

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/1152 of 13 January 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	ESSVE Concrete screw EUS2, EUS A4, EUS HCR
Product family to which the construction product belongs	Fasteners for use in concrete for redundant non-structural systems
Manufacturer	ESSVE AB Borgarfjordsgatan 18 SE-164 40 Kista SCHWEDEN
Manufacturing plant	ESSVE Plants
This European Technical Assessment contains	16 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330747-00-0601, Edition 06/2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The ESSVE Concrete screw EUS2, EUS A4, EUS HCR of sizes 5 and 6 mm is an anchor made of galvanised steel respectively steel with zinc flake coating and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C3

3.2 Safety in use (BWR 4)

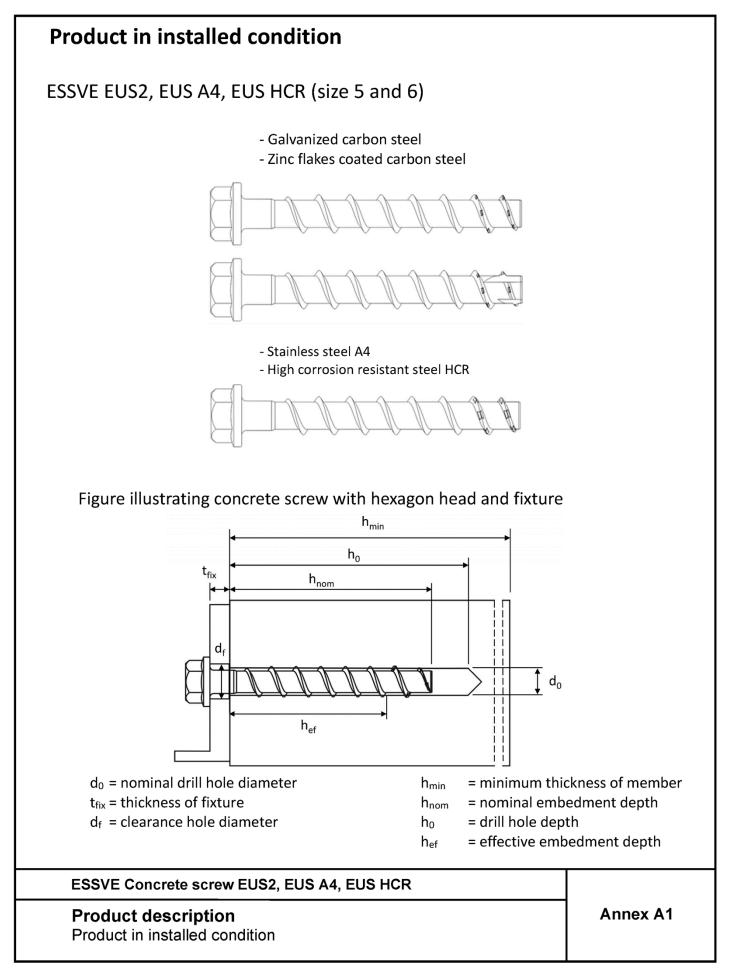
Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2, Annex C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

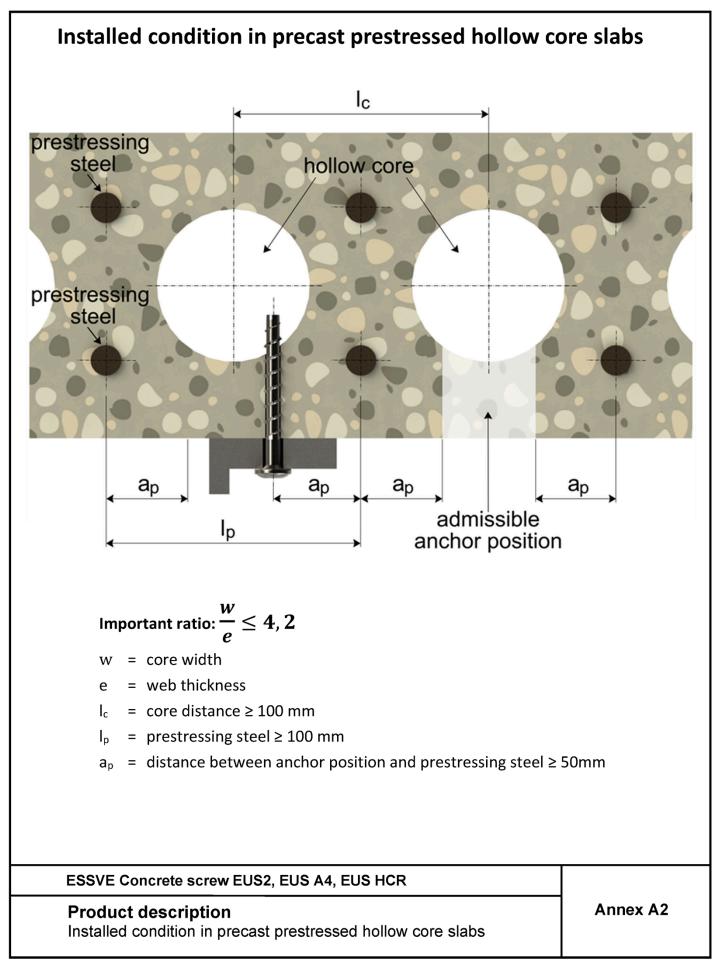
In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

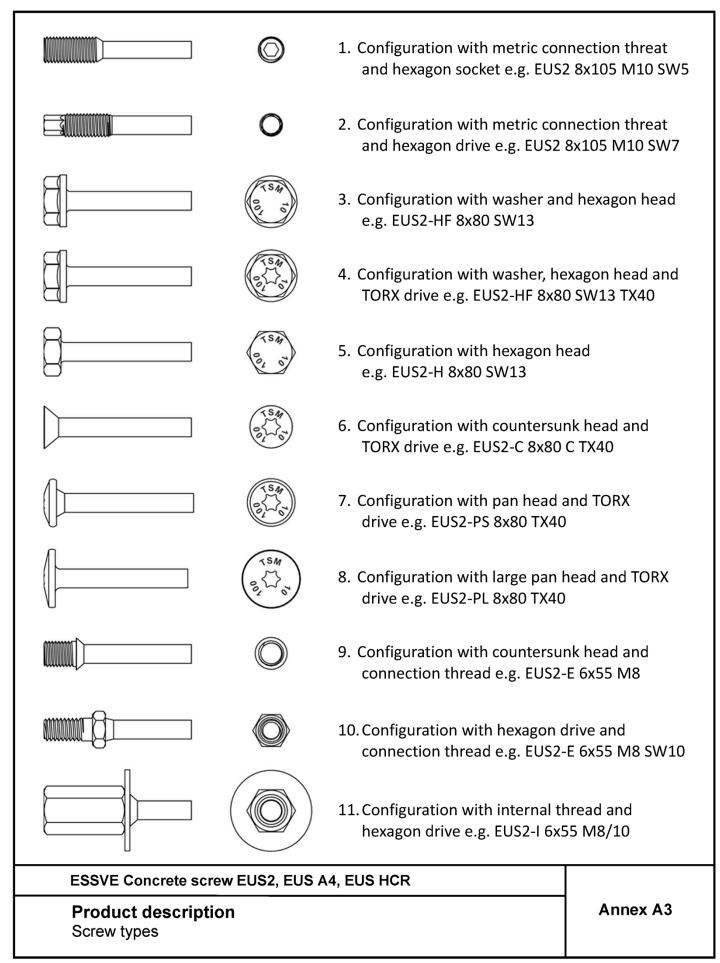
Page 4 of 16 | 13 January 2025


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 13 January 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Tempel



Page 7 of European Technical Assessment ETA-24/1152 of 13 January 2025

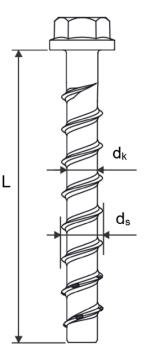
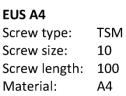
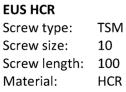


Table 1: Material							
Part	Product name		Material				
all	EUS2	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5µm)					
types	EUS A4	1.4401; 1.4404; 1.4571; 1.4578					
	EUS HCR	1.4529					
		Nominal chara	acteristic steel	Rupture			
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm ²]	elongation A5 [%]			
	EUS2						
all types	EUS A4	560	700	≤ 8			
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EUS HCR						


Table 2: Dimensions

Anchor size			5	6
Screw length	≤L	[mm]	2	200
Core diameter	d _k	[mm]	4,0	5,1
Thread outer diameter	ds	[mm]	6,5	7,5



Marking:

EUS2	
Screw type:	TSM
Screw size:	10
Screw length:	100

Marking "k" or "x" for anchors with connection thread and h_{nom}= 35mm

ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Product description Material, Dimensions and markings

Annex A4

Specification of Intended use

Anchorages subject to:

- static and quasi static loads
- Used only for multiple use for non-structural application according to EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 5 and 6
 - Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A4, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A4, screw with marking HCR: CRC V

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, Version February 2018.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

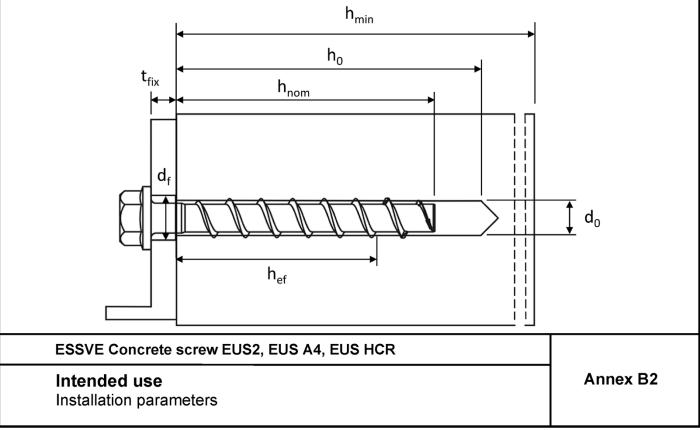
Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Intended use

Specification


Annex B1

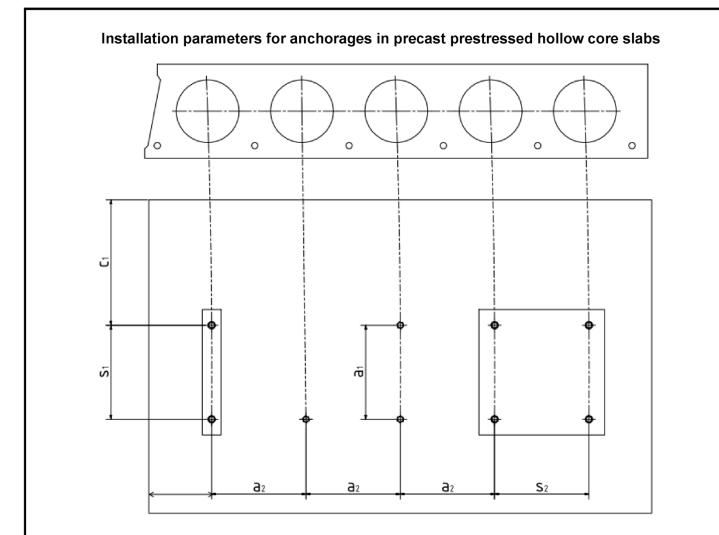
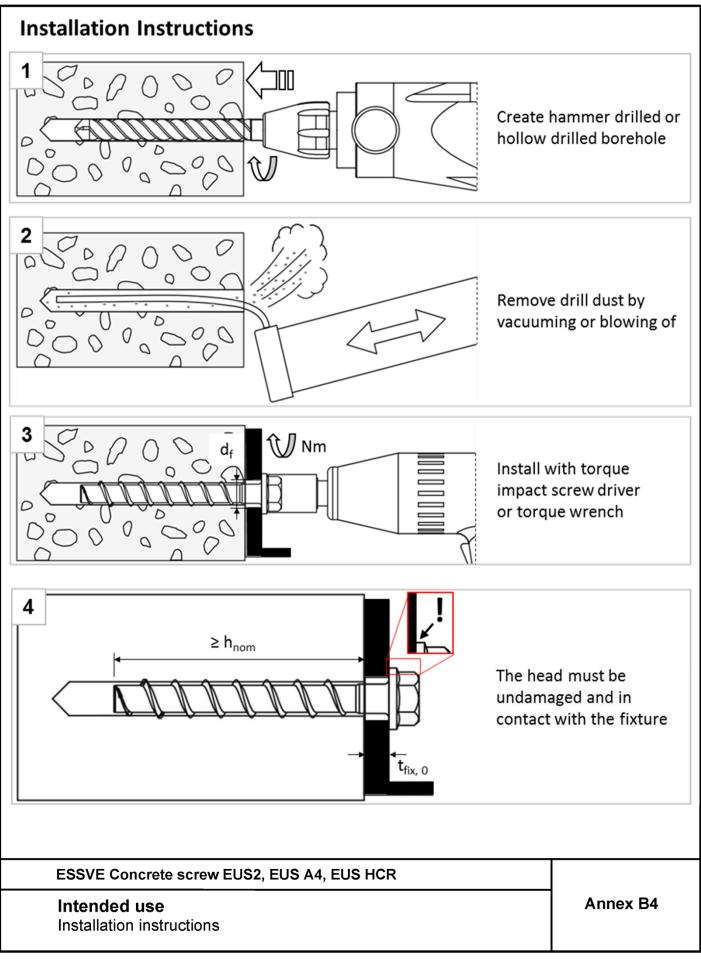

Table 3: Installation parameters						
Concrete screw size			5	(5	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment depth		[mm]	35	35	55	
Nominal drill hole diameter d ₀		[mm]	5	6		
Cutting diameter of drill bit $d_{cut} \leq$		[mm]	5,40	6,40		
Drill hole depth	ill hole depth $h_0 \ge$		40	40	60	
Clearance hole diameter	d _f ≤	[mm]	7	8		
Installation torque (version with connection thread) $T_{inst} \leq$		[Nm]	8	1	0	
Recommended torque impact screw driver		[NIm]	Max. torque acco	ording to manufactu	rer's instructions	
		[Nm]	110	160		

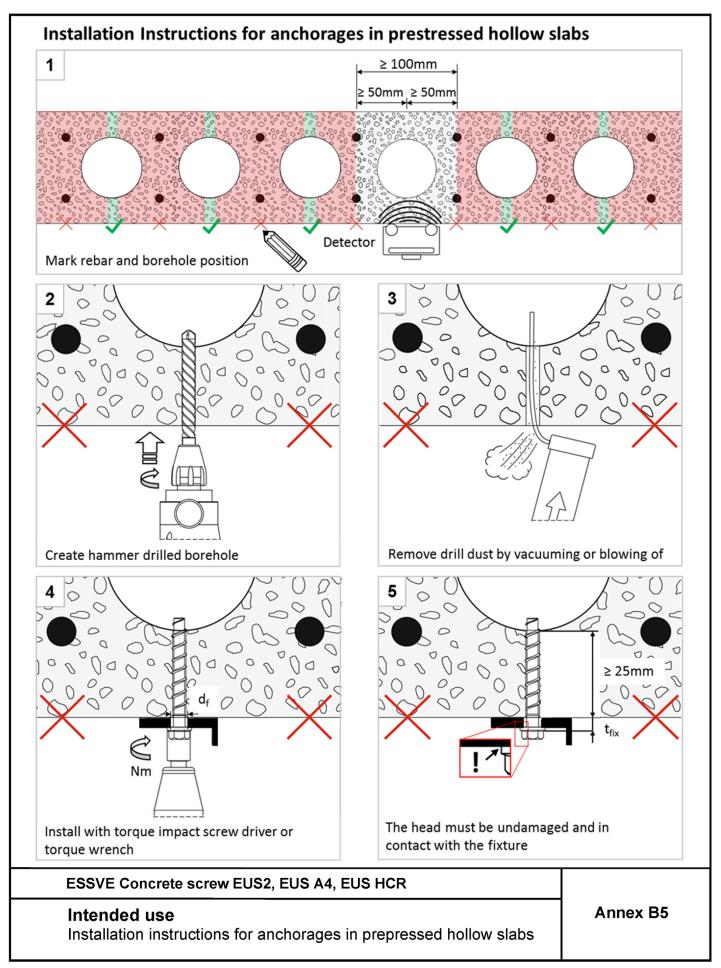
Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

Concrete screw size		5	6		
Nominal ambadmant d			h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedment de	eptn	[mm]	35	35	55
Minimum thickness of member	h _{min}	[mm]	80	80	100
Minimum edge distance	C _{min}	[mm]	35	35	40
Minimum spacing	Smin	[mm]	35	35	40

- c₁, c₂ = edge distance
- s_1, s_2 = anchor spacing
- a₁, a₂ = distance between anchor groups
- c_{min} = minimum edge distance \ge 100 mm
- s_{min} = minimum anchor spacing $\ge 100 \text{ mm}$
- a_{min} = minimum distance between anchor groups \ge 100 mm


ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Intended use


Installation parameters for anchorages in precast prestressed hollow slabs

Annex B3

Table 5: Characteristic values for static and quasi-static loading							
Concrete screw size			5	6			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}		
			[mm]	35	35	55	
Steel failure for tension and shear loading							
Characteristic	tension load	N _{Rk,s}	[kN]	8,7	14	,0	
Partial factor		γ _{Ms,N}	[-]		1,5		
Characteristic	shear load	V _{Rk,s}	[kN]	4,4	7,	.0	
Partial factor		γ _{Ms,V}	[-]		1,25		
Ductility facto	or	k7	[-]		0,8		
Characteristic	bending load	M ⁰ _{Rk,s}	[Nm]	5,3	10),9	
Pull-out failure							
Characteristic	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5	
tension load C20/25	uncracked	N _{Rk,p}	[kN]	1,5	3,0	7,5	
Increasing	C25/30			1,12			
factor for	C30/37	Ψ	[-]	1,22			
N _{Rk,pp} =	C40/50	[–] C			1,41		
N _{Rk,p} (C20/25) * Ψα	C50/60				1,58		
Concrete fai	lure: Splitting f	ailure,	concre	te cone failure and	pry-out failure		
Effective emb	edment depth	h _{ef}	[mm]	27	27	44	
k-factor	cracked	k1=kcr	[-]		7,7		
K Idetoi	uncracked	k1=kucr	[-]		11,0		
Concrete	spacing	S _{cr,N}	[mm]	3 x h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}		
Culitzina	resistance	N ⁰ Rk,Sp	[kN]		min(N ⁰ Rk,c; NRk,p)		
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	120	160	
	edge distance	C _{cr,Sp}	[mm]	60	60	80	
Factor for pry-out failure k ₈ [-]			1,0				
Installation factor γ _{inst} [-		[-]	1,2	1,0	1,0		
Concrete ed	ge failure						
-	th in concrete	$I_f = h_{ef}$	[mm]	27	27	44	
Nominal outer diameter of		d _{nom}	[mm]	5	E	5	

ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Performances

Characteristic values for static and quasi-static loading

Annex C1

Table 6: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60						
Concrete screw size 6						
Bottom flange thickness	db	[mm]	≥ 25	≥ 30	≥ 35	

Characteristic resistance	F⁰ _{Rk}	[kN]	1	2	3
Edge distance	C _{cr}	[mm]		100	
Spacing	Scr	[mm]		200	
Installation factor	γ_{inst}	[-]		1,0	

Table 7: Limiting distances for application in precast prestressed hollow core slabs

Distances for application in	Distances for application in precast prestressed hollow core slabs					
Minimum edge distance	C _{min}	[mm]	≥ 100			
Minimum anchor spacing	S _{min}	[mm]	≥ 100			
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100			
Distance of core	l _c	[mm]	≥ 100			
Distance of prestressing steel	lp	[mm]	≥ 100			
Distance between anchor position and prestressing steel	a _p	[mm]	≥ 50			

ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Performances

Characteristic values and limiting distances in precast prestressed hollow core slabs

Annex C2

Table 8: Fire exposure – characteristic values of resistance 1)								
Concrete screw size				5	6			
Material				EUS2	EUS2		EUS A4/HCR	
hrem			h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
Nominal embedment depth [mm]			35	35	55	35	55	
Steel failure for tension and shear load ($F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$)								
Characteristic Resistance	R30	F _{Rk,s,fi30}	[kN]	0,8	0,9		1,2	
	R60	F _{Rk,s,fi60}	[kN]	0,6	0,8		1,2	
	R90	F _{Rk,s,fi90}	[kN]	0,4	0,6		1,2	
	R120	F _{Rk,s,fi120}	[kN]	0,3	0,4		0,8	
	R30	M ⁰ Rk,s,fi30	[Nm]	0,5	0,7		0,9	
	R60	M ⁰ Rk,s,fi60	[Nm]	0,4	0,6		0,9	
	R90	M ⁰ Rk,s,fi90	[Nm]	0,2	0,5		0,9	
	R120	M ⁰ Rk,s,fi120	[Nm]	0,2	0,3		0,6	
Pull-out failure								
Characteristic Resistance	R30-R90	N Rk,p,fi	[kN]	0,375	0,75	1,875	0,75	1,875
	R120	N _{Rk,p,fi}	[kN]	0,3	0,6	1,5	0,6	1,5
Concrete cone failure								
Characteristic Resistance	R30-R90	N ⁰ Rk,c,fi	[kN]	0,65	0,65	2,21	0,65	2,21
	R120	N ⁰ Rk,c,fi	[kN]	0,52	0,52	1,76	0,52	1,76
Edge distance								
R30 - R120 C _{cr,fi} [mm]			2 x h _{ef}					
In case of fire attack from more than one side, the minimum edge distance shall be \geq 300mm.								
Spacing								
R30 - R120		S _{cr,fi}	[mm]		4 x h _{ef}			
Pry-out failure								
R30 - R120 k ₈ [-] 1,0								-
The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value.								
¹⁾ Not for application in prestressed hollow core slabs								
ESSVE Concrete screw EUS2, EUS A4, EUS HCR								
Performances Characteristic values under fire exposure							Annex C3	