

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-24/0778 vom 4. Februar 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Injektionssystem Selkent SEL-V+

Verbunddübel und Verbundspreizdübel zur Verankerung im Beton

Selkent Fastenings Ltd Riverside House Kangley Bridge Road SE26 5 DA LONDON GROSSBRITANNIEN

Werk Selkent

37 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

Seite 2 von 37 | 4. Februar 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 37 | 4. Februar 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem Selknet SEL-V+" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel gemäß Anhang A4 und einem Stahlteil gemäß Anhang A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasistatische Einwirkungen)	Siehe Anhang B3 bis B8, C1 bis C9
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi- statische Einwirkungen)	Siehe Anhang C1 bis C4
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C10 bis C11
Charakteristischer Widerstand für seismische Leistungskategorie C1und C2	Siehe Anhang C12 bis C15

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 37 | 4. Februar 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

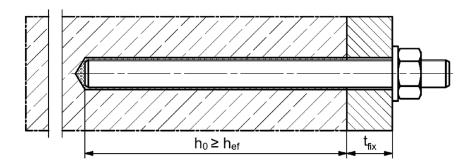
Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

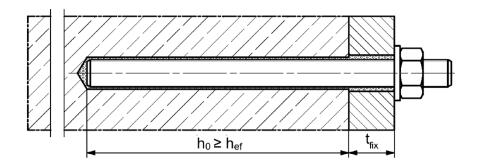
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

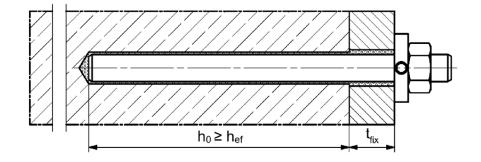
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 4. Februar 2025 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt: Baderschneider


Einbauzustände Teil 1

Selkent Ankerstange und handelsübliche Gewindestange (Gewindestange)


Vorsteckmontage

Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Vor- oder Durchsteckmontage mit nachträglich verpresster Selkent Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

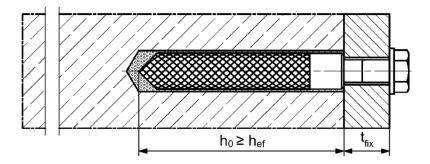
h_{ef} = Effektive Verankerungstiefe

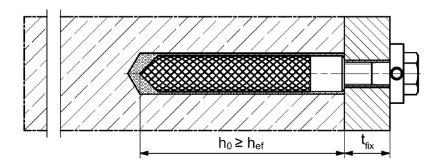
t_{fix} = Dicke des Anbauteils

Injektionssystem Selkent SEL-V+

Produktbeschreibung

Einbauzustände Teil 1


Anhang A1


Einbauzustände Teil 2

Selkent Innengewindeanker RG M I (Selkent RG M I)

Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster Selkent Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

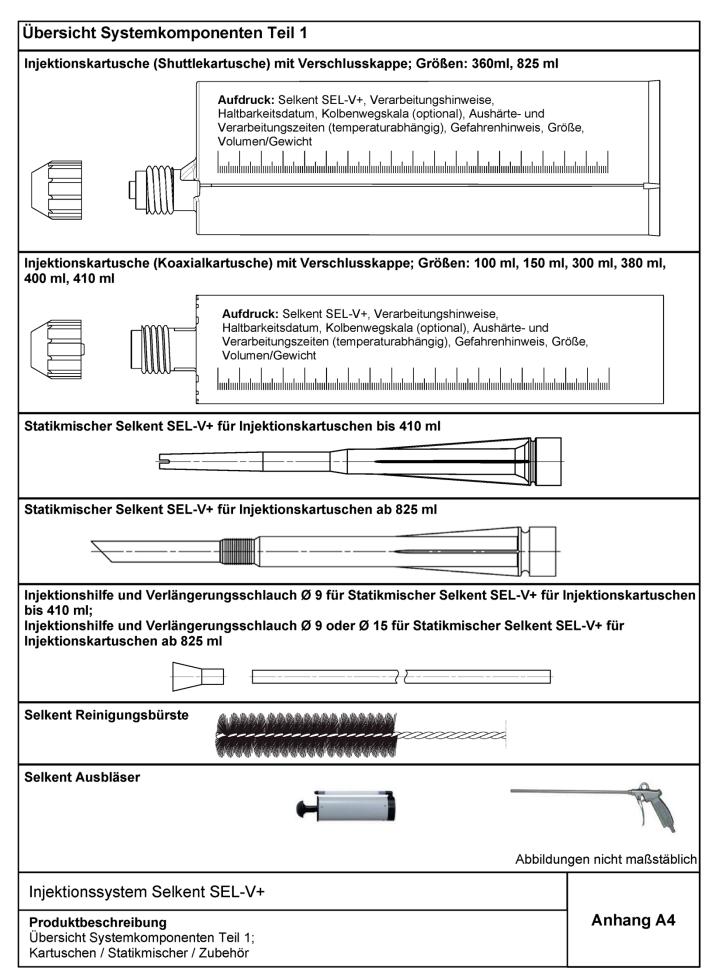
 h_0 = Bohrlochtiefe

h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

Injektionssystem Selkent SEL-V+

Produktbeschreibung


Einbauzustände Teil 2

Anhang A2

Einbauzustände Teil 3 **Betonstahl** $h_0 \ge h_{ef}$ Selkent Bewehrungsanker FRA Vorsteckmontage $h_0 \ge h_{nom}$ Durchsteckmontage (Ringspalt mit Mörtel verfüllt) $h_0 \ge h_{nom}$ Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe h_{ef} = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils Injektionssystem Selkent SEL-V+ **Anhang A3** Produktbeschreibung Einbauzustände Teil 3

Übersicht Systemkomponenten Teil 2 Selkent Ankerstange / Gewindestange Größen: M6, M8, M10, M12, M16, M20, M24, M27, M30 Selkent RG M I Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter Selkent Verfüllscheibe mit Injektionsadapter **Betonstahl** Nenndurchmesser: \$\phi8\$, \$\phi10\$, \$\phi12\$, \$\phi14\$, \$\phi16\$, \$\phi20\$, \$\phi28\$ Selkent Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich Injektionssystem Selkent SEL-V+ **Anhang A5** Produktbeschreibung Übersicht Systemkomponenten Teil 2; Stahlteile, Injektionsadapter

Teil	Bezeichnung		M	aterial		
1	Injektionskartusche		Mörtel, Hä	irter, Füllstoffe		
		Stahl	Nichtro	stender Stahl R	Hochkorrosions- beständiger Stahl HCR	
	Stahl Art Verzinkt (zn, fvz)		Korrosior klasse	10088-1:2023 der nsbeständigkeits- e CRC III nach -4: 2006+A1:2015	gem. EN 10088-1:2023 c Korrosionsbeständigkeit klasse CRC V nach EN1993-1-4:2006+A1:20	
2	Selkent Ankerstange / Gewindestange	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt \geq 5 μ m, ISO 4042:2022 oder feuerverzinkt \geq 40 μ m EN ISO 10684:2004+AC:2009 $f_{uk} \leq$ 1000 N/mm ² $A_5 >$ 12% Bruchdehnung ¹⁾	50, EN IS0 1.4401; 1.4571; 1.4062, EN 1 f _{uk} ≤	gkeitsklasse 70 oder 80 0 3506-1:2020 1.4404; 1.4578; 1.4439; 1.4362; 1.4662, 1.4462; 0088-1: 2023 1000 N/mm ² 5 Bruchdehnung ¹⁾	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2020 oder Festigkeitsklasse 7 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1: 2023 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 12% Bruchdehnung	
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, ISO 4042:2022 oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004+AC:2009	galv. verzinkt ≥ 5 μm, 1.4401; 1.4404; ISO 4042:2022 1.4578; 1.4571; er feuerverzinkt ≥ 40 μm 1.4439; 1.4362;			
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 µm, ISO 4042:2022 oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004+AC:2009	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1: 2023		Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-2:2020 1.4565; 1.4529; EN 10088-1: 2023	
5	Selkent RG M I	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 µm, ISO 4042:2022	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1: 2023		Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1: 2023	
6	Handelsübliche Schraube oder Gewindestange für Selkent RG M I	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2022 A₅ > 8 % Bruchdehnung	EN ISO 1.4401; 1.4571; EN 10	keitsklasse 70 D 3506-1:2020 1.4404; 1.4578; 1.4439; 1.4362; 0088-1: 2023 6 Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1: 2023 A ₅ > 8 % Bruchdehnung	
7	Selkent Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, ISO 4042:2022 oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004+AC:2009	galv. verzinkt ≥ 5 μm, ISO 4042:2022 1.4571; 1.4404; 1.4578; oder feuerverzinkt ≥ 40 μm EN 10088-1: 2023			
8	Betonstahl	EN 1992-1-1:2004 und AC:2010 Stäbe und Betonstahl vom Ring gemäß NDP oder NCI gemäß E $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 12 \%)^{1)}$	g, Klasse B	oder C mit fyk und k		
9	Selkent Bewehrungsanker FRA	4571, 1.4578, 1.4439, mäß EN 10088-1:2023 de andsklasse CRC III nach 6+A1:2015 emäß EN 10088-1:2023 de andsklasse CRC V nach 6+A1:2015 ; Bruchdehnung A₅ > 8%				
1)Bi	•	venn keine Anforderung der seis	smischen Le	istungskategorie C	2 zu berücksichtigen	
Inje	ktionssystem Selke	ent SEL-V+				
	luktbeschreibung				Anhang A6	

Spezifizierung des Verwendungszwecks (Teil 1) Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien Selkent SEL-V+ mit ... Ankerstange / Selkent RG M I Betonstahl Selkent Gewindestange Bewehrungsanker FRA KKKKKKKKKKKKKKK Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer Bohrernenndurchmesser (d₀) (fischer "FHD", Heller "Duster 12 mm bis 35 mm Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max") Tabelle: ungerissenen Alle Alle Tabelle: Alle Tabelle: Tabelle: C1.1 Beton Größen Größen C2.1 Größen C3.1 C3.2 Statische und C4.1 Alle C4.1 C4.1 C4.1 quasi-statische C5.1 Größen C8.1 C7.1 C9.1 Belastung, im gerissenen M8 bis φ 10 bis _1) C6.1 M30 C10.2 C11.1 C11.2 Beton ф 28 C10.1 Tabelle: M10 C12.1 C1 bis C13.1 M30 Seismische C14.1 _1) Leistunas-_1) _1) Tabelle: kategorie M12 C12.1 C2 M16 C13.1 M20 C15.1 Trockener 11 oder nasser alle Größen Beton Nutzungskategorie Wasser-_1) _1) 12 gefülltes M12 bis M30 Alle Größen **Bohrloch** D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) Einbaurichtung Einbautemperatur $T_{i,min} = -5$ °C bis $T_{i,max} = +40$ °C (maximale Kurzzeittemperatur +80 °C; Temperatur--40 °C bis +80 °C Gebrauchsmaximale Langzeittemperatur +50 °C) bereich I temperatur-Temperatur-(maximale Kurzzeittemperatur +120 °C; bereiche -40 °C bis +120 °C bereich II maximale Langzeittemperatur +72 °C) 1) keine Leistung bewertet. Injektionssystem Selkent SEL-V+ Anhang B1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A2:2021.

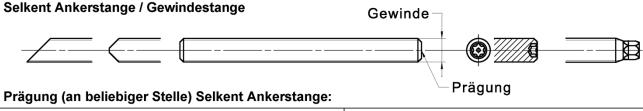
Anwendungsbedingungen (Umweltbedingungen):

- Verbindungselement für die Verwendung unter den Bedingungen trockener Innenräume (alle Stahlsorten.
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklasse nach Anhang A6 Tabelle A6.1.

Bemessung:

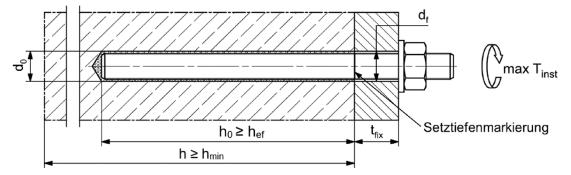
- Die ingenieurmäßige Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Planers.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA TR 082, Fassung Juni 2023.

Einbau:


- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Effektive Verankerungstiefe markieren und einhalten.
- Überkopfmontage erlaubt (Notwendiges Zubehör siehe Montageanleitung).

Injektionssystem Selkent SEL-V+	
Verwendungszweck Spezifikationen (Teil 2)	Anhang B2

Selkent Ankerstangen / Gewinde M6 M8 M10 M12 M16 M20 M24 M27 M30												
Gewindestangen	•		Gewinde	IVIO	IVI8	WITU	IVI12	W16	WIZU	IVI24	IVI27	WI3U
Bohrernenndurchm	esser	d₀		8	10	12	14	18	24	28	30	35
Bohrlochtiefe		h ₀					h₀ ≥ he	f				
Effektive		h _{ef, min}] [50	60	60	70	80	90	96	108	120
Verankerungstiefe		h _{ef, max}] [72	160	200	240	320	400	480	540	600
Minimaler Achs- ur	nd	Smin] [
Randabstand	iu	=	[mm]	40	40	45	55	65	85	105	125	140
		C _{min}]									
Durchmesser des	Vorsteck- montage	d_{f}		7	9	12	14	18	22	26	30	33
Durchgangsloch im Anbauteil Durchsteck- montage		d _f		9	12	14	16	20	26	30	33	40
Minimale Dicke des Betonbauteils h _{min} h _{ef} + 30 (≥100) h _{ef} + 2d ₀					0							
Maximales Montag	edrehmoment	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300


¹⁾ Minimale Achs- und Randabstände siehe Anhang B4.

Stahl galvanisch verzinkt FK¹¹ 8.8	• oder +	Stahl feuerverzinkt FK¹) 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	•	Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 70	-
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 80	(Nichtrostender Stahl R FK ¹⁾ 50	~
Nichtrostender Stahl R FK1) 80	*		
AU (; E 1;		1) ELC. E. C. L. W. L.	

Alternativ: Farbmarkierung nach DIN 976-1:2016 ¹⁾ FK = Festigkeitsklasse

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A6, Tabelle A6.1.
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden.
- Markierung der Verankerungstiefe.

Abbildungen nicht maßstäblich

Injektionssystem Selkent SEL-V+

Verwendungszweck
Montagekennwerte Selkent Ankerstangen / Gewindestange

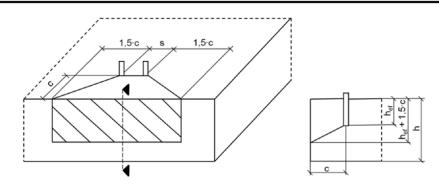
Anhang B3

Gewindesta	ns- und Rand <mark>ngen</mark> , <mark>Beton</mark>				_		
Selkent Ankerstangen / Gewinde	estangen	M6	M8	M10	M12	-	M16
Betonstahl / FRA (Stabnenndurchmesser)	ф	-	8	10	12	14	16
Minimaler Randabstand							
Ungerissener / Gerissener Beton	C _{min} [mm]	40	40	45	45	45	50
Minimaler Achsabstand	Smin			gemäß A	nhang B5		
Minimaler Achsabstand							
Ungerissener / Gerissener Beton	S _{min}	40	40	45	55	60	65
Minimaler Randabstand	C _{min} [mm]			gemäß A	nhang B5		
Erforderliche projizierte Fläche							
Ungerissener Beton	, [1000	8,0	8,0	13,0	22,0	23,0	24,0
Gerissener Beton	A _{sp,req} mm²]	6,5	6,5	10,0	16,5	17,5	18,5
		,		· ·	,	, .	,
	n	M20	M24	-	M27	-	M30
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser)	ф	M20 20	,		·	•	
Ankerstangen / Gewindestanger Betonstahl / FRA			M24	-	M27	-	M30
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser)	ф Стір		M24	-	M27	-	M30
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser) Minimaler Randabstand	ф	20	M24	- 25	M27 -	- 28	M30 -
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser) Minimaler Randabstand Ungerissener / Gerissener Beton	ф С _{min} [mm]	20	M24	- 25	M27 - 75	- 28	M30 -
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser) Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand	Cmin Smin [mm]	20	M24	- 25	M27 - 75	- 28	M30 -
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser) Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand	ф С _{min} S _{min} [mm]	20 55	M24 - 60	- 25 75 gemäß A	M27 - 75 nhang B5	- 28 80	M30 - 80
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser) Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Ungerissener / Gerissener Beton	ф Cmin Smin Smin [mm]	20 55	M24 - 60	- 25 75 gemäß A	M27 - 75 nhang B5	- 28 80	M30 - 80
Ankerstangen / Gewindestanger Betonstahl / FRA (Stabnenndurchmesser) Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Ungerissener / Gerissener Beton Minimaler Randabstand	ф Cmin Smin Smin [mm]	20 55	M24 - 60	- 25 75 gemäß A	M27 - 75 nhang B5	- 28 80	M30 - 80

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

 $A_{sp,req} < A_{sp,t}$


A_{sp,req} = erforderliche projizierte Fläche.

A_{sp,t} = projizierte Fläche (gemäß Anhang B5).

Injektionssystem Selkent SEL-V+	
Verwendungszweck Minimale Achs- und Randabstände für Selkent Ankerstangen, Gewindestangen, Betonstahl und Selkent Bewehrungsanker FRA	Anhang B4

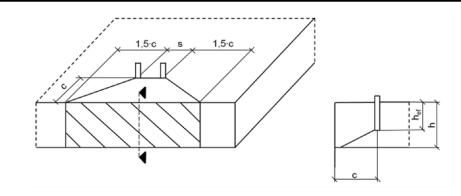


Tabelle B5.1: Effektive projizierte Fläche $A_{sp,t}$ bei einer Betonbauteildicke $h > h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

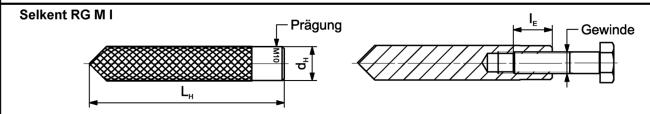
Einzelanker		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	ITIIL C Z Cmin
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit c ≥ c _{min} und s ≥ s _{min}

Tabelle B5.2: Effektive projizierte Fläche $A_{sp,t}$ bei einer Betonbauteildicke $h \le h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker		A _{sp,t} = 3 · c · vorhandenes h	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s > 3 · c	$A_{sp,t} = 6 \cdot c \cdot vorhandenes h$	[mm²]	ITIIL C ≥ Cmin
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	$mit \ c \ge c_{min} \ und \ s \ge s_{min}$

Randabstände und Achsabstände sind auf 5 mm aufzurunden.

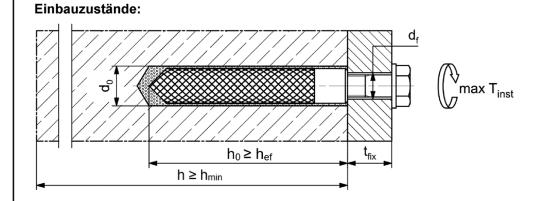
Abbildungen nicht maßstäblich


Injektionssystem Selkent SEL-V+

Verwendungszweck
Mindestdicke der Betonbauteile für Selkent Ankerstangen und Betonstahl;
minimale Achs- und Randabstände

Anhang B5

Tabelle B6.1: Montagekennwerte für Selkent RG M I								
Selkent RG M I Gewinde M8 M10 M12 M16								
Hülsendurchmesser	$d_{nom} = d_H$		12	16	18	22	28	
Bohrernenndurchmesser	d ₀		14	18	20	24	32	
Bohrlochtiefe	h ₀				$h_0 \ge h_{ef} = L_H$			
Effektive Verankerungstiefe (hef = L _H)	h _{ef}		90	90	125	160	200	
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	55	65	75	95	125	
Durchmesser des Durch- gangsloch im Anbauteil	d _f		9	12	14	18	22	
Mindestdicke des Betonbauteils	h_{min}		120	125	165	205	260	
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45	
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16	20	
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80	120	



Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

Befestigungsschraube oder Selkent Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A6, Tabelle A6.1 entsprechen.

Abbildungen nicht maßstäblich

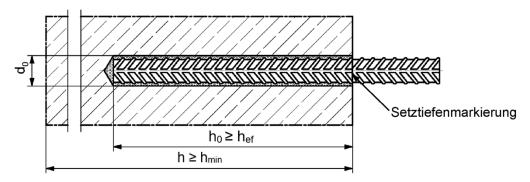
Injektionssystem Selkent SEL-V+

Verwendungszweck

Montagekennwerte Selkent RG M I

Anhang B6

Tabelle B7.1: Montagek	ennwert	e für E	Betons	tahl 1)						
Stabnenndurchmesser		ф	8 ²⁾	10 ²⁾	1:	2 ²⁾	14	16	20	25	28
Bohrernenndurchmesser	d ₀		10 12	12 1	1 14	16	18	20	25	30	35
Bohrlochtiefe	h_0						h ₀ ≥	≥ h _{ef}			
Effektive Verenkerungstiefe	$h_{\text{ef,min}}$		60	60	7	70	75	80	90	100	112
Effektive Verankerungstiefe	h _{ef,max}		160	200	2	40	280	320	400	500	560
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	40	45	5	55	60	65	85	110	130
Mindestdicke des Betonbauteils h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀					


¹⁾ Minimale Achs- und Randabstände siehe Anhang B4.

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010.
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe).

Einbauzustände:

Abbildungen nicht maßstäblich

Injektionssystem Selkent SEL-V+

Verwendungszweck

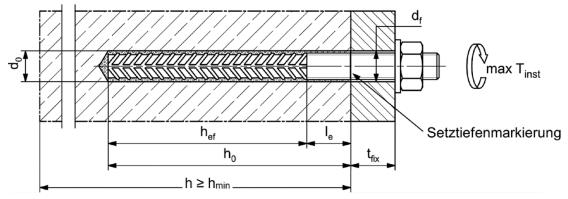
Montagekennwerte Betonstahl

Anhang B7

²⁾ Beide Bohrernenndurchmesser sind möglich.

Selkent Bewehrungs	anker FRA	Ge	ewinde	M1	2 ²⁾	M16	M20	M24
Stabnenndurchmesse	•	ф		1:	2	16	20	25
Bohrernenndurchmess	ser	d ₀		14	16	20	25	30
Bohrlochtiefe		h ₀				h _{ef}	+ _e	
Effektive Verankerung	stiefe	h _{ef,m}		70	0	80	90	96
Literative verafixerating	Sucie	h _{ef,m}		140		220	300	380
Abstand Betonoberfläd Schweißstelle	che zur	le	[mm]			1	00	
Minimaler Achs- und Randabstand		S _{min} = C _{min}		5	5	65	85	105
Durchmesser des	Vorsteck- montage			14	4	18	22	26
Durchgangsloch im Anbauteil	Durchsteck- montage	_ ≤ d _f		18	3	22	26	32
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30			h ₀ + 2d ₀	
Maximales Montagedrehmoment		max T _{inst}	[Nm]	40	0	60	120	150

¹⁾ Minimale Achs- und Randabstände siehe Anhang B5.


Selkent Bewehrungsanker FRA

Prägung stirnseitig z.B.: FRA (für nichtrostenden Stahl);

FRA HCR (für hochkorrosionsbeständigen Stahl).

Einbauzustände:

Abbildungen nicht maßstäblich

Injektionssystem Selkent SEL-V+

Verwendungszweck

Montagekennwerte Selkent Bewehrungsanker FRA

Anhang B8

²⁾ Beide Bohrernenndurchmesser sind möglich.

Tabelle B9.1: Kennwerte der **Selkent Reinigungsbürsten** BS (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

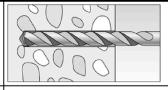
Bohrernenn- durchmesser	d ₀	[mana]	8	10	12	14	16	18	20	24	25	28	30	35
Stahlbürsten- durchmesser BS	dь	[mm]	9	11	14	16	2	0	25	26	27	30	4	.0

Tabelle B9.2 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

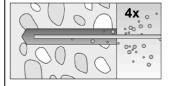
Temperatur im Verankerungsgrund	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ¹⁾ t _{cure}
[°C]	Selkent SEL-V+	Selkent SEL-V+
> -5 bis 0 ²⁾	> 13 min	24 h
> 0 bis 5 ²⁾	13 min	3 h
> 5 bis 10	9 min	90 min
> 10 bis 20	5 min	60 min
> 20 bis 30	4 min	45 min
> 30 bis 40	2 min	35 min

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln.

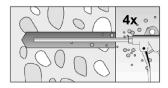
Anhang B9


²⁾ Minimale Kartuschentemperatur +5°C.

Montageanleitung Teil 1

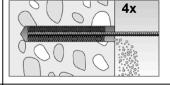

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

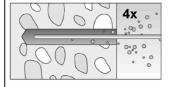


Bohrloch erstellen. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B3.1**, **B6.1**, **B7.1**, **B8.1**

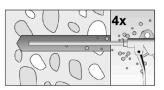
2



Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen


Bei h_{ef} > 12d und / oder d₀ ≥ 18 mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

3



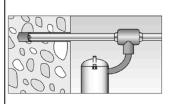
Bohrloch viermal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B9.1**

4

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen

Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 5 fortfahren.


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

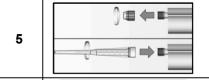
Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

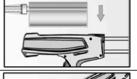
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B3.1**, **B6.1**, **B7.1**, **B8.1**

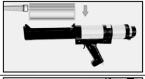
Mit Schritt 5 fortfahren.


Injektionssystem Selkent SEL-V+

Verwendungszweck Montageanleitung Teil 1 **Anhang B10**

Montageanleitung Teil 2


Kartuschenvorbereitung



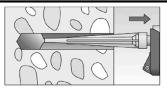
Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).

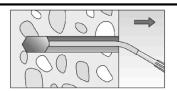
6

Kartusche in die Auspresspistole legen.

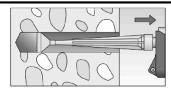
7



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.


Mit Schritt 8 fortfahren.

Mörtelinjektion



8

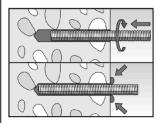
Für $h_0 = h_{ef}$ ca. 2/3 des Bohrlochs mit Mörtel füllen. Für $h_0 > h_{ef}$ wird mehr Mörtel benötigt. Immer am Bohrlochgrund beginnen und Blasen vermeiden.

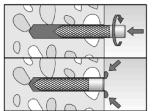
Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden.

Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden.

Mit Schritt 9 fortfahren.

Injektionssystem Selkent SEL-V+


Verwendungszweck Montageanleitung Teil 2 **Anhang B11**



Montageanleitung Teil 3

Montage Ankerstange und Selkent RG M I

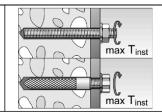
9



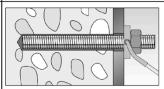
Nur saubere und ölfreie Stahlteile verwenden. Setztiefe des Stahlteiles markieren. Die Ankerstange oder den Selkent RG M I mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Stahlteiles muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, das Stahlteil sofort ziehen und Mörtel nachinjizieren.

Bei Überkopfmontage das Stahlteil mit Keilen (z.B. Zentrierkeile oder Überkopf-

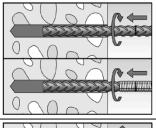
Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen


10

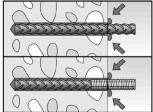
Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**


Clips) fixieren

11


Montage des Anbauteils, max T_{inst} siehe **Tabellen B3.1 und B6.1**

Option


Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die Selkent Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. Selkent SEL-V+). ACHTUNG: Bei Verwendung der Selkent Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Anker).

Montage Betonstahl und Selkent Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder Selkent Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den Selkent Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben.

9

Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, das Stahlteil sofort ziehen und Mörtel nachinjizieren.

10

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

11

Montage des Anbauteils, max T_{inst} siehe **Tabelle B8.1**

Injektionssystem Selkent SEL-V+

Verwendungszweck Montageanleitung Teil 3 **Anhang B12**

7202769 24

Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen unter Zug- /
Querzugbeanspruchung von Selkent Ankerstangen und Gewindestangen

		<u> </u>											,				
	nt Anker- / Gewindes				M6	M8	M10	M12	M16	M20	M24	M27	M30				
Chara	akteristischer Widers	tan		gen St													
ς, S,		Se	4.8		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8	98,0	141,2	183,6	224,4				
ٹر ∣ ≝نہ ا	Stahl, verzinkt	las	5.8		10,1	18,3(16,6)	29,0(26,8)	42,1	78,5	122,5		229,5	280,5				
rak and		iţ	8.8	[kN]	16,1	29,2(26,5)	46,4(42,8)	67,4			282,4	367,2	448,8				
Charakt. erstand N _{Rk,s}	Nichtrostender Stahl	ke	50	נאואן	10,1	18,3	29,0	42,1	78,5	122,5	176,5	229,5	280,5				
	R und Hochkorros-	Festigkeitsklasse	70		14,1	25,6	40,6	59,0	109,9	171,5	247,1	321,3	392,7				
Wid	ionsbest. Stahl HCR	14	80		16,1	29,2	46,4	67,4	125,6	196,0	282,4	367,2	448,8				
Teilsi	cherheitsbeiwerte 2)								•								
7		,	4.8					1,5	60								
eits	Stahl, verzinkt	ass	5.8					1,5	50								
erh ₹		ts	8.8	١., ا	1,50												
Teilsicherheits- beiwert y _{Ms,N}	Nichtrostender Stahl	Festigkeitsklasse	50	[-]		2,86											
eils bei		Stig	70			1,	87 / Selkent	Anker	stange	HCR:	1,50 ³⁾						
-	ionsbest. Stahl HCR	۳,	80					1,6	0								
Chara	akteristischer Widers	tan	d ge	gen St	ahlvei	rsagen unte	er Querbean	spruc	hung	1)							
Ohne	Hebelarm																
Rk,s		, i	4.8		4,8	8,7(7,9)	13,9(12,8)	20,2	37,6	58,8	84,7	110,1	134,6				
∜ نـ ا	Stahl, verzinkt	las	5.8		6,0	10,9(9,9)	17,4(16,0)	25,2	47,1	73,5	105,9	137,7	168,3				
절		İţ	8.8	[LAI]	8,0	14,6(13,2)	23,2(21,4)	33,7	62,8	98,0	141,2	183,6	224,4				
Charakt erstand \	Nichtrostender Stahl	Festigkeitsklasse	50	[kN]	5,0	9,1	14,5	21,0	39,2	61,2	88,2	114,7	140,2				
	R und Hochkorros-	stić	70		7,0	12,8	20,3	29,5	54,9	85,7	123,5	160,6	196,3				
	ionsbest. Stahl HCR	\\	80		8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4				
Duktili	tätsfaktor		k ₇	[-]				1,0	0								
	ebelarm																
R,s		l g	4.8		6,1	14,9(12,9)	29,9(26,5)		132,9			665,7	899,5				
∑ نـ ا	Stahl, verzinkt	las	5.8		7,6	18,7(16,1)	37,3(33,2)	65,4			561,0	832,2	1124,4				
Charakt.		its	8.8	[Nm]	12,2	29,9(25,9)	59,8(53,1)				897,6						
Sta	Nichtrostender Stahl	gke	50	וויייון	7,6	18,7	37,3	65,4		324,6		832,2	1124,4				
Charakt. <i>M</i> iderstand M ⁰ _{Rk,s}	R und Hochkorros-	Festigkeitsklasse	70		10,7	26,2	52,3	91,5	232,6	454,4	785,4	1165,0	1574,1				
Ĭ	ionsbest. Stahl HCR	ш,	80		12,2	29,9	59,8	104,6	265,9	519,3	897,6	1331,5	1799,0				
Teilsi	cherheitsbeiwerte 2)																
۸, ا		ge	4.8					1,2	25								
Neit	Stahl, verzinkt		5.8					1,2	25								
er T		İţ	8.8	[_1				1,2	25								
eilsicherheit beiwert y _{Ms,v}	Nichtrostender Stahl	gke	50	[-]	2,38												
Teilsicherheits- beiwert y _{Ms,V}		Festigkeitsklasse	70		1,56 / Selkent Ankerstange HCR: 1,25 3)												
	ionsbest. Stahl HCR	ц	80					1,3	33								

¹⁾ Die Werte in Klammern gelten für unterdimensionierte Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Nur zulässig für hochkorrosionsbeständigen Stahl HCR, nach Tabelle A6.1.

Injektionssystem Selkent SEL-V+	
Leistungen Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querzugbeanspruchung von Selkent Ankerstangen und Gewindestangen	Anhang C1

²⁾ Falls keine nationalen Regelungen vorliegen.

Tabelle C2.1:	Charakteristischer Widerstand gegen Stahlversagen unter Zug- /
	Querzugbeanspruchung von Selkent RG M I

Selkent RG M I			RG M I	Schraube		M8	M10	M12	M16	M20		
Charakteristiscl	her Wi	derstand ge	gen Stahl	versagen unter Zı	ugbear	spruch	ung					
		Festigkeits-	5.8	5.8		18,3	29,0	42,1	78,3	122,4		
Charakt.		klasse	5.8	8.8		29,2	46,4	67,4	106,7	180,2		
Widerstand mit Schraube	$N_{Rk,s}$	Festigkeits-klasse	R-70 / HCR-70	R-70 / handelsüblich	[kN]	25,6	40,6	59,0	109,6	171,3		
		Klasse	HCR-70	HCR-70]	25,6	40,6	59,0	109,6	171,3		
Teilsicherheitsb	eiwert	te 1)										
		Festigkeits-	5.8	5.8				1,50				
Teilsicherheits-		klasse	5.6	8.8				1,50				
beiwert	γMs,N	Festigkeits-	R-70 /	R-70 / handelsüblich	[-]			1,87				
		klasse	HCR-70	HCR-70	1			1,50				
Charakteristiscl	her Wi	derstand ge	gen Stahl	versagen unter Q	uerbea	nspruci	nung					
Ohne Hebelarm						•						
		Festigkeits-	5.8	5.8		10,9	17,4	25,2	47,1	73,5		
Charakt.		klasse	5.6	8.8		14,6	23,2	33,7	62,8	98,0		
Widerstand mit Schraube	V^0 Rk,s	Festigkeits-	R-70 / HCR-70	R-70 / handelsüblich	[kN]	12,8	20,3	29,5	54,9	85,7		
		klasse	nck-/u	HCR-70		12,8	20,3	29,5	54,9	85,7		
Duktilitätsfaktor				k 7	[-]	1,0						
Mit Hebelarm												
		Festigkeits-	5.8	5.8		18,7	37,3	65,4	166,2	324,6		
Charakt.		klasse	3.0	8.8		29,9	59,8	104,6	265,9	519,3		
Widerstand mit Schraube	M ⁰ Rk,s	Festigkeits-	R-70 /	R-70 / handelsüblich	[Nm]	26,2	52,3	91,5	232,6	454,4		
		klasse	HCR-70	HCR-70]	26,2	52,3	91,5	232,6	454,4		
Teilsicherheitsb	eiwer	te 1)										
	Festigkei klasse		5.8	5.8		1,25						
Teilsicherheits-			5.6	8.8		1,25						
beiwert	γMs,V	Festigkeits-	R-70 /	R-70 / handelsüblich	[-]	1,56						
		klasse	HCR-70	HCR-70				1,25				

¹⁾ Falls keine nationalen Regelungen vorliegen.

Injektionssystem Selkent SEL-V+

Leistungen
Charakteristischer Widerstand gegen Stahlversagen unter Zug- /
Querzugbeanspruchung von Selkent RG M I

Anhang C2

Querzugbea	ansprucl	hung	von B e	etonst	ahl					
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28
Charakteristischer Widerstand	gegen S	tahlve	rsagen	unter Z	ugbean	spruchu	ıng			
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]				As ·	f _{uk} 1)			
Charakteristischer Widerstand	gegen S	tahlve	rsagen	unter G	uerbear	nspruch	ung			
Ohne Hebelarm										
Charakteristischer Widerstand	V^0 Rk,s	[kN]				$k_6^{2)} \cdot A$	∖s · f _{uk} 1)			
Duktilitätsfaktor	k ₇	[-]				1	,0			
Mit Hebelarm										
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]				1,2 · W	/ _{el} ⋅ f _{uk} 1)			

¹⁾ fuk bzw. fyk ist den Spezifikationen des Betonstahls zu entnehmen

 $k_6 = 0.6$ für Dübel aus Stahl mit $f_{uk} \le 500$ N/mm²,

Tabelle C3.2: Charakteristischer Widerstand gegen Stahlversagen unter Zug-/
Querzugbeanspruchung von Selkent Bewehrungsankern FRA

Selkent Bewehrungsanker FRA	\		M12	M16	M20	M24
Charakteristischer Widerstand	gegen S	tahlver	sagen unter Z	ugbeanspruchu	ıng	
Charakteristischer Widerstand	N _{Rk,s}	[kN]	62,0	111,0	173,0	236,5
Teilsicherheitsbeiwert 1)						
Teilsicherheitsbeiwert	γMs,N	[-]		1	,4	
Charakteristischer Widerstand	gegen S	tahlver	sagen unter Q	uerbeanspruch	iung	
Ohne Hebelarm						
Charakteristischer Widerstand	V^0 Rk,s	[kN]	34,5	64,3	100,4	144,7
Duktilitätsfaktor	k ₇	[-]		1	,0	
Mit Hebelarm						
Charakteristischer Widerstand	M^0 Rk,s	[Nm]	107,4	273,0	532,2	920,4
Teilsicherheitsbeiwert 1)		•				
Teilsicherheitsbeiwert	γMs,V	[-]		1	,5	

¹⁾ Falls keine nationalen Regelungen vorliegen.

Injektionssystem Selkent SEL-V+

Leistungen
Charakteristischer Widerstand gegen Stahlversagen unter Zug- /
Querzugbeanspruchung von Betonstahl und Selkent Bewehrungsanker FRA

²⁾ Gemäß EN 1992-4:2018 Abschnitt 7.2.2.3.1:

^{= 0,5} für Dübel aus Stahl mit 500 N/mm² < f_{uk} ≤ 1000 N/mm²,

^{= 0,5} für Dübel aus nichtrostendem Stahl.

Montage Mon	Größe								ΔΙΙ	e Größ	en.			
Montagebeiwert		her Widerstand g	egen F	Betony	ersage	n untei	· Zuahe							
C25/30 C30/37 C35/45 Faktor für Text					orougo				-			C17 bis	C18	
C25/30 C30/37 Find the part of the								9-						
Erhöhungs-faktor für Tiek C 40/50 C 45/55 C 40/50 C 45/55 C 50/60 C 46/60 C 46/										1,05				
faktor für ¹rek C40/50 C45/55 C50/60 I,19 I,22 I,22 I,26 I,26 I,26 I,26 I,26 I,26	_	C30/37												
Takkor für Take C40/50 C45/55 C50/60	Erhöhungs-	C35/45								1,15				
Notage Notage		C40/50	Ψ_{c}	[-]						1,19				
N	_	C45/55								1,22				
Randabstand	_	C50/60								1,26				
Randabstand	Versagen durc	h Spalten												
Achsabstand		h / h _{ef} ≥ 2,0								1,0 h _{ef}				
Achsabstand Scr.sp	Randabstand	$2,0 > h / h_{ef} > 1,3$	C _{cr,sp}	[mm]					4,6	h _{ef} - 1,	8 h			
Versagen durch kegelförmigen Betonausbruch Ungerissener Beton k _{ucr,N} [-] 11,0 7,7 11,5 her 11,5 her </td <td></td> <td>h / h_{ef} ≤ 1,3</td> <td></td> <td>] [mm]</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>2,26 h_e</td> <td>f</td> <td></td> <td></td> <td></td>		h / h _{ef} ≤ 1,3] [mm]					2	2,26 h _e	f			
Ungerissener Beton Kucr, N Gerissener Beton Kucr, N Randabstand Cor, N Achsabstand Sor, N Imm Sor, N Total	Achsabstand		Scr,sp							2 c _{cr,sp}				
Figure Second Secon	Versagen durc	h kegelförmigen B	etona	usbruc	h									
Randabstand C _{Cr,N} Ungerissener B	eton	$\mathbf{k}_{ucr,N}$	_ _{[_1}						11,0					
Faktor für Dauerzugbeanspruchung Faktor für Dauerzugbeanspruchung Faktor für Dauerzugbeanspruchung Faktor für Dauerzugbeanspruchung Faktor r Betonausbruch Für dnom ≤ 24 mm: min (hef; 12 dnom) Für dnom ≤ 24 mm: min (hef; 8 dnom; 300 mm) Für dnom ≤ 24 mm: min (hef; 8 dnom; 300 mm) Für dnom ≤ 24 mm: min (hef; 8 dnom; 300 mm) Für dnom ≤ 24 mm: min (hef; 12 dnom) Für dnom ≤ 24 mm: min (hef; 8 dnom; 300 mm) Für dnom ≤ 24 mm: min (hef; 12 dnom) Für dnom ≤ 24 mm: min (hef	Gerissener Beto	on	$k_{\text{cr,N}}$	נ־ו						7,7				
Achsabstand Scr,N 1	Randabstand		C _{cr,N}	[mm]						1,5 h _{ef}				
Temperaturbereich	Achsabstand		Scr,N	[111111]						$2\;c_{\text{cr},N}$				
Faktor Ψ° _{sus} [-] 0,76 0,78 Querbeanspruchung Montagebeiwert γ _{inst} [-] 1,0 Betonausbruch auf der lastabgewandten Seite Faktor für Betonausbruch kg [-] 2,0 Betonkantenausbruch Effektive Länge des Stahlteils unter Querbeanspruchung If [mm] Für d _{nom} ≤ 24 mm: min (her; 12 d _{nom}) rum; 300 mm) Rechnerische Durchmesser Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange d 8 10 12 16 20 24 27 30 Selkent RG M I d 4 8 10 12 16 20 25 -10 -10 Selkent Bewehrungsanker FRA d _{nom} [mm] 8 10 12 14 16 20 25 -10 -10 Stabnenndurchme	Faktor für Dau	erzugbeanspruch ı	ıng											
Querbeanspruchung Montagebeiwert γinst [-] 1,0 Betonausbruch auf der lastabgewandten Seite Faktor für Betonausbruch k ₈ [-] 2,0 Betonkantenausbruch Effektive Länge des Stahlteils unter Querbeanspruchung If [mm] Für dnom ≤ 24 mm: min (hef; 12 dnom) Für dnom > 24 mm: min (hef; 8 dnom; 300 mm) Rechnerische Durchmesser Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange dnom [mm] 6 8 10 12 16 20 24 27 30 Selkent RG M I dnom [mm] -11 12 16 18 22 28 -11 -11 -11 Selkent Bewehrungsanker FRA dnom m 4 8 10 12 16 20 25 -11 -11 Stabnenndurchmesser Φ 8 10 12 14 16 20 25 28 <td>Temperaturbere</td> <td>eich</td> <td></td> <td>[-]</td> <td></td> <td>50 °(</td> <td>C / 80 °</td> <td>С</td> <td></td> <td></td> <td></td> <td>72 °C / ′</td> <td>120 °C</td> <td></td>	Temperaturbere	eich		[-]		50 °(C / 80 °	С				72 °C / ′	120 °C	
Montagebeiwert γinst [-] 1,0 Betonausbruch auf der lastabgewandten Seite Faktor für Betonausbruch k8 [-] 2,0 Betonkantenausbruch Effektive Länge des Stahlteils unter Querbeanspruchung Ir [mm] Für dnom ≤ 24 mm: min (hef; 12 dnom) rün (hef; 8 dnom; 300 mm) Rechnerische Durchmesser Für dnom > 24 mm: min (hef; 8 dnom; 300 mm) Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange dnom [mm] 6 8 10 12 16 20 24 27 30 Selkent RG M I dnom [mm] -1) 12 16 18 22 28 -1) -1) -1) -1) Selkent Bewehrungsanker FRA dnom mm] 8 10 12 14 16 20 25 -1) -1) Stabnenndurchmesser ф 8 10 12 14 16 20	Faktor		Ψ^0_{sus}	[-]			0,76					0,7	8	
Betonausbruch auf der lastabgewandten Seite Faktor für Betonausbruch k ₈ [-] 2,0 Betonkantenausbruch Effektive Länge des Stahlteils unter Querbeanspruchung I _f [mm] Für d _{nom} ≤ 24 mm: min (h _{ef} ; 12 d _{nom}) ruin (h _{ef} ; 8 d _{nom} ; 300 mm) Rechnerische Durchmesser W6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange d _{nom} [mm] 6 8 10 12 16 20 24 27 30 Selkent RG M I d _{nom} (mm] -1) 12 16 18 22 28 -1) -1) -1) -1) 12 16 20 25 -1) -1) Stabnenndurchmesser ф 8 10 12 14 16 20 25 28 Betonstahl d _{nom} [mm] 8 10 12 14 16 20 25 28	Querbeanspru	chung												
Faktor für Betonausbruch k ₈ [-] 2,0 Betonkantenausbruch Effektive Länge des Stahlteils unter Querbeanspruchung If [mm] Für d _{nom} ≤ 24 mm: min (hef; 12 d _{nom}) rün (hef; 8 d _{nom} ; 300 mm) Rechnerische Durchmesser Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange d _{nom} 6 8 10 12 16 20 24 27 30 Selkent RG M I d _{nom} -1) 12 16 16 20 25 -1) -1 Selkent Bewehrungsanker FRA d _{nom} -1) -1) -1) 12 16 20 25 -1) -1) Stabnenndurchmesser Φ 8 10 12 14 16 20 25 28 Betonstahl d _{nom} [mm] 8 10 12 14 16 20 25 28	Montagebeiwer	t	γinst	[-]						1,0				
Betonkantenausbruch Effektive Länge des Stahlteils unter Querbeanspruchung If [mm] Für d _{nom} ≤ 24 mm: min (h _{ef} ; 12 d _{nom}) rün (h _{ef} ; 8 d _{nom} ; 300 mm) Rechnerische Durchmesser Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange d _{nom} [mm] 6 8 10 12 16 20 24 27 30 Selkent RG M I d _{nom} [mm] -1) 12 16 18 22 28 -1) -1) -1) -1) -1) -1) 12 16 20 25 -1)	Betonausbruc	n auf der lastabgev	wandte	en Seit	е									
Effektive Länge des Stahlteils unter Querbeanspruchung If [mm] Für d _{nom} ≤ 24 mm: min (h _{ef} ; 12 d _{nom}) Für d _{nom} ; 300 mm) Rechnerische Durchmesser Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange d _{nom} [mm] 6 8 10 12 16 20 24 27 30 Selkent RG M I d _{nom} [mm] -1) 12 16 18 22 28 -1) -1) -10 -	Faktor für Betor	nausbruch	k ₈	[-]						2,0				
winter Querbeanspruchung If [mm] Für dnom > 24 mm: min (hef; 8 dnom; 300 mm) Rechnerische Durchmesser Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange dnom [mm] 6 8 10 12 16 20 24 27 30 Selkent RG M I dnom [mm] -10 12 16 18 22 28 -10	Betonkantenau	ısbruch												
Größe M6 M8 M10 M12 M16 M20 M24 M27 M3 Selkent Ankerstange und Gewindestange dnom [mm] 6 8 10 12 16 20 24 27 30 Selkent RG M I dnom -10 12 16 18 22 28 -10 -10 -10 Selkent Bewehrungsanker FRA dnom 4 8 10 12 16 20 25 -10 -10 Stabnenndurchmesser ф 8 10 12 14 16 20 25 28 Betonstahl dnom [mm] 8 10 12 14 16 20 25 28			lf	[mm]										
Selkent Ankerstange und Gewindestange dnom 6 8 10 12 16 20 24 27 30 Selkent RG M I dnom -1) 12 16 18 22 28 -1) -1) -1) -1) -1) -1) 12 16 20 25 -1)	Rechnerische	Durchmesser												
Gewindestange dnom 6 8 10 12 16 20 24 27 30 Selkent RG M I dnom -1) 12 16 18 22 28 -1) -1) -1) Selkent Bewehrungsanker FRA dnom Φ 8 10 12 16 20 25 -1) -1) Stabnenndurchmesser Φ 8 10 12 14 16 20 25 28 Betonstahl dnom [mm] 8 10 12 14 16 20 25 28	Größe				M6	M8	M10	M1	2	M16	M20	M24	M27	M30
Selkent RG M1 dnom -1/2 12/3 16/3 18/2 22/3 28/3 -1/3 -1/3 Selkent Bewehrungsanker FRA dnom -1/3 -1/3 -1/3 12/3 16/3 22/3 28/3 -1/3 -1/3 -1/3 Stabnenndurchmesser \$\phi\$ 8 10 12 14 16 20 25 28/3 Betonstahl dnom [mm] 8 10 12 14 16 20 25 28/3		•	d _{nom}		6	8	10	12	2	16	20	24	27	30
Stabnenndurchmesser ф 8 10 12 14 16 20 25 28 Betonstahl d _{nom} [mm] 8 10 12 14 16 20 25 28	Selkent RG M I		d _{nom}	[[mm]	_1)	12	16	18	3	22	28	_1)	_1)	_1)
Betonstahl d _{nom} [mm] 8 10 12 14 16 20 25 28	Selkent Bewehr	ungsanker FRA	d _{nom}		_1)	_1)	_1)	12	2	16	20	25	_1)	_1)
	Stabnenndurch	messer		ф	8	10	12		14	ļ ,	16	20	25	28
1) Dübelvariante nicht Bestandteil der ETA.	Betonstahl		d _{nom}	[mm]	8	10	12		14	, ,	16	20	25	28
	¹⁾ Dübelvarian	te nicht Bestandteil	der ET	A.		•	•			·		·	·	
Injektionssystem Selkent SEL-V+	jorkionooy	ASIN SOMORE OL	_ v .											

Tabelle C5.1:	Charakteristischer Widerstand unter Zugbeanspruchung von Selkent
	Ankerstangen und Gewindestangen im hammergebohrten Bohrloch;
	ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre

ungeriss	ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre											
Selkent Anker- / Gewindesta	nge		М6	M8	M10	M12	M16	M20	M24	M27	M30	
Kombiniertes Versagen durc	h Hera	usziehen	und Be	tonaus	sbruch							
Rechnerischer Durchmesser	d	[mm]	6	8	10	12	16	20	24	27	30	
Ungerissener Beton												
Charakteristischer Verbundy	widersta	and im un	geriss	enen B	eton C2	20/25						
Hammerbohren mit Standard-	oder Ho	hlbohrer (trocker	er oder	nasser	Beton)						
Tempe- I: 50 °C / 80 °C		[N/mm ²]	9,0	16,0	16,0	15,0	14,0	12,0	11,0	10,0	9,0	
ratur- II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[14/11111]	6,5	15,0	14,0	13,0	12,0	11,0	9,0	8,0	8,0	
Hammerbohren mit Standard-	oder Ho	hlbohrer (wasser	gefüllte	s Bohrle	och)			•			
Tempe- I: 50 °C / 80 °C		FN1/ 27	_1)	_1)	_1)	9,5	8,5	8,0	7,5	7,0	7,0	
ratur- II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_1)	_1)	_1)	7,5	7,0	6,5	6,0	6,0	6,0	
Montagebeiwerte									•			
Trockener oder nasser Beton		r 1				1,0						
Wassergefülltes Bohrloch	γinst	[-]	_1)	_1)	_1)			1	,2			
Gerissener Beton												
Charakteristischer Verbundv	widersta	and im ge	rissen	en Beto	on C20/	25						
Hammerbohren mit Standard-	oder Ho	hlbohrer (trocker	er oder	nasser	Beton)						
Tempe- I: 50 °C / 80 °C	_	[N]/mama21	_1)	5,5	6,0	6,5	6,0	5,5	5,0	5,0	4,5	
ratur- II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_1)	4,5	5,0	6,0	5,5	5,0	4,5	4,0	4,0	
Hammerbohren mit Standard-	oder Ho	hlbohrer (wasser	gefüllte	s Bohrle	och)		•	•			
Tempe- I: 50 °C / 80 °C		EN 1 (27	_1)	_1)	_1)	5,0	5,0	4,5	4,0	3,5	3,5	
ratur- II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_1)	_1)	_1)	4,0	4,0	4,0	3,5	3,0	3,0	
Montagebeiwerte		•				•						
Trockener oder nasser Beton		r 1					1,0					
Wassergefülltes Bohrloch	γinst	[-]	_1)	_1)	_1)			1	,2			

¹⁾ Keine Leistung bewertet.

Leistungen

Charakteristischer Widerstand unter Zugbeanspruchung von Selkent Ankerstangen und Gewindestangen; Nutzungsdauer 50 Jahre

Tabelle C6.1:	Charakteristischer Widerstand unter Zugbeanspruchung von Selkent
	Ankerstangen und Gewindestangen im hammergebohrten Bohrloch;
	ungerissener oder gerissener Beton; Nutzungsdauer 100 Jahre

Selkent Anker- / Gewindesta	ange		М6	M8	M10	M12	M16	M20	M24	M27	M30
Kombiniertes Versagen dure	ch Herau	sziehen	und Be	tonaus	bruch						
Rechnerischer Durchmesser	d	[mm]	6	8	10	12	16	20	24	27	30
Ungerissener Beton											
Charakteristischer Verbund	widersta	nd im un	gerisse	enen B	eton C2	20/25					
Hammerbohren mit Standard-	oder Hol	<u>nlbohrer (</u>	trocken	er oder	nasser	Beton)					
Tempe- I: 50 °C / 80 °C		[N1/mamma21	_1)	16,0	16,0	15,0	14,0	12,0	11,0	10,0	9,0
ratur- bereich II: 72 °C / 120 °C	τ _{Rk,100,ucr}	[IN/mm ²]	_1)	15,0	14,0	13,0	12,0	11,0	9,0	8,0	8,0
Hammerbohren mit Standard-				gefüllte	s Bohrl	och)					
Tempe- I: 50 °C / 80 °C			_1)	_1)	_1)	9,5	8,5	8,0	7,5	7,0	7,0
ratur- bereich II: 72 °C / 120 °C	τ _{Rk,100,ucr}	[N/mm²]	_1)	_1)	_1)	7,5	7,0	6,5	6,0	6,0	6,0
Montagebeiwerte											
Trockener oder							1,0				
	γinst	[-]	1)								
			-17	-17	-'/			1,	,2		
			_								
	oder Ho	hlbohrer (er oder	nasser	Beton)					
	_	[NI/mm ²]		5,0	5,5	5,5	5,5	5,5	5,0	5,0	4,5
bereich II: 72 °C / 120 °C	€ Rk,100,cr	[[14/11]]	_1)	4,5	5,0	5,0	5,0	5,0	4,0	4,0	4,0
Hammerbohren mit Standard-	oder Ho	hlbohrer (wasser	gefüllte	s Bohrle	och)					
Tempe- I: 50 °C / 80 °C		[N]/mama21	_1)	_1)	_1)	4,5	4,5	4,5	4,0	3,5	3,5
bereich II: 72 °C / 120 °C	TRk,100,cr	[14/111111-]	_1)	_1)	_1)	4,0	4,0	4,0	3,5	3,0	3,0
Montagebeiwerte											
Trockener oder	2 /:	[-]					1,0				
Wassergefülltes Bohrloch	y inst		_1)	_1)	_1)			1	,2		
Montagebeiwerte Trockener oder nasser Beton Wassergefülltes Bohrloch Gerissener Beton Charakteristischer Verbunde Hammerbohren mit Standard- Tempe- I: 50 °C / 80 °C ratur- bereich II: 72 °C / 120 °C Hammerbohren mit Standard- Tempe- I: 50 °C / 80 °C ratur- bereich II: 72 °C / 120 °C Montagebeiwerte Trockener oder nasser Beton	γinst widersta oder Ho τ _{Rk,100,cr} oder Ho	[-] nd im ge hlbohrer ([N/mm²] hlbohrer (_1) rissene (trocken _1) _1) (wasser _1) _1)	-1) en Beto er oder 5,0 4,5 gefüllte -1) -1)		25 Beton) 5,5 5,0 och) 4,5	1,0 5,5 5,0 4,5 4,0	5,5 5,0 4,5 4,0	5,0 4,0 4,0 3,5	5,0 4,0	4,5

¹⁾ Keine Leistung bewertet.

Leistungen

Charakteristischer Widerstand unter Zugbeanspruchung von Selkent Ankerstangen und Gewindestangen; Nutzungsdauer 100 Jahre

Tabelle C7.1: Charakteristischer Widerstand unter Zugbeanspruchung von Selkent RG M I im hammergebohrten Bohrloch; ungerissener Beton; Nutzungsdauer 50 Jahre

Selkent RG M I			M8	M10	M12	M16	M20			
Kombiniertes Versagen durc	ch Herai	usziehen	und Betona	usbruch						
Rechnerischer Durchmesser	d	[mm]	12,0	15,7	18,0	22,0	28,0			
Ungerissener Beton										
Charakteristischer Verbund	widersta	and im un	gerissenen	Beton C20/2	5					
Hammerbohren mit Standard-	oder Ho	hlbohrer (trockener ode	er nasser Bet	<u>on)</u>					
Tempe- I: 50 °C / 80 °C ratur-	_	[N/mm ²]	10,5	10,0	9,5	9,0	8,5			
bereich II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[[[]]]]	9,0	8,0	8,0	7,5	7,0			
Hammerbohren mit Standard-	oder Ho	hlbohrer (wassergefüll)	tes Bohrloch)						
Tempe- I: 50 °C / 80 °C	_	[N/mm ²]	10,0	9,0	9,0	8,5	8,0			
bereich II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[[[]]]	7,5	6,5	6,5	6,0	6,0			
Montagebeiwerte										
Trockener oder nasser Beton					1,0					
Wassergefülltes Bohrloch	γinst	[-]			1,2					

Injektionssystem Selkent SEL-V+

Leistungen

Charakteristischer Widerstand unter Zugbeanspruchung von Selkent RG M I; Nutzungsdauer 50 Jahre

Tabelle C8.1:	Charakteristischer Widerstand unter Zugbeanspruchung von Betonstahl
	im hammergebohrten Bohrloch; ungerissener oder gerissener Beton;
	Nutzungsdauer 50 Jahre

Nutzungs	_			, unge	rissene	er oder	geriss	sener E	seton;	
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28
Kombiniertes Versagen durcl	h Herai	ısziehen	und Bet	tonausb	ruch					
Rechnerischer Durchmesser	d	[mm]	8	10	12	14	16	20	25	28
Ungerissener Beton										
Charakteristischer Verbundw	vidersta	ınd im un	gerisse	nen Bet	on C20/	25				
Hammerbohren mit Standard- od	er Hohll	oohrer (tro	ckener c	der nass	er Beton)				
Tempe- I: 50 °C / 80 °C		[N] /ma ma 21	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
ratur- bereich II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Montagebeiwerte										
Trockener oder nasser Beton	γinst	[-]				1,	,0			
Gerissener Beton										
Charakteristischer Verbundw	<i>i</i> idersta	ınd im ge	rissene	n Beton	C20/25					
Hammerbohren mit Standard- o	oder Ho	hlbohrer (trockene	er oder n	asser Be	eton)				
Tempe- I: 50 °C / 80 °C	τ	[N/mm ²]	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
bereich II: 72 °C / 120 °C	τ Rk,cr	,, [[N/]]]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Montagebeiwerte										
Trockener oder nasser Beton	γinst	[-]				1,	,0			

¹⁾ Keine Leistung bewertet.

Injektionssystem Selkent SEL-V+

Leistungen
Charakteristischer Widerstand unter Zugbeanspruchung von Betonstahl;
Nutzungsdauer 50 Jahre

Anhang C8

Tabelle C9.1: Charakteristischer Widerstand unter Zugbeanspruchung von Selkent Bewehrungsankern FRA im hammergebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre

angonos.	J.1.01 O	aci goi	locomor Boto.	ii, itaazaiigoa	ador oo oarm	
Selkent Bewehrungsanker Fl	RA		M12	M16	M20	M24
Kombiniertes Versagen durc	h Hera	usziehen	und Betonausb	ruch		
Rechnerischer Durchmesser	d	[mm]	12	16	20	25
Ungerissener Beton						
Charakteristischer Verbundv	vidersta	and im un	ngerissenen Bet	on C20/25		
Hammerbohren mit Standard-	oder Ho	hlbohrer (trockener oder n	asser Beton)		
Tempe- I: 50 °C / 80 °C		[N]/ma ma 21	11,0	10,0	9,5	9,5
ratur- bereich II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]		1,	0	
Gerissener Beton						
Charakteristischer Verbundv	vidersta	and im ge	rissenen Beton	C20/25		
Hammerbohren mit Standard-	oder Ho	hlbohrer ((trockener oder r	nasser Beton)		
Tempe- I: 50 °C / 80 °C ratur-	_	[N]/mm ² 1	5,0	5,0	4,5	4,0
bereich II: 72 °C / 120 °C	て Rk,cr	[N/mm ²]	4,5	4,5	4,0	3,5
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]		1,	0	

Injektionssystem Selkent SEL-V+

Leistungen

Charakteristischer Widerstand unter Zugbeanspruchung von Selkent Bewehrungsankern FRA; Nutzungsdauer 50 Jahre

	Ankerstange / estange	М6	M8	M10	M12	M16	M20	M24	M27	M30	
Verschi	ebungs-Faktore	n für Zu	gbeanspr	uchung ¹⁾							
Ungeris	sener Beton; Te	emperati	urbereich	I, II							
δ N0-Faktor	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
δN∞-Faktor	[mm/(N/mm-)] 	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Gerissener Beton; Temperaturbereich I, II											
δ N0-Faktor	[_3)	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15	
δN∞-Faktor	[mm/(N/mm ²)]	_3)	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40	
Verschi	ebungs-Faktore	n für Qu	erbeansp	ruchung ²	2)						
Ungeris	sener oder geri	ssener E	Beton; Te	mperaturk	pereich I,	II					
δv0-Faktor	France (Ish II	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
δ∨∞-Faktor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau$

 τ = einwirkende Verbundspannung unter Zugbeanspruchung

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$

V = einwirkende Querbeanspruchung

Tabelle C10.2: Verschiebungen für Selkent RG M I ВЛО

Selkent	RG M I	M8	M10	M12	M16	M20				
Verschie	ebungs-Faktor	ren für Zugbeans	pruchung¹)							
Ungerissener Beton; Temperaturbereich I, II										
δ N0-Faktor	[mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14				
δ _{N∞-Faktor}	[mm/(w/mm-)	0,13	0,14	0,15	0,16	0,18				
Verschie	ebungs-Faktor	ren für Querbean	spruchung ²⁾							
Ungeris	sener Beton;	Temperaturbereio	ch I, II							
δ V0-Faktor	[mm/kN]	0,12	0,12	0,12	0,12	0,12				
δ∨∞-Faktor	[IIIII/KIN]	0,14	0,14	0,14	0,14	0,14				

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau$

 τ = einwirkende Verbundspannung unter Zugbeanspruchung

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$

V = einwirkende Querbeanspruchung

Injektionssystem Selkent SEL-V+

Leistungen

Verschiebungen für Selkent Ankerstangen / Gewindestangen und Selkent RG M I

Anhang C10

²⁾ Berechnung der effektiven Verschiebung:

³⁾ Keine Leistung bewertet.

Stabner durchm	ж	8	10	12	14	16	20	25	28
Verschi	ebungs-Faktor	en für Zug	beanspruc	hung¹)					
Ungeris	sener Beton; 1	Temperatu	rbereich I,	II					
δ N0-Faktor	or [mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
δN∞-Faktor	[[[[[[[]]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Gerisse	ner Beton; Ter	nperaturbe	ereich I, II						
δ N0-Factor	[mm/(N/mm²)]	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14
δN∞-Factor	[[111111/(14/111111 /]	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37
Verschi	ebungs-Faktor	en für Que	erbeanspru	chung ²⁾					
Ungeris	sener oder gei	rissener B	eton; Temp	eraturbere	eich I, II				
δ V0-Faktor	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
δ∨∞-Faktor	[IIIII/KIN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09
1) Bered	chnung der effel	ktiven Vers	chiebung:		2) Berechnu	ıng der effe	ktiven Vers	chiebung:	
$\delta_{N0} =$	$\delta_{\text{N0-Faktor}}$. τ				$\delta_{V0} = \delta_{V0}$	_{Faktor} · V			
$\delta_{N\infty}$ =	$\delta_{\text{N}\infty\text{-Faktor}}\cdot \tau$				$\delta_{V\infty} = \delta_{V\infty}$	-Faktor · V			
	einwirkende Ver eanspruchung	bundspanr	ung unter		V = einw	irkende Que	erbeanspru	chung	
3) Keine	Leistung bewe	rtet.							
Tabelle	e C11.2: Vers	schiebun	gen für S	elkent B	ewehrun	gsanker F	FRA		
Selkent anker F	Bewehrungs-	M	12	М	16	M	20	M	24

Selkent anker Fl	Bewehrungs- RA	M12	M16	M20	M24			
Verschi	ebungs-Faktor	ren für Zugbeanspruc	hung¹)					
Ungeris	sener Beton;	Temperaturbereich I,	I					
δ N0-Faktor	[mm/(N/mm²)]	0,10	0,10	0,10	0,10			
δ _{N∞-Faktor}	[[[[[[[]]	0,12	0,12	0,12	0,13			
Gerisse	ner Beton; Ter	mperaturbereich I, II						
δ N0-Faktor	[mm/(N/mm ²)]	0,12	0,13	0,13	0,13			
δ _{N∞-Faktor}	[[[[[[[]]	0,30	0,30	0,30	0,35			
Verschi								
Ungeris	sener oder ge	rissener Beton; Temp	eraturbereich I, II					
δ V0-Faktor	[mana/kN]]	0,10	0,10	0,09	0,09			
δ∨∞-Faktor	[mm/kN]	0,11	0,11	0,10	0,10			
1) Berec	hnung der effe	ktiven Verschiebung:	²⁾ Berec	hnung der effektiven \	/erschiebung:			
$\delta_{N0} =$	δ N0-Faktor · τ		$\delta_{V0} = \delta_{V0-Faktor} \cdot V$					
$\delta_{N\infty}$ =	$\delta_{\text{N}\infty\text{-Faktor}} \cdot \tau$		$\delta_{V\infty}$ =	$\delta_{V\infty ext{-Faktor}}\cdot V$				
τ = einwirkende Verbundspannung unter Zugbeanspruchung V = einwirkende Querbeanspruchung								
Injektio	onssystem S	elkent SEL-V+						
	Leistungen Verschiebungen Betonstahl und Selkent Bewehrungsanker FRA							

Tabelle C12.1: Charakteristische Widerstand gegen Stahlversagen unter Zug- /
Querbeanspruchung von Selkent Ankerstangen und Gewindestangen für
die seismische Leistungskategorie C1 oder C2

	: Anker- / Gewindestan				M10	M12	M16	M20	M24	M27	M30
	teristische Widerstand							ung ¹⁾			
Selkent	: Ankerstangen und Ge	winde	stan	gen,	Leistungsk	ategorie	C1 ²⁾				
Charakt. Widerstand N _{Rks,C1}	Stahl verzinkt	Festigkeits- klasse	5.8		29,0(26,8)	42,1	78,5	122,5	176,5	229,5	280,5
			8.8	[kN]	46,4(42,8)	67,4	125,6	196,0	282,4	367,2	448,8
Charakt. Viderstan N _{Rk,s,C1}	Nichtrostender Stahl R und Hochkorrosions- best. Stahl HCR		50		29,0	42,1	78,5	122,5	176,5	229,5	280,5
인 호 호			70		40,6	59,0	109,9	171,5	247,1	321,3	392,7
			80		46,4	67,4	125,6	196,0	282,4	367,2	448,8
Selkent	: Ankerstangen, Leistur	ngska	tego	rie C	2 ²⁾						
7		,	5.8		_4)	37,9	70,6	110,2	_4)	_4)	_4)
Charakt. Widerstand N _{Rk,s,C2}	Stahl verzinkt	Festigkeits- klasse	8.8	3	_4)	60,6	113,0	176,4	_4)	_4)	_4)
Charakt. Viderstan N _{Rk,s,C2}	Nichtrostender Stahl R	stigkeit klasse	50	[kN]	_4)	37,9	70,6	110,2	_4)	_4)	_4)
유 호 호		est =	70		_4)	53,1	98,9	154,3	_4)	_4)	_4)
>	best. Stahl HCR	ш.	80		_4)	60,6	113,0	176,4	_4)	_4)	_4)
Charak	teristische Widerstand	gegei	n Sta	hlve	rsagen unte	er Querb	eanspruc	hung ohi	ne Hebe	larm ¹⁾	
Selkent	: Ankerstangen, Leistur	ngska	tego	rie C	1 ²⁾						
_	Stahl verzinkt	Festigkeits- klasse	5.8		17,4(16,0)	25,2	47,1	73,5	105,9	137,7	168,3
lkt. tanc			8.8	[kN]	23,2(21,4)	33,7	62,8	98,0	141,2	183,6	224,4
Charakt. Viderstan V _{Rk,s, C1}			50		14,5	21,0	39,2	61,2	88,2	114,7	140,2
Charakt. Widerstand V _{Rk,s, C1}			70		20,3	29,5	54,9	85,7	123,5	160,6	196,3
			80		23,2	33,7	62,8	98,0	141,2	183,6	224,4
Gewind	lestangen, Leistungska	tegor	ie C1	1 2)							
ъ	Stobl vorzinkt	7	5.8		12,1(11,2)	17,7	32,9	51,4	74,1	96,3	117,8
Charakt. Widerstand V _{Rk,s, C1}	Stahl verzinkt	Festigkeits- klasse	8.8		16,2(15,0)	23,6	43,9	68,6	98,8	128,5	157,0
Charakt. Jiderstan V _{Rk,s, C1}	Nichtrostender Stahl R		50	[kN]	10,1	14,7	27,4	42,8	61,7	80,3	98,1
인 호 호	und Hochkorrosions-		70		14,2	20,6	38,4	60,0	86,4	112,4	137,4
	best. Stahl HCR		80		16,2	23,6	43,9	68,6	98,8	128,5	157,0
Selkent	: Ankerstangen, Leistur	ngska	tego	rie C							
Charakt. Widerstand V _{Rk,s, C2}	Stahl verzinkt	Festigkeits- Klasse	5.8		_4)	16,6	35,3	56,5	_4)	_4)	_4)
			8.8	[kN]	_4)	22,2	47,1	75,4	_4)	_4)	_4)
Charakt. Viderstan V _{Rk,s, C2}			50		_4)	13,9	29,4	47,1	_4)	_4)	_4)
∑ № >					_4)	19,4	41,2	66,0	_4)	_4)	_4)
	best. Stahl HCR		80		_4)	22,2	47,1	75,4	_4)	_4)	_4)
Faktor für den Ringspalt α_{gap} [-] 0,5 (1,0) ³⁾											

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C13.1; für Selkent Ankerstangen beträgt der Duktilitätsfaktor für Stahl 1,0.

Leistungen

Charakteristische Widerstand gegen Stahlversagen für seismische Leistungskategorie C1 / C2

Anhang C12

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As und für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Der Wert in Klammer gilt für gefüllte Ringspalte zwischen der Ankerstange und dem Durchgangsloch im Anbauteil. Die Selkent Verfüllscheibe ist zu verwenden nach Anhang A5.

⁴⁾ Keine Leistung bewertet.

Tabelle C13.1: Teilsicherheitsbeiwerte von Selkent Ankerstangen / Gewindestangen für die seismische Leistungskategorie C1 oder C2

Selkent Anker- / Gewindest	M10	M12	M16	M20	M24	M27	M30				
Zugbeanspruchung, Stahlversagen ¹⁾											
לֵב Stahl verzinkt		5.8	- 1	1,50							
Stahl verzinkt Sie Stahl verzinkt Nichtrostender Stahl R best Stahl HCR	Festigkeits- klasse	8.8		1,50							
ט אוchtrostender Stahl R		50		2,86							
Nichtrostender Stahl R und Hochkorrosions-		70		1,87 / Selkent Ankerstangen HCR: 1,50 ²⁾							
⊨ best. Stahl HCR		80		1,60							
Querbeanspruchung, Stahlversagen ¹⁾											
່໘່ > Stahl verzinkt		5.8	[-]	1,25							
e sky man verzinkt	Festigkeits- klasse	8.8		1,25							
ਹੁੰ ਨੂੰ Nichtrostender Stahl R		50		2,38							
୍ଥିତ und Hochkorrosions-		70		1,56 / Selkent Ankerstangen HCR: 1,25 ²⁾							
best. Stahl HCR		80		1,33							

¹⁾ Falls keine nationalen Regelungen vorliegen.

Leistungen

Teilsicherheitsbeiwerte von Selkent Ankerstangen und Gewindestangen für seismische Leistungskategorie C1 / C2

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl HCR, mit f_{yk} / f_{uk} ≥ 0,8 und A₅ > 12 % (z.B. Selkent Ankerstangen).

Tabelle C14.1: Charakteristischer Widerstand gegen kombniertes Versagen durch Herausziehen und Betonausbruch von Selkent Ankerstangen und Gewindestangen für die seismische Leistungskategorie C1 im hammergebohrten Bohrloch; Nutzungsdauer 50 und 100 Jahre

Selkent	Anker- / Gewindesta	M10	M12	M16	M20	M24	M27	M30		
Kombiniertes Versagen durch Herausziehen und Betonausbruch										
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)										
Tempe- ratur- bereich	I: 50 °C / 80 °C	TRk,C1	[N/mm ²]	4,5	5,5	5,5	5,5	4,5	4,0	4,0
	II: 72 °C / 120 °C			4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammeı	Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)									
Tempe- ratur- bereich	I: 50 °C / 80 °C	TRk,C1	[N/mm ²]	_1)	5,0	5,0	4,5	4,0	3,5	3,5
	II: 72 °C / 120 °C			_1)	4,0	4,0	4,0	3,5	3,0	3,0
Montagebeiwert										
Trockener oder nasser Beton			r 1	1,0						
Wassergefülltes Bohrloch γinst			[-]	_1)	- ¹⁾ 1,2					

¹⁾ Keine Leistung bewertet.

Leistungen

Charakteristischer Widerstand für seismische Leistungskategorie C1; Nutzungsdauer 50 und 100 Jahre

Tabelle C15.1: Charakteristischer Widerstand gegen kombniertes Versagen durch Herausziehen und Betonausbruch von Selkent Ankerstangen für die seismische Leistungskategorie C2 im hammergebohrten Bohrloch; Nutzungsdauer 50 und 100 Jahre

• • • • •										
Selkent Ankerstange		M12	M16	M20						
Kombiniertes Versagen durch Herausziehen und Betonausbruch										
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)										
Tempe- I: 50 °C / 80 °C	Rk C2 [N/mm²]	1,5	1,3	2,1						
bereich II: 72 °C / 120 °C	Rk,C2 [[N/mm²]	1,3	1,2	1,9						
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)										
Tempe- I: 50 °C / 80 °C	Rk C2 [N/mm²]	1,3	1,1	1,8						
bereich II: 72 °C / 120 °C	Rk,C2 [[N/mm²]	1,1	1,0	1,6						
Verschiebungs-Faktoren für Zu	ıgbeanspruch	ung¹)								
δN,C2 (50%)-Faktor	[mm/(N/mm ²)]	0,20	0,13	0,21						
δ N,C2 (100%)-Faktor	[[[]]]]	0,38	0,18	0,24						
Verschiebungs-Faktoren für Querbeanspruchung²)										
δv,C2 (50%)-Faktor	[mm/kN]	0,18	0,10	0,07						
δ V,C2 (100%)-Faktor	[mm/kN]	0,25	0,14	0,11						

1) Berechnung der effektiven Verschiebung:

 $\delta_{N,C2}$ (50%) = $\delta_{N,C2}$ (50%)-Faktor · τ $\delta_{N,C2}$ (100%) = $\delta_{N,C2}$ (100%)-Faktor · τ

 τ = einwirkende Verbundspannung unter Zugbeanspruchung

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V,C2 (50\%)} = \delta_{V,C2 (50\%)-Faktor} \cdot V$ $\delta_{V,C2 (100\%)} = \delta_{V,C2 (100\%)-Faktor} \cdot V$

V = einwirkende Querbeanspruchung

Leistungen

Charakteristischer Widerstand für seismische Leistungskategorie C2; Nutzungsdauer 50 und 100 Jahre