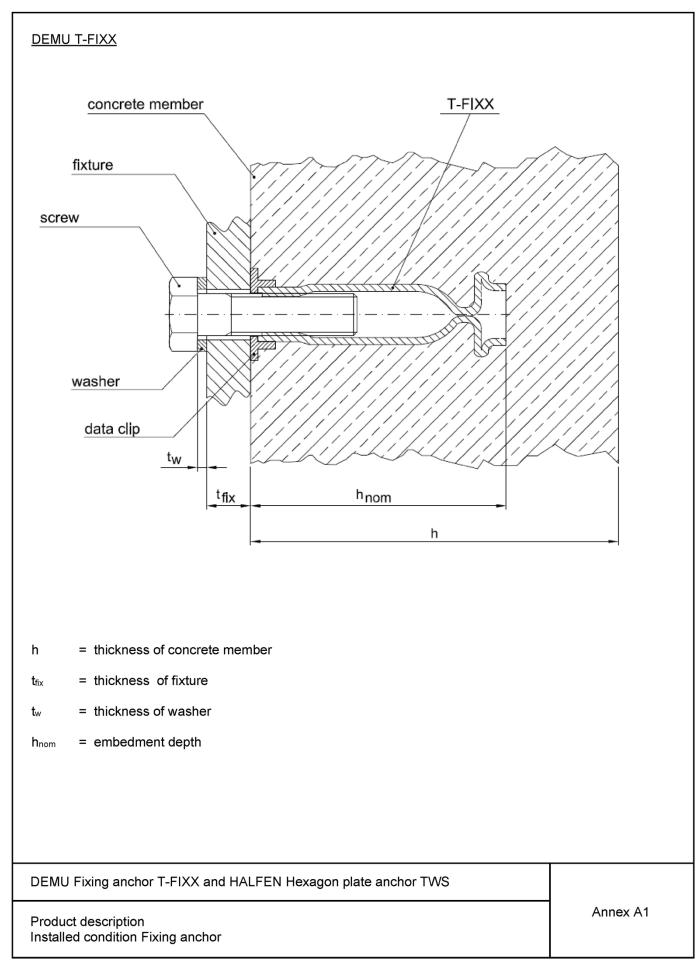
Essential characteristic	Performance
Characteristic values for shear loading under static and quasistatic actions and displacements	
- Resistance to steel failure for shear loading	See Annex C2 and C5
- Resistance to concrete edge failure without supplementary reinforcement	See Annex C3 and C5
- Resistance to concrete edge failure with supplementary reinforcement	No performance assessed
- Resistance to pry-out failure	See Annex C3 and C5
- Displacements for shear loading	See Annex C3 and C5
Characteristic values for seismic performance categories C1 and C2 and displacements	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic Performance		
Reaction to fire	Class A1	
Resistance to fire See Annex C6		

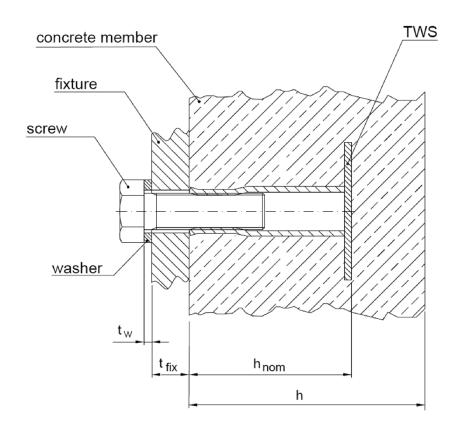
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330012-01-0601, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

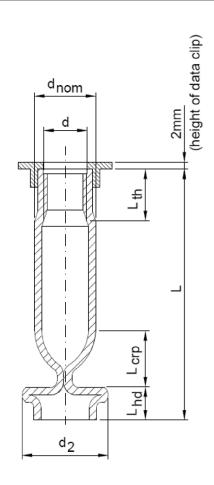
Issued in Berlin on 13 February 2025 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock beglaubigt:
Referatsleiterin Aksünger

HALFEN TWS

h = thickness of concrete member

t_{fix} = thickness of fixture

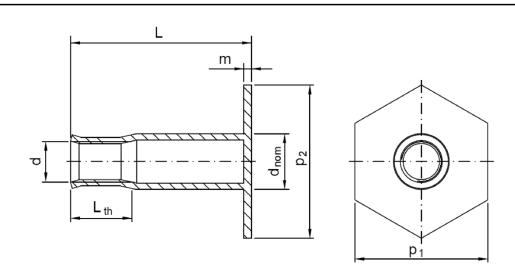

t_w = thickness of washer

 h_{nom} = embedment depth

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS

Product description Installed condition Hexagon plate anchor Annex A2

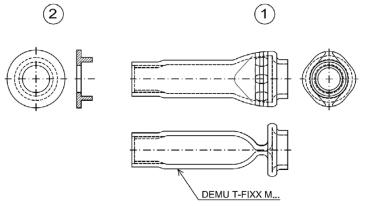
There are two different materials available for the DEMU Fixing anchor T-FIXX:


Material 1: Fixing anchor in galvanised steel

Material 2: Fixing anchor in stainless steel

Table A	Table A1: Dimensions of DEMU Fixing anchor T-FIXX								
d	d _n	om	L_th	L_{hd}	L _{crp}	c	12	l	-
Thread	Material	Material	Material	Material	Material	Material	Material	Material	Material
IIIIeau	1	2	1 + 2	1 + 2	1 + 2	1	2	1	2
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
M10	13,5	13,5	10,4 - 13,6	8,3	15,5	18,1	17,3	50 / 75	50 / 65
M12	17,0	17,2	12,5 - 16,1	9,5	16,0	23,0	23,0	50 / 70 / 95	50 / 70 / 115
M16	21,3	21,3	16,1 - 22,1	10,7	16,0	29,1	28,0	60 / 100 / 125	60 / 80 / 110
M20	26,9	26,9	20,2 - 27,6	10,8	16,0	34,7	33,5	70 / 100 / 145	70 / 100 / 125

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Product description Dimensions Fixing anchor	Annex A3


There is one material available for the HALFEN Hexagon plate anchor TWS:

Material 1: Hexagon plate anchor in galvanised steel

Table A2: Dimensions of HALFEN Hexagon plate anchor TWS						
d	d _{nom}	L_th	m	p ₁	p ₂	L
Thread	Material 1	Material 1	Material 1	Material 1	Material 1	Material 1
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
M12	17,0	12,0	3,0	52,0	60,0	40 / 70
M16	22,0	16,0	3,0	60,0	70,0	43 / 80

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Product description Dimensions Hexagon plate anchor	Annex A4

Marking:

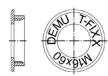
e.g.: DEMU T-FIXX M10x50 GV

DEMU: identifying mark of the producer

T-FIXX: name of the anchor

M10x50: size

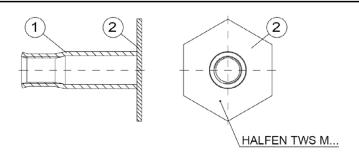
GV: material


Material:

GV: galvanised steel A4: stainless steel

Table	Table A3: Specification and material of fixing anchor					
Item	Component	Material 1 Fixing anchor in galvanised steel (GV)	Material 2 Fixing anchor in stainless steel (A4)			
1		1.0308 (E235), 1.0122, 1.0038 (S235), 1.0225 (E275), 1.0044 (S275), 1.0533 (E295), 1.0570 (S355), 1.0580 (E355), 1.0255 (P235TR2) acc. EN 10305-1, -2 or -3:2016, all delivery condition +N, galvanised ¹⁾	Stainless steel: CRC III: 1.4401, 1.4404, 1.4571, 1.4362, 1.4578, 1.4062, 1.4162, 1.4662, CRC IV: 1.4439, 1.4462, 1.4539, CRC V: 1.4565, 1.4529, 1.4547 in accordance with EN 10217-7:2014			
2	L Data clip	for fixing anchor made of material 1: for fixing anchor made of material 2:	HDPE / RAL 7035 / (light-) grey HDPE / RAL 9003 / (signal-) white			

Appr. Component	Material for use with fixing anchors	Material for use with fixing anchors			
Appr. Component	made of material 1	made of material 2			
		Stainless steel: CRC III: 1.4401, 1.4404,			
		1.4571, 1.4362, 1.4578, 1.4062, 1.4162,			
Washer	Steel acc. EN 10025:2004, galvanised ¹⁾	1.4662, CRC IV: 1.4439, 1.4462, 1.4539,			
VVASITOI		CRC V: 1.4565, 1.4529, 1.4547 in			
		accordance with EN 10088:2009			
	Dimensions acc. EN ISO 7089:2000/7093-1:2000				
	Steel acc. EN ISO 898-1:2013, galvanised ¹⁾ , strength grade 4.6, 5.6 or 8.8	Stainless steel: CRC III: 1.4401, 1.4404,			
		1.4571, 1.4362, 1.4578, 1.4062, 1.4162,			
		1.4662, CRC IV: 1.4439, 1.4462, 1.4539,			
Screw		CRC V: 1.4565, 1.4529, 1.4547 in			
		accordance with			
		EN ISO 3506-1:2009, strength grade			
		A4-50, A4-70 or A4-80			
		Stainless reinforcement steel B500A or			
Suppl.	 B500A or B500B	B500B meeting the requirements for			
reinforcement	DOUG OF DOUG	concrete cover c _{nom} in accordance with			
Territorcerrierit		EN1992-1:2019			
	in accordance with EN 1992-4:2019	•			


 $^{^{1)}}$ thickness of coating \geq 5 μ m acc. EN ISO 4042:2018

Data clip: section and top view (with example for marking)

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Product description Marking and materials Fixing anchor	Annex A5

Marking:

e.g.: HALFEN TWS M12x40 GV

HALFEN: identifying mark of the producer

TWS: name of the anchor

M12x40: size
GV: material

Material:

GV: galvanised steel

Table	Table A5: Specification and material of hexagon plate anchor				
Item	Item Component	Material 1			
		Hexagon plate anchor in galvanised steel (GV)			
		1.0308 (E235), 1.0122, 1.0038 (S235), 1.0225 (E275), 1.0044 (S275), 1.0533			
1 1		(E295), 1.0570 (S355), 1.0580 (E355), 1.0255 (P235TR2) acc. EN 10305-1, -2 or -			
		3:2016, all delivery condition +N, galvanised 1)			
2	Hexagon plate	1.0570 (S355), 1.0580 (E355), all delivery condition +N, galvanised 1)			

Table A6: Specification and material of fixing components / suppl. reinforcement (not included with the fixing system)				
Appr. Component	Material for use with hexagon plate anchors made of material 1			
Washer	Steel acc. EN 10025:2004, galvanised 1)			
VVasiici	Dimensions acc. EN ISO 7089:2000/7093-1:2000			
Screw	Steel acc. EN ISO 898-1:2013, galvanised 1),			
Ociew	strength grade 4.6, 5.6 or 8.8			
Suppl. B500A or B500B				
reinforcement	in accordance with EN 1992-4:2019			

¹⁾ thickness of coating ≥ 5µm acc. EN ISO 4042:2018

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Product description Marking and materials Hexagon plate anchor	Annex A6

Specifications of Intended use

Anchorages subject to:

- Static and quasi-static loads.
- Fire exposure: only for concrete C20/25 to C50/60.

Base material:

- Reinforced or unreinforced compacted normal weight concrete without fibers in accordance with EN 206:2013+A1:2016
- Strength classes C20/25 to C90/105 in accordance with EN 206:2013+A1:2016
- Cracked or uncracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (material 1 and 2 in accordance with Annexes A5 and A6)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanently damp conditions and applications under water. (material 2 in accordance with Annex A5)
- In accordance with EN 1993-1-4:2015 according to the Corrosion Resistance Class see Annex A5 Table A3 and A4 (Material 2).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EN 1992-4:2019
- Anchorages under fire exposure are designed in accordance with:
 - EN 1992-4:2019, Annex C6
 (local spalling of the concrete cover must be avoided)
- Requirements for the screw:
 - Material in accordance with Annex A5, Table A4 and Annex A6, Table A6
 - Strength class in accordance with Annexes C1 and C2, and C4 and C5
 - Length in accordance with Annex B3, Table B1 and Annex B4, Table B2

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS

Intended use Specifications

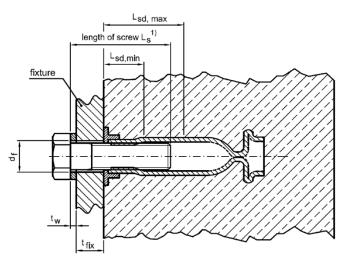
Annex B1

7192827 24 8 06 01-46/24

Page 12 of European Technical Assessment ETA-13/0222 of 12 February 2025

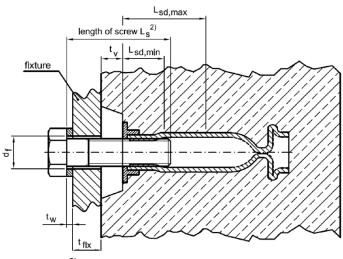
English translation prepared by DIBt

Installation:


- Anchor installation carried out by appropriately quantified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without any manipulation or exchanging the components.
- The anchors are fixed on the formwork so that no movement of the anchors will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- Adequate compaction close to the anchor particularly at head of eth bolt, e.g. without significant voids. The cast-in anchor is protected against ingress of concrete into the threaded socket.
- The installation torques given in Annexes B3 and B4 are not exceeded.
- The inner area of the socket of the anchor made of galvanised steel has to be protected against ingress water.

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Intended use Specifications	Annex B2

Direct contact between fixture and data clip


The fixture is braced to the data clip, if necessary by suitable washers.

1) t_w + t_{fix} + $L_{sd,min}$ \leq L_s \leq t_w + t_{fix} + $L_{sd,max}$

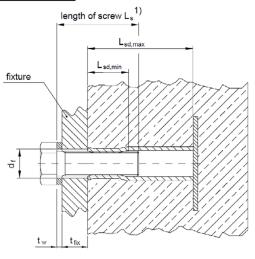
General application

The fixture is braced to the concrete, the fixing anchor being embedded flush or recessed in the concrete.

 $^{2)}~t_{\text{w}}+~t_{\text{fix}}+~t_{\text{v}}+~L_{\text{sd,min}}~\leq~L_{\text{s}}~\leq~t_{\text{w}}+~t_{\text{fix}}+~t_{\text{v}}+~L_{\text{sd,max}}$

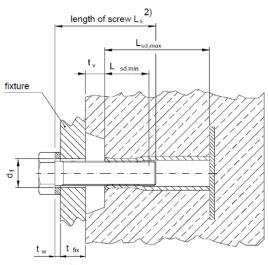
Table B1: Installation parameters										
Thread	d	[mm]	M10	M12		M16		N	/ 120	
Maximum torque moment	max. T _{inst}	[Nm]	≤ 8	≤ 10		≤ 30		≤ 60		
Minimum screw-in length	$L_{sd,min}$	[mm]	17,0	20,0		26,0		32,0		
Maximum screw-in length		[mm]	32,0	M12x50:	30,0	M16x60:	32,0	M20x70) :	44,0
waxiiiluiii screw-iii lerigiii	∟ sd,max	נוווווון	32,0	M12x ≥70:	38,0	M16x ≥80:	50,0	M20x ≥	100:	62,0
Diameter of clearance hole in fixture	d _f	[mm]	12,0	14,0		18,0		2	22,0	

Intended use


Positions of the fixture, installation parameters Fixing anchor

Annex B3

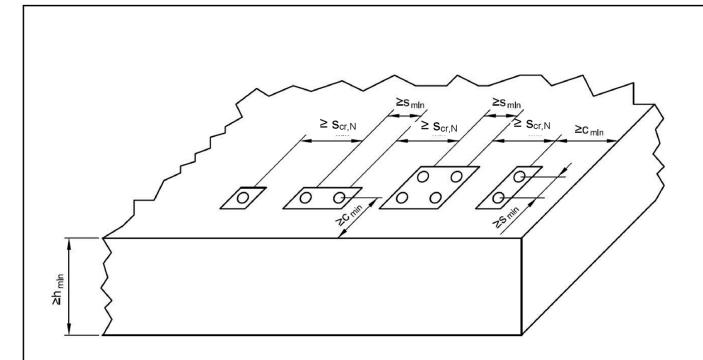
Direct contact between fixture and hexagon plate anchor


The fixture is braced to the hexagon plate anchor, if necessary by suitable washers.

1) t_w + t_{fix} + $L_{sd,min}$ \leq L_s \leq t_w + t_{fix} + $L_{sd,max}$

General application

The fixture is braced to the concrete, the hexagon plate anchor being embedded flush or recessed in the concrete.



 $^{2)}~t_{w}+t_{fix}+t_{v}+L_{sd,min}~\leq~L_{s}~\leq~t_{w}+t_{fix}+t_{v}+L_{sd,max}$

Table B2: Installation parameters						
Thread	d	[mm]	M12		M16	
Maximum torque moment	max. T _{inst}	[Nm]	≤ 27		≤ 54	
Minimum screw-in length	L _{sd,min}	[mm]	16,0		20,0	
Maximum screw-in length		[mm]	M12x40: 3	30,0	M16x43:	33,0
Waxiindin Sciew-iii lengin	└ sd,max	[[[[]]]	M12x ≥70: 6	60,0	M16x ≥80:	70,0
Diameter of clearance hole in fixture	d _f	[mm]	14,0		18,0	

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Intended use Positions of the fixture, installation parameters Hexagon plate anchor	Annex B4

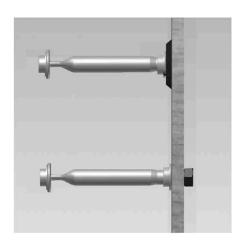
The mentioned spacings, edge distances and member thicknesses apply also for fixing anchors or hexagon plate anchors installed in the front edge.

Thread	ld	[mm]	M10	M12 ²⁾	M16 ²⁾	M20
Minimium spacing	S _{min}	[mm]	100	100	100	120
Minimum edge distance	C _{min}	[mm]	50	50	50	60

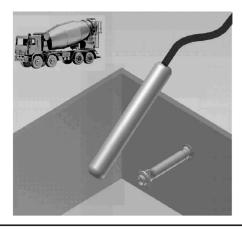
¹⁾ c_{nom} in accordance with EN 1992-1:2004+AC 2010 with $c_{nom} \ge 20$ mm For fixing anchors made of stainless steel a minimum concrete cover $c_{nom} = 20$ mm is sufficient.

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Intended use Arrangement of fixing anchors and member thickness	Annex B5

²⁾ applies also to Hexagon plate anchors TWS


Installation instruction - part 1

1. Scope of delivery


- 1) Selection of fixing anchor or hexagon plate anchor in accordance with the planning documents.
 - 1a) DEMU T-FIXX made of galvanised steel (GV) or stainless steel (A4), or HALFEN TWS made of galvanised steel (GV)
 - 1b) Data clip for T-FIXX GV, colour: grey Data clip for T-FIXX A4, colour: white

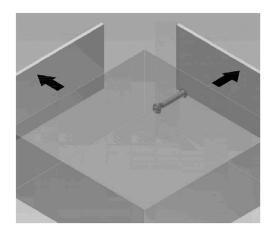
2. Fixing of the anchor to the formwork

- 1) Attach data clip to the fixing anchor.
- Fix the anchor (DEMU T-FIXX or HALFEN TWS) to the formwork with the help of DEMU assembly accessories (e. g. nailing plate) or alternatively by hexagon bolts.
 - → The inside of the threaded socket must be protected against ingress of dirt and water.
- 3) If necessary, supplementary reinforcement has to be placed according to the planning documents.

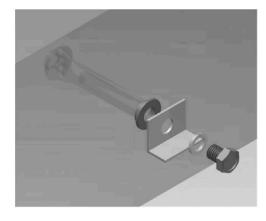
3. Pouring and compacting of concrete

- 1) Pour concrete carefully, make sure the anchor stays in place!
- Compact concrete carefully, avoid direct contact between compacting device and anchor.
 - → The anchor must not be moved by force or damaged!

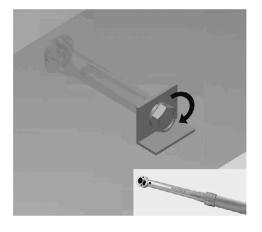
DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS


Intended use Installation instruction – part 1

Annex B6


Installation instruction - part 2

4. Hardening of the concrete, striking the formwork


- 1) Remove assembly accessories and formwork.
- Check if the inside of the threaded socket is free from dirt, otherwise clean it; further protection against ingress of water, dirt, etc. until required for use.

5. Mounting of fixture

- 1) Make sure that the concrete has reached its final strength.
- 2) Check the length of the required bolt.
- → Maximum / minimum screw-in length in accordance with Annexes B3 or B4!
- 3) Mounting of the fixture
 - → Use fixing components according Annex A5, Table A4 or Annex A6, Table A6.
 - → Maximum torque moments, see table below!
 - → Take additionally care of assembly advices for the fixture.

6. Maximum torque moments

Apply torque moment with the help of a torque wrench. T_{inst} must not be exceeded.

Maximum installation torque moment T _{inst}									
Thread	d	[mm]	M10	M12	M16	M20			
DEMU T-FIXX	max. T _{inst}	[Nm1	≤ 8	≤ 10	≤ 30	≤ 60			
HALFEN TWS	Tinst	[]	-	≤ 27	≤ 54	-			

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS

Intended use Installation instruction – part 2

Annex B7

Thread		d	[mm]	M10	M12	M16	M2	0	
Steel failure, fixing anchor and screw (min	n. steel str		'			T			
Characteristic resistance		N _{Rk,s}	[kN]	17,5	29,2	47,4	61,	4	
Partial factor		γ _{Ms} 1)	[-]			1,74			
Steel failure, fixing anchor and screw (mil	n. steel str								
Characteristic resistance		N _{Rk,s}	[kN]	24,9	42,2	69,7	90,	3	
Partial factor		γ _{Ms} 1)	[-]	2,79	2,86	2	,79		
Steel failure, fixing anchor and screw (min	n. steel str		T '			00.7	00		
Characteristic resistance		N _{Rk,s}	[kN]	24,9	43,5	69,7	90,	3	
Partial factor		γ _{Ms} 1)	[-]			2,79			
Pull-out failure									
Fixing anchor electrolytically galvanised	005:55	I.	F1	· · ·		T 45 -	T		
Char. resistance in cr. concrete	C20/25		[kN]	17,1	28,3	46,3	56,		
Char. resistance in uncr. concrete	C20/25	$N_{Rk,p}$	[kN]	24,0	39,6	64,8	79,	2	
Fixing anchor in stainless steel	020/25	INI.	FI ₆ N 13	40.0	27.5	20.0	47		
Char, resistance in cr. concrete	C20/25		[kN]	13,8	27,5	38,9	47,		
Char. resistance in uncr. concrete	C20/25		[kN]	19,3	38,5	54,5	65,		
	C25/30	Ψ _c	[-]			1,25			
Increasing factors for		Ψ _c	[-]	1,50					
Increasing factors for $N_{Rk,p}$	C35/45	Ψͼ	[-]	1,75					
= N _{Rk,p(C20/25)} • Ψc in cracked and uncracked concrete	C40/50	Ψ _c	[-]	2,00					
cracked and uncracked concrete	C45/55	Ψ	[-]	2,25					
	C50/60	Ψ _c	[-]	2,50					
Partial factor		1)	[-]	1,50					
		'Yмр ''	1 1			, , , , , , , , , , , , , , , , , , ,			
Concrete cone failure		<u> </u>	Т	M10	M12	M16	M2 3 .x70:	0 61	
							3 .x100:	91	
							3 .x125 ²⁾ :	116	
Effective anchorage depth		h _{ef}	[mm]		.x115 ²): 107,5	.x110 ²): 101.3	3 .x145 ³⁾ :	136	
						.x125 ³⁾ : 116,3			
				L ≥ 50: h _{ef} ⁴⁾	L ≥ 50: h _{ef} ⁴⁾	L ≥ 60: h _{ef} 4)	L ≥ 70: h	1 _{ef} ⁴⁾	
Factor to take into account the influence of	load		[-]		•	8,9			
transfer mechanisms in cracked and uncra	icked	k ₁				12,7			
concrete			[-]						
Characteristic spacing		S _{cr,N}	[mm]			0 • h _{ef}			
Characteristic edge distance		C _{cr,N}	[mm]			5 • h _{ef}			
Partial factor		γ _{Mc} 1)	[-]			1,50			
Splitting									
Characteristic resistance		N ⁰ _{Rk,sp}	[kN]		$N_{Rk,sp}^0 = mir$	$1 \{ N_{Rk,c}^0; N_{Rk,p} \}^{5} $			
Minimum thickness of concrete member		h ≥	[mm]			0 • h _{ef}			
Characteristic spacing		S _{cr,sp}	[mm]		3,	0 • h _{ef}			
		C _{cr,sp}	[mm]			5 • h _{ef}			
Characteristic edge distance									

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TV	vs
Performances Characteristic values for tension loads of T-FIXX	Annex C1

Table C2: Displacements under tension loads (T-FIXX)									
Thread	d	[mm]	M10	M12	M16	M20			
Tension load	N	[kN]	7	12	19	25			
Short-term displacements	δ_{N0}	[mm]	0,3	0,5	0,3	0,2			
Long-term displacements	δ _{N∞}	[mm]	0,6	1,0	0,6	0,4			

Thread	ld	[mm]	M10	M12	M16	Man
Shear loads without lever arm	Įu .	[mm]	IVITO	IVITZ	IVITO	M20
Group factor (EN 1992-4:2019, 7.2.2.3.1)	k ₇	[-]		1,	0	
Steel failure, fixing anchor and scre	w (min. steel stre	ength 4.6)	made of galva	anised steel		
Characteristic resistance	$V_{Rk,s}$	[kN]	8,8	14,6	23,7	30,7
Partial factor	γ _{Ms} 1)	[-]		1,4	45	
Steel failure, fixing anchor and scre	w (min. steel stre		50) made of s	tainless steel		
Characteristic resistance	$V_{Rk,s}$	[kN]	12,5	21,1	34,8	45,1
Partial factor	γ _{Ms} 1)	[-]	2,33	2,38	2,	33
Steel failure, fixing anchor and scre	,		•	tainless steel		
Characteristic resistance	$V_{Rk,s}$	[kN]	12,5	21,8	34,8	45,1
Partial factor	γ _{Ms} 1)	[-]		2,3	33	l
Shear loads with lever arm						
Steel failure, fixing anchor and scre	•	ength 4.6)	made of galva	anised steel		
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	29,9	52,4	133,2	259,6
Partial factor	γ _{Ms} 1)	[-]		1,6	67	
Steel failure, fixing anchor and scre	w (min. steel stre	ength 5.6)	made of galva	anised steel		
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	37,4	65,5	166,5	324,5
Partial factor	γ _{Ms} 1)	[-]		1,6		
Steel failure, fixing anchor and scre	w (min. steel stre	ength 8.8)	made of galva	anised steel		
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	68,9	104,8	263,8	541,4
Partial factor	γ _{Ms} 1)	[-]	1,45	1,25	1,-	45
Steel failure, fixing anchor and scre	w (min. steel stre	ength A4-	50) made of s	tainless steel		
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	37,4	65,5	166,5	324,5
Partial factor	γ _{Ms} 1)	[-]		2,3	38	
Steel failure, fixing anchor and scre	w (min. steel stre		70) made of s	tainless steel		
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	52,3	91,7	233,1	454,4
Partial factor	γ _{Ms} 1)	[-]		1,	56	
Steel failure, fixing anchor and scre	w (min. steel stre	ength A4-	30) made of s	tainless steel		
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	101,3	104,8	388,0	796,2
Partial factor	γ _{Ms} 1)	[-]	2,33	1,33	2	33

Performances

Displacements under tension loads and characteristic values for shear loads of T-FIXX

Annex C2

Pry-out failure			M	10	M1	2	M16	3	M2	0
			.x50:	1,0	.x50:	1,0	.x60:	1,0	.x70:	2,0
			.x65 ²⁾ :	1,0	.x70:	2,0	.x80 ²⁾ :	2,0	.x100:	2,0
Factor	k ₈	[-]	.x75 ³⁾ :	2,0	.x95 ³⁾ :	2,0	.x100 ³⁾ :	2,0	.x125 ²⁾ :	2,0
1 dotol	1,,,	' '			.x115 ²⁾ :	2,0	.x110 ²⁾ :	2,0	.x145 ³⁾ :	2,0
							.x125 ³⁾ :	2,0		
				h _{ef} <	60 mm:	1,0;	h _{ef} ≥ 6	0 mm	2,0	
Partial factor	γ _{Mcp} 1)	[-]				1,	50			
Concrete edge failure (without sup	ppl. reinf.)		M.	10	М1	2	M16	3	M2	0
			.x50:	28,2	.x50:	26,5	.x60:	35,3	.x70:	45,2
			.x65 ²⁾ :	43,2	.x70:	46,5	.x80 ²⁾ :	55,3	.x100:	75,2
Effective length of fixing anchor		,	.x75 ³⁾ :	53,2	.x95 ³⁾ :	71,5	.x100 ³⁾ :	75,3	.x125 ²⁾ :	100,2
Endotive longer or liking and lot		[[mm]			.x115 ²⁾ :	91.5	.x110 ²⁾ :	85,3	.x145 ³⁾ :	120,2
(for shear loads)	I _f	'				• ., •				
	lf 						.x125 ³⁾ :	100,3		
	If		L ≥ 50:	I _f ⁵⁾	L ≥ 50:		.x125 ³⁾ :		L ≥ 70:	I _f ⁵⁾
	l _f	[mm]		I _f ⁵⁾		I _f ⁵⁾	.x125 ³⁾ :	I _f ⁵⁾		

¹⁾ in absence of other national regulations; ²⁾ only stainless steel; ³⁾ only galvanized steel; ⁴⁾ higher value applies for stainless steel; ⁵⁾ l_f = h_{ef} - L_{crp}

Table C5: Displacements under she	ar load	ds (T-FIX	∞)			
Thread	d	[mm]	M10	M12	M16	M20
Shear load	V	[kN]	13	19	24	28
Short - term displacements	δ_{V0}	[mm]	2,0	2,0	2,0	3,0
Long - term displacements	δ _{∨∞}	[mm]	3,0	3,0	3,0	4,5

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS

Performances

Characteristic values for shear loads and displacements under shear loads of T-FIXX

Annex C3

Thread		d	[mm]	M12	M16	;
Steel failure, hexagon plate anchor and screw (min. ste	eel strength 4.6) made of			T	1	
Characteristic resistance		N _{Rk,s}	[kN]	34,0	63,0)
Partial factor		γ _{Ms} 1)	[-]	2,	01	
Steel failure, hexagon plate anchor and screw (min. ste	eel strength 5.6) made of	_	1	T		
Characteristic resistance		N _{Rk,s}	[kN]	39,0	63,0)
Partial factor		γ _{Ms} 1)	[-]	2,	01	
Pull-out failure						
Characteristic resistance in cracked concrete	C20/25	$N_{Rk,p}$	[kN]	110,3	131,	5
Characteristic resistance in uncracked concrete	C20/25	$N_{Rk,p}$	[kN]	154,4	184,	1
	C25/30	Ψ_{c}	[-]	1,	25	
	C30/37	Ψ。	[-]	1,	50	
Increasing factors for $N_{Rk,p} = N_{Rk,p(C20/25)} \cdot \Psi c$	C35/45	Ψς	[-]	1,	75	
in cracked and uncracked concrete	C40/50	Ψς	[-]	2.	00	
	C45/55	Ψς	[-]	 	25	
	C50/60	Ψς	[-]	-	50	
Partial factor	030/00	1)		· · · · · · · · · · · · · · · · · · ·	50 50	
		γ _{Mp} ''	[-]			
Concrete cone failure			T	M12	M16	
			,	M12x40: 37,0 M12x70: 67,0	M16x43:	40 77
Effective anchorage depth		h _{ef}	[mm]			
				L ≥ 40: h _{ef} ²⁾	L ≥ 80: h	ef 2)
Factor to take into account the influence of load transfer	r mechanisms in cracked	k ₁	[-]	8	,9	
and uncracked concrete			[-]	12	2,7	
Characteristic spacing		S _{cr,N}	[mm]	· · · · · · · · · · · · · · · · · · ·	• h _{ef}	
Characteristic edge distance		C _{cr,N}	[mm]	1,5	• h _{ef}	
Partial factor		γ _{Mc} 1)	[-]	1,	50	
Splitting						
Characteristic resistance		N ⁰ _{Rk,sp}	[kN]	$N_{Rk,sp}^0 = min \{N_{Rk,sp}^0 = min \}$	_{Rk,sp} ; N ⁰ _{Rk,s}	sp}
Minimum thickness of concrete member		h ≥	[mm]		• h _{ef}	
Characteristic spacing		S _{cr,sp}	[mm]	3,0	• h _{ef}	
Characteristic edge distance		C _{cr.sp}	[mm]	1,5	• h _{ef}	
Partial factor		γ _{Msp} 1)	[-]		50	

Table C7: Displacements unde	r tension	loads (TW	/S)	
Thread	d	[mm]	M12	M16
Tension load	N	[kN]	6	7
Short - term displacements	δ_{N0}	[mm]	0,3	0,1
Long - term displacements	δ _{N∞}	[mm]	0,5	0,2

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Performances Characteristic values and displacements under tension loads of TWS	Annex C4

Thread	d	[mm]	M12	M16
Shear loads without lever arm				
Group factor	k ₇	[-]	1	,0
(EN 1992-4:2019, 7.2.2.3.1)	1			
Steel failure, hexagon plate anchor and screw (min. st			_	1
Characteristic resistance	V _{Rk,s}	[kN]	20,2	37,7
Partial factor	γMs ¹⁾	[-]		,67
Steel failure, hexagon plate anchor and screw (min. st				
Characteristic resistance	$V_{Rk,s}$	[kN]	23,2	37,7
Partial factor	γMs ¹⁾	[-]	1,	67
Shear loads with lever arm				
Steel failure, hexagon plate anchor and screw (min. st	-	h 4.6) m	ade of galvanised	steel
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	47,1	129,3
Partial factor	γMs 1)	[-]	1,	67
Steel failure, hexagon plate anchor and screw (min. st	eel strengt	h 5.6) m	ade of galvanised	steel
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	58,9	161,6
Partial factor	γMs 1)	[-]	1,	67
1) in absence of other national regulations				
Table C9: Characteristic values for shear loads - con	crete failur	e (TWS))	
Pry-out failure			M12	M16
			M12x40: 1,0	M16x43: 1
Factor	k ₈	[-]	M12x70: 2,0	M16x80: 2
			h _{ef} < 60 mm: 1,0	; h _{ef ≥} 60 mm: 2
Partial factor	γ _{Mcp} 1)	[-]	1,	50
Concrete edge failure (without supplimentary reinforce	ement)		M12	M16
Consists Suge landis (minest supplimental) femision				M16x43: 40
Effective length of hexagon plate anchor (for shear loads	١١١	[mm]	,	M16x80: 77
Elicotive length of hexagen plate allener (let elicat leade	/ • • • • • • • • • • • • • • • • • •	[]	L ≥ 40: I _f ²⁾	L ≥ 43: I _f ²⁾
	+	[mm]	17,0	22,0
Effective outside diameter	d_{nom}			22,0

Table C10: Displacements unde	rshear	loads (TV	VS)	
Thread	d	[mm]	M12	M16
Shear load	V	[kN]	3	3
Short - term displacements	δ_{V0}	[mm]	0,3	0,3
Long - term displacements	δ _{∨∞}	[mm]	0,5	0,4

DEMU Fixing anchor T-FIXX and HALFEN Hexagon plate anchor TWS	
Performances Characteristic values and displacements under shear loads of TWS	Annex C5

Thread size		d	[mm]	M10	M12 ²⁾	M16 ²⁾	M20
Steel failure for tension ar	nd shear	load (F _{Rk,}	s,fi = N _{Rk,s}	s,fi = V _{Rk,s,fi}),		
fixing anchor and screw mad							
	R30	F _{Rk,s,fi}	[kN]	0,8	1,7	2,8	3,6
Characteristic resistance	R60	$F_{Rk,s,fi}$	[kN]	0,7	1,3	2,1	2,7
onaracteristic resistance	R90	$F_{Rk,s,fi}$	[kN]	0,5	1,1	1,8	2,3
	R120	F _{Rk,s,fi}	[kN]	0,4	0,8	1,4	1,8
Partial factor		γMs,fi 1)	[-]		1,	00	
	R30	M [∨] _{Rk,s,fi}	[Nm]	1,1	2,6	6,7	13,0
Characteristic resistance	R60	M ^⁰ _{Rk,s,fi}	[Nm]	1,0	2,0	5,0	9,7
	R90	M ^o _{Rk,s,fi}	[Nm]	0,7	1,7	4,3	8,4
	R120	M ^o _{Rk,s,fi}	[Nm]	0,6	1,3	3,3	6,5
Partial factor		γMs,fi	[-]			00	
Steel failure for tension ar	nd shear	load (F _{Rk,}	s,fi = N _{Rk,}	$s,fi = V_{Rk,s,fi}$),		
fixing anchor and screw mad	e of stain	less steel					
	R30	F _{Rk,s,fi}	[kN]	1,2	2,5	4,2	5,4
Characteristic resistance	R60	F _{Rk,s,fi}	[kN]	1,0	2,1	3,5	4,5
	R90	F _{Rk,s,fi}	[kN]	0,8	1,7	2,8	3,6
	R120	F _{Rk,s,fi}	[kN]	0,7	1,3	2,2	2,9
Partial factor		γMs,fi 1)	[-]	1.0		00	40.5
Characteristic resistance	R30	M ^o _{Rk,s,fi}	[Nm]	1,9	3,9	10,0	19,5 16,2
	R60 R90	M ^o _{Rk,s,fi}	[Nm] [Nm]	1,5 1,2	3,3 2,6	8,3 6,7	13,0
	R120	M ^u _{Rk,s,fi}	[Nm]	1,0	2,0	5,3	10,4
Partial factor	11120	1)	+ +	1,0	· ·	00	10,4
Partial lactor		γMs,fi ′	[-]		1,		
Pull-out failure							
Characteristic resistance	R90	$N_{Rk,p,fi}$	[kN]	$N_{Rk,p,fi(90)} = 0.25 \cdot N_{Rk,p}$			
	R120	$N_{Rk,p,fi}$	[kN]	$N_{Rk,p,fi(120)} = 0.20 \cdot N_{Rk,p}$			
Partial factor		γ _{Mp,fi} 1)	[-]		1,	00	
Concrete cone failure							
	R90	N _{Rk,c,fi}	[kN]	N⁰ _{Rk}	$_{c,fi(90)} = h_{ef}/20$	00 • N ^o _{Rk,c} ≤ N	√ _{Rk.c}
Characteristic resistance	R120	N _{Rk,c,fi}	[kN]	N ^u _{Rk,c,fi(}	$\frac{1}{120} = 0.8 \cdot h_e$	_f /200 • N ^o _{Rk,c}	≤ N ^U Rk,c
Characteristic spacing		S _{cr,N,fi}	[mm]		4,0		•
Characteristic edge distance		C _{cr,N,fi}	[mm]		2,0	• h _{ef}	
Partial factor		γMc,fi	[-]		1,	00	
Concrete pry-out failure							
• •	R90	V _{Rk,cp,fi}	[kN]		V _{Rk,cp,fi(90)} =	k ₃ • N _{Rk,c,fi(90)}	<u> </u>
Characteristic resistance	R120	V _{Rk,cp,fi}	[kN]	1	/ _{Rk,cp,fi(120)} =	k ₃ • N _{Rk,c,fi(120}	0)
Partial factor		γMc,fi 1)	[-]		1,	00	
Concrete edge failure							
·	R90	V _{Rk,c,fi}	[kN]		V ^o _{Rk.c.fi(90)} =	0,25 • V ^o Rk,c	
Characteristic resistance	R120	V _{Rk,c,fi}	[kN]		$V_{Rk,c,fi(120)}^{\circ} =$	0,20 • V ⁰ Rk,c	
Partial factor		γMc,fi 1)	[-]			00	
in absence of other national	al regulațio			o Hexagon	olate anchors	TWS	
appointed of other flatforite	rogulativ	, арр	50 0.00 0	- Hoxagon			
EMU Fixing anchor T-FIX	X and HA	ALFEN He	xagon pla	ate anchor	TWS		